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Abstract—Most of recent successful researches on action
recognition are based on deep learning structures. Nonetheless,
training deep neural networks is notorious for requiring huge
amount of data. On the other hand, not enough data can lead
to an overfitted model. In this work, we propose a novel model,
matching video net (MVN), which can be trained with a small
amount of data. In order to avoid the problem of overfitting, we
use a non-parametric setup on top of parametric networks with
external memories. An input clip of video is transformed into
an embedding space and matched to the memorized samples in
the embedding space. Then, the similarities between the input
and the memorized data are measured to determine the nearest
neighbors. We perform experiments in a supervised manner
on action recognition datasets, achieving state-of-the-art results.
Moreover, we applied our model to one-shot learning problems
with a novel training strategy. Our model achieves surprisingly
good results in predicting unseen action classes from only a few
examples.

I. INTRODUCTION

With huge advances of deep learning, large scale datasets
are essentially required for training deep structures sufficiently.
Optimizing enormous amount of parameters in a deep struc-
ture necessitates hundreds of thousands examples. Moreover,
training a deep network is too slow because of many weight
updates using stochastic gradient decent.

In particular, researches on video action recognition have
established deep models that have millions of parameters to be
trained. In order to optimize whole parameters in those models,
a big dataset which includes over thousands of videos is
needed. For instance, even though 3D convolution model,‘C3D
[1]’ showed a state-of-the-art performance of video action
recognition with UCF101 dataset [2], a full network of C3D
needs Sports-1M dataset [3] which includes over 1 million
videos to be optimized. Note that Sports-1M has 5 times the
number of categories and 100 times the number of videos
compared with UCF101.

However, humans learn new concepts with few examples.
In contrast to recent deep learning systems, a child can
generalize simple actions (e.g., walking) from few samples
in real life. This motivates the interesting learning concept
of “one-shot learning” which can learn a new concept from
a single example. This idea of “one-shot learning” is also
highly related to newly expanding a concept. While new target
classes can be added in recent classification models, we have
to retrain classifiers with whole data from the scratch. This
can cause wastes of time and other computational resources. In

Fig. 1. Abstract concept of our proposed model based on distance metric.
The memory based embedding network converts input sequences to a vector
in a support-set embedding space. Hence, we can predict the class of the input
by comparing distances between the input vector and the support-set.

case of one-shot learning, those troublesome can be efficiently
overcome.

Our work is motivated by the difficulties in training deep
models with small dataset and in adding new target classes.
Therefore, we propose a novel model combined with non-
parametric method. The non-parametric model has several
characteristics in training process. Some models in non-
parametric methods (e.g., nearest neighbors) even do not
require training process but the result depends on the chosen
metric. In this work, we tried to adapt a non-parametric
setup to a parametric model to resolve the aforementioned
difficulties. Figure 1 briefly shows how a non-parametric
method can be adapted to the action recognition problem.

Moreover, non-parametric methods can be developed with
memory augmented network [4]. For example, when we
recognize a human action from a scene in real life, we consider
important scenes in our memory to compare with. Therefore
we can use the external memory architecture as a long-term
memory to store sampled representations.

In this paper, we make the following contributions:
• We propose a novel architecture which can efficiently

recognize human actions with the non-parametric classi-
fication method from a small amount of data.

• We test our model on one-shot learning problems to
predict unseen classes from a few examples without the
fine-tuning process.



Fig. 2. Overall structure of our model. 1) Support set embedding S is acquired using GRU networks. 2) Input sequences are fed into MEN unit and then
passed through a GRU network conditioned by support set embedding S. 3) A similarity vector â is obtained by calculating distances between the vector g
and the matrix S = {(si, li)}mi=1. Lastly, a class prediction distribution ŷ is obtained by multiplying the similarity vector â and one-hot vectors of support
set’s labels.

Our paper is organized as follows. Section 2 reviews the
related work on action recognition and one-shot learning. In
Section 3, we will introduce our proposed model including
memory based embedding and metric based classification. In
section 4, our experimental setting and three action recognition
datasets are described. Then we demonstrate our results on
supervised and one-shot learning. Finally, section 5 concludes
our paper.

II. RELATED WORK

1) Deep learning for action recognition: Most of recent
works on action recognition have made remarkable improve-
ments in the benefit of successful deep architectures. Over
the years, convolutional neural networks (CNN) and recurrent
neural networks (RNN) have been applied in several ways to
produce state-of-the-art results on action recognition.

