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Abstract—In this paper, we report a data augmentation tech-
nique to alleviate the data shortage for UAV (Unmanned Aerial
Vehi-cle) classification problem. The UAV classification problem
is modeled on CNN (Deep Convolutional Neural Network),
which is prevalent in artificial intelligence, and the training
data consists of an RD (Range-Doppler) map of a FMCW
(Frequency-Modulated Continuous-Wave) radar for a moving
UAV. Getting more training data usually helps a deep CNN
better generalize to test data or the real world. Therefore, we
introduce a Generative Adversarial Network (GAN)-based data
augmentation technique to generate synthetic RD maps used for
training of UAV classifiers. By doing so, the UAV classifier was
able to achieve better performance on the test dataset, especially
when the classifier was trained on a smaller dataset.

Index Terms—UAV, classification, data augmentation, synthetic
data, convolutional neural network, generative adversarial net-
work, Range-Doppler, FMCW, radar

I. INTRODUCTION

Radar sensors are nowadays an important tool to replace
the use of vision-based sensors such as cameras, especially in
low light and under certain conditions such as harsh weather.
Because of their robustness and versatility, radar sensors are
used complementary to vision sensors such as LIDAR [1]–
[3] in many tasks such as autonomous driving and unmanned
aerial vehicle (UAV) detection.

Recently, artificial intelligence technology using deep learn-
ing (DL) has recorded state-of-the-art performance in var-
ious sensing and inference tasks, and is surpassing human
performance in image classification [11]. The remarkable
performance of DL models in classification comes from the
use of convolution filters in neural networks, which are called
convolutional neural networks (CNNs). CNNs are widely
used in Generative Adversarial Networks (GANs) [12], [13],
especially among deep generative models.

The growth of artificial intelligence has made it possible to
apply DL models to radar signals for a variety of tasks as well.
GAN-based generation tasks such as denoising [4] and super-
resolution [5] or CNN-based UAV classification [6] are used
for short-time Fourier transform (STFT) radar spectrogram

signals and CNN-based moving object detection [7] is used
for RD map signals and many other [8]–[10].

Unlike other tasks, the task of classifying objects using radar
signals deserves special attention. Other tasks that use DL are
limited to helping the human senses to observe results using
the output of radar sensors, but classifying using DL models
allows the model to make decisions directly without human
detection. To do this, the DL model must be reliable in the
real environment (test data). This means that the model must
be very accurate in order to be used. However, in general, DL
models require large amounts of training data to achieve high
generalization performance, which is difficult to obtain.

In this paper, we propose a conditional GAN [14]-based RD
map data augmentation method that improves the performance
of the RD map classifier. Our GAN model is trained using the
collected UAV RD maps and generates a synthetic UAV RD
map according to a given input class. By using the synthetic
UAV RD map as additional training data, the trained classifier
can achieve higher classification performance, especially in
data-poor environments. The contributions of our research are:

• We collected RD map information for the free flight of
three different types of UAVs, and successfully trained a
decent CNN classifier that performs R-D map classifica-
tion.

• We successfully trained conditional GAN that success-
fully generates plausible synthetic RD map, using UAV
RD map dataset.

• By using the synthetic RD map data, we boosted the
classification performance of UAV RD map classifier.

The rest part of our paper is as following: In section II, we
explain our training and testing data acquisition process. In
section III, we provide detailed explanation for the training of
CNN classifier and conditional GAN model. In the rest of the
sections, we provide detailed settings of our model training
and report experiment results of our trained model.

II. DATASET

In order to train our CNN classifier and GAN models,
FMCW dataset Range-Doppler maps of UAVs are required.



However, since UAV radar data are generally collected for
a particular purpose by specific companies or military in-
stitutions, they are not publicly available for academic use,
so that researchers generally collect using their equipment.
For military purposes, Range-Doppler maps are utilized to
extract both the distance and radial velocity of the target. With
an FMCW radar signal, a 2-dimensional FFT (fast Fourier
transform) is typically used to generate a Range-Doppler map.
Specifically, a Range-FFT is applied over the samples of
each chirp signal and then a Doppler-FFT is applied across
chirps. After 2D FFT processing, we take the magnitude of a
complex Range-Doppler array. For UAVs, three types of four-
wing drones of different sizes were used. For each drone,
we obtained data from multiple free-flight shots with radar
equipment. We also acquired radar data for people and cars,
but these two data were excluded because it was too easy for
the UAV classifier to distinguish them from the rest of the
classes.

III. PROPOSED MODEL TRAINING

In this paper, we propose to use a GAN model to generate
a synthetic RD map of UAVs to aid in the training of
UAV classifiers. Our training method consists of 3 steps: 1)
cGAN (Conditional Generative Adversarial Network) training,
2) synthetic data augmentation using cGAN, and 3) UAV
classifier training utilizing augmented data. This section details
the three-step learning process.