In order to learn spatio-temporal features, CNN-based
approach [3] learns representations for RGB inputs using
several temporal sampling. To better take the advantage of
consecutive video frames, two-stream Network [5] proposed
two separate CNNs for appearance and motion information
respectively. Based on these works, trajectory-pooled deep
convolutional descriptor [6], very deep two-stream Networks
[7] and many other variations have been proposed to enhance
the representation power of video for classification. Another
attempt of using CNN-based approach for video classification
is 3D convolutional neural networks [1] which extends 2D
convolutions to 3D spatio-temporal convolutions over a very
short video clips to learn motion features from raw frames
implicitly and then aggregate predictions at the video level.

More recently, X. Wang et al. [6] considered an action as
a sequence of transformation across frames or key frames
and employed two-stream siamese network to further improve
classification performance.

RNNs have also shown its effectiveness for action recog-
nition. N. Srivastava et al. [8] used LSTM (Long short term
memory) in an unsupervised manner for better understanding
of video representation. Ng et al. [9] extracted features with a
two-stream networks and employed long short term memory
fusion for action recognition. LRCN [10] also try to learn
spatio-temporal features over long time periods aggregating
powerful CNN features to discover long-range temporal rela-
tionships.

Despite its success in action recognition, many of these
works largely depend on tremendous amount of training data
and are still hard to train efficiently. In this work, we address
this issue and propose to learn action representation in a non-
parametric way.

2) One-shot learning: One-shot learning has been studied
based on generative models. In early studies, bayesian algo-
rithms were used to infer proper parameters with global prior
distribution [11]. Hierarchical bayesian model [12] was also
used with supercategory-level prior. A different approach is
to learn an embedding space to incorporate metric learning
such as nearest-neighbor for classification. Deep convolutional
siamese [13] networks were proposed to classify pairs accord-
ing to distance. Moreover, training is performed with triplet
loss [14], [15] to enforce a distance ranking. Recently, Santoro
et al. [4] proposed to adapt external memory for one-shot
learning. Lastly, the most relevant work of this paper is a



matching network [16] which provides a novel framework
amenable for one-shot learning using both external memory
and metric learning. Our work is highly inspired by the
matching network, then we adapt it to action recognition
problems with image sequences.

III. MODEL

A. Overview

The overall structure of our proposed model is illustrated
in Figure 2. First of all, we extract an image representation of
each frame from video clips using pre-trained CNN algorithms
to obtain input data X . We separate our input data X into two
exclusive sets: support set S and input set X ′. We sample a
few clips from the input dataset X = {(xi, yi)}ni=1 as the
support set which would act like matched examples. Then
we store the support set S in an external long-term memory.
Our model consists of two embedding networks for these two
sets, support set S and input set X ′, respectively. Moreover,
both embedding networks have their own external memory,
the short-term memory for the input set X ′ and the long-term
memory for the support set S.

The first network is used as an embedding of support
set S. Each data in the support set has frame sequences
from a clip so that we get embedding representations using
GRU (Gated Recurrent Unit) [17] network. Moreover, we use
those representations to control matching relations between
the support set S and the input set X ′. To enable this, we put
those representations into the second embedding network as a
context to be attended.

In the second embedding network, we build a memory
based embedding structure to get representations from the
input set X ′. In the memory based embedding, representations
are obtained from activated combinations of the current frame
and the past frames. Then we sequentially embed those
representations over a GRUs network and average over outputs
of the GRUs network.

Different from the conventional classification model, the last
part of our model is not a fully connected neural network.
We combine a metric calculation module based on cosine
similarity between the input set X ′ and the support set S.
After summing up similarities, we can get the probabilities of
target classes.

B. Memory based Embedding

In our model, we use memory network [18] to get rep-
resentations from input video frames X ′. Memory network
is a kind of memory augmented neural network [18] which
recently showed promising performances at various tasks.
Memory network can reinforce an input representation from
matched items in an external memory. We use a main part
of memory network to obtain enhanced representations of
input frames sequences. However, a main difference between
memory network and our model is that we sequentially add
previous scenes in a clip into a short-term memory.

Figure 3 shows the memory-based embedding network
(MEN). In MEN, as sequences are fed into the network, we

Fig. 3. Illustration of a memory-based embedding unit. Previous scenes which
were sequentially added into external memory are embedded by the matrix
A and B. The first embedded matrix M and the input embedding u generate
probability vector p followed by the softmax function. Then the vector o is a
sum over the second embedded matrix M ′ weighted by the vector p. Finally,
the vector o and u are added, then we obtain the final output f passed through
W .

stack previous sequences x1, x2, ..., xk−1 in a short-term mem-
ory. Then we convert those frames in a short-term memory
into a transformed memory M = [m1,m2, ...,mk−1]. More
specifically, each xi(i = 1...k− 1) is converted into mi ∈ Rd
computed by embedding matrix A (i.e,mi = Axi). Input
xk is also embedded to obtain and vector u = Cxk. In the
embedding space, we compute the matches between the input
frame u and the memories m1,m2, ...,mk−1 by taking the
inner product followed by the softmax:

pi = softmax(uTmi) (1)

where softmax(xi) = exi∑
j e

xj . Here, j is the index of items in
the short-term memory M . Therefore p = [p1, ..., pk−1] can
be considered as a matched probability vector over the past
frame sequences.