A. Conditional Generative Adversarial Network Training

In the field of deep learning, Generative Adversarial Net-
works (GANs) have been adopted to diverse vision tasks [15]–
[19]. In general, GANs are composed of two networks: a
generator network G and a discriminator network D. Given
a vector z ∈ R100 whose value of each element are sampled
from unit normal distribution as input, the G outputs an image
vector that is trained to mimic the real distribution of the real
data x ∈ R1×128×128, which is fake data G(z) ∈ R1×128×128.
Given the real data x and fake data G(z), D learns to
discriminate the x as real and G(z) as fake, and G learns to
fool D to classify G(z) as real. This is modeled as min-max
game, which the value function is:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]
(1)

During the training of the two network, G and D compete
each other, and this process is often compared to counterfeit
money criminal and the police. The G will try to make the
fake samples more real to fool the discriminator, and the
discriminator will learn better strategies that can discriminate
real sample and fake sample. Ideally, if the distribution of the
fake samples becomes identical to the real data distribution, the
probability of the fooling rate of the generator will become 0.5
and the accuracy of the discriminator will become 0.5, which
is the point of equilibrium. However, such ideal case rarely
holds in practice. Currently in the field of deep learning, with
equal conditions, the discriminative models usually optimize

faster than the generative models. As a result, the discriminator
delivers strong gradients to the generator, which is harmful for
the learning of the generator.

Consequently, many researchers devised ways to make the
competitive process more stable, so that the generator and the
discriminator can make synergy each other. Among those we
adopt Least-Square GAN (LSGAN) [20] for our loss function,
which proposed mean-squared-error (MSE) loss for the stable
training of GAN. The two network G and D are jointly trained
to minimize these two loss functions:

LD = 0.5[[D(G(z))]2 + [1−D(x)]2]

LG = 0.5[[1−D(G(z))]2]
(2)

In the setting of our method, we adopt the training strategy
of Auxiliary Classifier GAN (ACGAN) [21], which trains the
G to be capable of generating fake sample according to the
conditioned target class label c ∈ R3. The target label c is
used as the input condition of the network G with the noise
vector z given as input, being G(z|c). For the discriminator,
its task-head is modified to conduct multi-task learning: 1)
discrimination task-head, which discriminates real data x and
fake data G(z|c), and 2) classification task-head, which learns
to predict the correct label of x or G(z|c). The G learns to
generate G(z|c) that fools the D to classify it to correct label
y. We name the classification head of the discriminator as DC .
By using softmax-cross-entropy loss function, the additional
loss function becomes:

LDC
= − log p(c|x)

LGC
= − log p(c|G(z|c))

(3)

Combining Eq. (2) and Eq. (3) together, the total loss Ltotal

for the training of G and D is:

Ltotal = LD + LDC
+ LG + LGC

, (4)

which ends up with combination of conditional GAN and
LSGAN. In the default settings above, we added two more
details to stabilize the training of the GAN.

First is the conditioning algorithm of the class label c.
Assignment of conditions to GAN is first proposed by cGAN
[14] to use class labels as one-hot vectors by concatena-
tion operation with inputs of G and D, which becomes
G(z; y) and D(G(z); y). Due to its simplicity, the use of
concatenation operations has been shown in many other GAN
studies such as ACGAN [21] and StarGAN [22]. In our
proposed method, we adopt the CCAM embedding operation
of SGN [23]. CCAM uses additional multi-layer-perceptron
(MLP) layers which use intermediate feature representation
f ∈ R1×1×ChannelSize which is spatially average-pooled
version of F ∈ RH×W×ChannelSizeand class one-hot vector
as input, and its output is activated by sigmoid operation S,
which formulates:

CCAM(f, c) = S(MLP3 (MLP2 (f ;MLP1(c))))

F ← F ⊗ CCAM(f, c)
(5)

Where ⊗ denotes element-wise multiplication operation in the
channel dimension. We found that this conditioning method



Fig. 1: The illustration of our conditional GAN training process. The loss with red font means that the discriminator is trained
with that loss term, and the blue font means that the generator is updated with it. With real RD map, the discriminator learns
to classify it as real, and also learns to classify its correct class. For fake RD map, the discriminator learns to classify it as
fake, and the generator learns to classify it as fake, and the generator learns to make the discriminator to classify it correctly.

provides a meaningful improvement in the reliable training of
our GAN, which leads to an important improvement in the
performance of the UAV classifier, which we will introduce in
the next section.