We use the distribution p as an attention coefficient for each
memory. In order to use those probabilities, we also compute
another transformed memories M ′ = [m′i, ...,m

′
k−1] using an

embedding matrix B (i.e,m′i = Bxi). The output vector o is
then a sum over the M ′, weighted by distribution from p:

o =
∑
i

pim
′
i (2)

Then we add the output vector o and the input embedding
u to pass through a final weight matrix W:

f = W (o+ u) (3)

At last, combined representation f is fed into the GRU layer
to obtain the final input representation g as shown in Figure
2.

C. Gated Recurrent Unit with Content-based attention

For both of the input set embedding and the support set
embedding, we use the GRUs to get representations from
the sequences. While vanilla RNNs suffer from the well-
known vanishing and exploding gradient problems [19], the



LSTM [20] was proposed to overcome those issues. The GRU
which is a variant of the LSTM, was found to achieve better
performance than the LSTM on some tasks [21]. The vanilla
GRU is defined by the following equations:

rt = sigm(Wxrxt +Whrht−1 + br) (4)

zt = sigm(Wxzxt +Whzht−1 + bz) (5)

h̄t = tanh(Wxhxt +Whh(rt � ht−1) + bh) (6)

ht = zt � ht−1 + (1− zt)� h̄t (7)

In these formulation, the xt is input at time t and the ht−1
is a hidden activation at time t − 1 which is iteratively fed
into the GRU cell. The W variables are the weight matrices
and the b variables are the biases. The operation � denotes
the element-wise vector product. The update gate zt balances
between previous activation ht−1 and the candidate activation
h̄t. The reset gate rt allows it to forget the previous state.

While vanilla GRUs work for the support set embedding,
we adapt a content-based attention guided by the support set
to GRUs in the input set embedding. Since the classification
strategy depends on the support set, it can be beneficial to
make the input embedding conditioned by the support set.
We can obtain a content-based attention ct from dot-product
activation between a previous hidden state ht−1 at time t and
the support set S:

ct =

|S|∑
i=1

a(ht−1, si)si (8)

a(ht−1, si) = softmax(hTt−1si) (9)

Then we get a reinforced hidden state ht−1 = [ht−1, ct] which
gets concatenated with a content-based attention ct.

D. Metric based classification

In general, the last layer of a deep learning model is a
fully-connected layer designed to classify target labels. The
last layer produces probabilities of all target labels through
the softmax function but it needs a lot of parameters and
easily gets overfitted. In order to optimize parameters in a
fully-connected layer, we should prepare a huge amount of
data, especially for complex problems such as human action
recognition. Therefore in our work, we eliminate the fully-
connected layer just before the softmax function.

Instead, we use a differentiable nearest neighbor layer which
is based on a cosine similarity metric. We first remind support
set S from the external long-term memory. A similarity âi of
the input representation vector g against each support set si is
calculated as:

âi =
g · si
‖g‖‖si‖

(10)

The similarity âi also means a inverse distance between input
representation and each support sample in the support set
embedding space. We can use âi as a measure of the similarity
in a nearest neighbor classifier. However, in our model, we can
generalize our method with classes in the support set as below.

When we stack the support set S = {(si, li)}mi=1 in
the memory, we also store one-hot vectors of support set’s
labels li. Then we can easily obtain a sum of similarities by
multiplying the similarity vector âi and the one-hot vector li:

ȳ =
∑
i

âli (11)

The vector ȳ is the sum of cosine similarities which are
already normalized between -1 and 1, which allows to get
distribution of closeness in the vector space by taking the
softmax function:

ŷ = softmax(ȳ) (12)

Despite using metric calculation, we can train our model in
an end-to-end fashion. Moreover, since we use not only the
non-parametric method but also parametric algorithms such
as GRUs, we should optimize an objective function to train
parameters in our model. More precisely, our training objective
is as follows:

θ = arg max
θ

∑
X′

Pθ(y
′
i|x′i, S) (13)

where X ′ = {(x′i, y′i)}ki=1.

IV. EXPERIMENTS

A. Datasets

We perform experiments on three different datasets: UCF-
11 [22], UCF sport [23] and HMDB 51 [24]. Compared to
recently released datasets such as UCF-101, those datasets
have fewer classes and smaller amount of videos. However,
since we intended to show that our model could be trained
with small-sized data and to deal with extending target classes,
those datasets are considered suitable for such purposes.