Second is the input RD map pre-processing method for
the discriminator. An important property that RD maps differ
from conventional image data is that they have a maximum
boundary and a minimum boundary for the image data, such
as [0, 1], [-1, 1] or [0, 255]. So generative models are designed
to use sigmoid or tanh activations in the very last layer with
upper and lower bounds. However, RD Maps have log scale
values whose values can ideally be infinite, and this difference
makes it easy for discriminators to distinguish between real
and synthetic RD Map data, which can lead to training failures.
We solved this problem by normalizing the RD map at the
[0, 1] boundary by dividing each individual RD map by the
maximum abstract value. We named this normalization as
PIN, which is abbreviation of per-image normalization.

The overall Generator and Discriminator training procedure
is depicted in Fig. 1.The lower part of the picture is the CCAM
embedding part. The class one-hot vector is not input to the
first layer, but instead to the two intermediate layers.

B. Synthetic data augmentation using conditional GAN

An important property of generative models is sampling.
You can use a trained generator to sample z from a Gaussian

normal distribution. If the model has learned the distribution
of the real data well, it will generate an appropriate sample
from it. Using our generator that we trained in the first phase,
we can randomly sample RD maps G(z|c = C) that match the
given classes C ∈ [0, 1, 2]. The discriminator network is not
deployed in this phase. All sampling processes are completed
before the start of the classifier. That is, synthetic training
images are not generated on-the-fly with classifier training.
These class conditionally generated samples are then used for
UAV classifier training described in Step 3.

C. UAV Classifier Training

Two situations were assumed in training the UAV classifier.
The first is rich data setup. Here we use all training data to train
a conditional GAN and UAV classifier. The second is the lack
of data setting. About one-quarter of the original data is used
to train conditional GAN and UAV classifiers, which severely
degrades classification performance. The reason we retrain the
GAN with fewer data is to comply with the restriction that the
remaining 3/4 of the data is inaccessible.

For reliable training of image classifiers, it is common to
normalize the training images to the global data mean and
variance, but we do not apply it because the RD map dataset
contains quite a few noisy samples that can shift the global
mean and variance, whose deviations can have a bad effect.
Therefore, we only use individually normalized real RD maps



Fig. 2: The illustration of our UAV classifier training.

and generated fake RD maps. To avoid unwanted situations
where the classifier is overparameterized or underparametered,
it uses the exact same architectural network used for the
discriminator in the GAN. If the conditional GAN training
is stable, the classifier head of the discriminator will be able
to classify the three classes of UAVS. This ultimately means
that if the same kind of network is used for the classifier, the
classifier’s stability is also guaranteed. We have empirically
confirmed that the classifier is sufficiently discriminatory. This
is an important point for our data, as the three types of UAVs
are actually completely indistinguishable from the human field
of view. The training process of the classifier is rather simple
compared to GAN training and is shown in Figure 2. By
evaluating a trained classifier on a test data set, you can
measure the accuracy gain of the classifier according to a data
augmentation strategy.

IV. EXPERIMENT

For experiments, We collected 39,047 RD maps of 3 types
of free-flying UAVs in total, and after randomly shuffling them,
we divided the RD maps into two groups, 30,000 RD maps
for train data and 9,047 RD maps for test data. We trained the
conditional GAN based on the combinations of two criteria.
The first criteria is the “The number of training data”. Though
we have 30,000 RD maps for training in total, we additionally
wanted to assume the data-scarce environment, so we used
only 10,000 of them, which may degrade the performance
of the cGAN. Therefore, for the first criterion, we have two
setups with 10,000 and 30,000 training data respectively. The
second criteria is “The kind of cGAN models used”. We
previously introduced two training details that contributed to
the stable training of GAN, which are per-image normalization
(PIN), and conditioning channel attention module (CCAM).
For the second criterion, we have three setups, cGAN, cGAN
+ PIN, cGAN + PIN + CCAM. Please aware that the cGAN
does not mean the original form of vanila cGAN, but instead
refers to the combination model of DCGAN, ACGAN, and
LSGAN. With these two criteria, we trained totally 6 combi-
nation of cGAN models. For each setting, we also varied the

number of synthetic (fake) samples that were sampled using
the cGANs, and trained the corresponding UAV classifiers.

From now on, we verify that our training strategy stabilizes
the training of GAN and also enhances the performance of the
classifier, both quantitatively and qualitatively. We also provide
the details of our training model and hyper-parameters that we
used in our experiments.

A. Quantitative Analysis

Our model training setting that exploits the synthetic UAV
RD map is actually a straight-forward way to measure the
quality of the generated RD map. This measure was also
recommended in CAS [25]. However, as CAS reported, the
well-known conditional generative models in natural image
domain suffered in actually enhancing the performance of
the classifier, and the additional data even degraded the
performance. On the other hand, our model showed decent
improvements on the accuracy of UAV classifier, and the score
is reported on the Table I.

The number of spurious samples used in the “None” column
of the cGAN model is zero, meaning that the classifier does
not use an additionally augmented RD map, so it is a vanilla
setting for classifier training. As you can easily expect, the
more training data you use, the higher the base accuracy of
the UAV classifier.

In the third column, the performance degraded when using
the synthetic RD map, a sample of the cGAN, for classifier
training. This can also be predicted from the fact that the
distribution of the real RD map and the fake RD map is
different as mentioned in the sectionIII.

This issue was easily mitigated by using the PIN shown in
the fourth column, cGAN + PIN. For most Real : Fake Ratios
we could observe some performance improvement compared
to vanilla classifier training. This means that synthetic RD
maps were helpful.

Finally, the scores in the last column reflect that the fake RD
map generated from the model using the CCAM embedding
module was also helpful, and that using more sham samples
improved the performance of the UAV classifier.



TABLE I: UAV classifier accuracy using the data augmentation of cGANs

Real : Fake cGAN Model
Ratio None cGAN ( [12] + [20] + [21] ) cGAN + PINa cGAN + PIN + CCAM

10000 : 0 69.82 - - -
10000 : 10000 - 62.01 69.67 70.12
10000 : 20000 - 63.19 70.98 73.50
10000 : 30000 - 63.88 70.76 74.14 (+4.32)

30000 : 0 87.34 - - -
30000 : 10000 - 83.55 88.45 88.25
30000 : 30000 - 83.76 88.91 90.91 (+3.57)
aAs mentioned at the previous section, PIN is per-image normalization

B. Qualitative Analysis

Fig. 3: The training loss curve of cGAN.

Fig. 4: The training loss curve of cGAN + PIN.

1) Loss Curves: We plotted the loss curve of the training
of cGAN models at Fig 3～5. Please note that for the training
of GAN, when either G loss or D loss converges fast, that
phenomenon means that one of the network overwhelms the
other side. This is harmful for the stable training, because the
two networks should be trained competitively in order to learn
useful information from each other, which is the fundamental
motivation of GAN. For our model, since we adopt the loss of
LSGAN, the ideal point of convergence is 0.25 for both G loss
and D loss (assuming that the CE loss for UAV classification
for both G and D converges to zero), and either being 0 or
0.5 means that one network beats the other.

At the cGAN case, in Fig 3., the training loss of D goes
toward zero quickly, which means that D easily beats G,

Fig. 5: The training loss curve of cGAN + PIN + CCAM.

breaking the competitive aspects. When PIN is added, in Fig
4., the competitive aspects lasts longer, but eventually D beats
G at about 60,000 iteration. When PIN and CCAM is added,
in Fig 5., though the D loss goes toward 0 and G loss goes
toward 0.5, the both loss curves fluctuate until the end of the
training of the model.

2) RD Map Visualization: To qualitatively evaluate the
synthetic RD map, a randomly sampled synthetic RD map
along with the actual training data was visualized in Figure 6.
The input noise z as well as the class are randomly sampled.
Although it is nearly impossible to discriminate the classes of
RD maps in the human eye, the fact that class conditionally
generated RD maps aid in the training of UAV classifiers
supports that neural networks are capable of classifying UAVs.
Note that the real RD maps used for training the models
differ due to the PIN. As can be seen, since PIN force the
maximum value of the signal to 1, it act as equalizer so that
it becomes easy to find the peak signals. I also has drawbacks
that when fine peak signal does not exist, it amplifies the noise,
which can be harmful. Nevertheless, the previous experiments
showed that it is superior. If we could eliminate every frame
that radar failed to capture the UAVs, we expect that our
method will perform even better. Also, the signals of the RD
maps are stronger when cGAN + PIN + CCAM is used, and
the base cGAN model produces many RD maps in which
the peak signal appears to be non-existent. The performance
degradation of cGANs and the according UAV classifiers may
have occurred due to not filtering out the RD maps, which is
a time-consuming task.



(a) cGAN: Fake (b) cGAN: Real

(c) cGAN + PIN + CCAM: Fake (d) cGAN + PIN + CCAM: Real

Fig. 6: Visualizations of synthetic RD maps (Fake) and real RD maps (Real) for cGAN model and cGAN + PIN + CCAM model. The G
models for sampling these RD maps are trained using 30,000 of training data.

V. CONCLUSION

In this paper, we propose to use a conditional GAN model
for augmenting RD map data of UAVs and train a UAV
classifier using augmented RD maps, and demonstrate their
effectiveness in both data-rich and data-poor settings. Larger
performance gains in data-poor setups are of great benefit in
that radar data is difficult to obtain. Two modifications were
applied to reliably adopt the cGAN model used in previous
vision work for radar tasks, contributing significantly to further
improvements. Further performance improvement is expected
if the frames which UAVs are non-existent are removed.
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