1) UCF-11 Human Action Dataset: [22] is a challenging
dataset which has following properties: 1) a mix of steady
cameras and shaky cameras, 2) cluttered background, 3) varia-
tion in object scale, 4) varied viewpoint, 5) varied illumination,
and 6) low resolution. Dataset contains 11 categories and
1,600 sequences in total. Action categories include: basketball
shooting, biking/cycling, diving, golf swinging, horse back
riding, soccer juggling, swinging, tennis swinging, trampoline
jumping, volleyball spiking, and walking with a dog. Similar
to the original setup, we used cross-validation for a pre-defined
set of 25 folds. Performance is calculated by the average
accuracy over all classes.

2) UCF Sport Dataset: [23] includes a total of 150
sequences with the resolution of 720 x 480. The dataset
contains 10 sport action categories: swinging, diving, kick-
ing ball, weight lifting, horse riding, running, skateboarding,
swinging (on the bench), golf swinging and walking. It is also
a challenging dataset which includes various actions featured
in a wide range of scenes and view points. The training setup
was recommended in Rodriguez et al. [23], using a Leave one
out cross validation (LOOCV) scheme. However, we randomly
separate 10 train/test splits and report the average accuracy
over best performances.



TABLE I
COMPARISON OF PERFORMANCE ON UCF-11, UCF SPORT AND HMDB-51 WITH THE STATE-OF-THE-ART MODELS. NOTE THAT BASELINE METHODS OF

HMDB 51 ONLY USE RGB DATA AS OURS.

UCF-11 Human Action UCF Sport HMDB 51 (RGB Only)
Method Video Acc. Method Video Acc. Method Video Acc.

Ikizler-Cinbis et al. [25] 75.2% Kovashka et al. [26] 87.2% Simonyan et al. [5] 40.5%
Wang et al. [27] 84.2% Wang et al. [27] 88.2% Sharma et al. [28] 41.3%

Jungchan Cho et al [29] 86.1% Jungchan Cho et al [29] 89.7% Srivastava et al. [8] 44.0%
Our Model(1-shot) 90.5% Our Model(1-shot) 87.0% Our Model(1-shot) 31.6%
Our Model(5-shot) 91.7% Our Model(5-shot) 89.0% Our Model(5-shot) 38.8%

3) HMDB51 Dataset: [24] contains 51 distinct action
categories and 6,766 video clips extracted from a wide range of
sources such as movies and YouTube. Each category includes
at least 101 samples. We follow the original evaluation setup
which provided three train/test split. For every class and split,
there are 70 videos for training and 30 videos for testing.
We compute the average accuracy over the three splits as a
performance measure.

B. Experimental Setting

We perform two kinds of experiments with the proposed
model: supervised learning and one-shot learning. The first
experiment is to compare the performances of the proposed
model with state-of-the-art methods. In the second experiment,
we set up an experimental environment for the one-shot
learning framework to predict unseen classes.

1) Supervised Learning: The first experiment is designed
on a supervised learning framework. On the three datasets, we
evaluate the classification accuracy of action classes. Then we
compare our models with a set of baselines proposed recently
on those datasets.

For image representations, we use the VGGNet [30] to
extract features from a final fully-connect network. Before
extracting features which have 4096 length of vectors, we split
a video to several clips to fix the length of sequences for the
sake of implementation. In this experiment, each clip consists
of 16 frames and each video has several clips depending on
the length of the video. However, basically variable length of
clips can be used in our framework.

The support set S is sampled from the input set X and
we set the number of samples per class as one or five. For
example, if we set the per-class sample size as five on UCF-
11 dataset, we could collect 55 samples from the input set.
Then we store the support set into a long-term memory and
also use the support set from the long-term memory in the test
phase.

For evaluation, we calculated the accuracy on a video from
the accuracy on clips. At test phase, we computed the class
prediction for each clip. Since a video consists of several clips,
we averaged predictions of clips to obtain the accuracy of the
entire video.

In this experiment, a model is trained using a stochastic
gradient decent optimizer. The initial learning rate is set to
be 0.001 and the decay ratio is adapted as 0.95 per 500

Fig. 4. Experimental results of the supervised learning on UCF-11 action
dataset; video accuracy scores under changes in sample size per class of
support set

iterations. We use dropout when we stack past frames into
external memory slots.

2) One-shot learning: For one-shot learning, to predict
unseen classes, we set up environment as followings. First,
we split target classes Y into two disjoint groups: training
classes L, test classes L′. While training classes L are used for
training our model, test classes L′ are not observed. Then we
can set this problem P as N -way classification which means
the number of target classes is N . For training, we first sample
N classes which denote L̂ from training classes L per a mini-
batch and also sample support set S and input set X in L̂.
For instance, if the number of support set for each class is s,
we sample N × s examples for N chosen classes in a mini-
batch. After training is completed, we can test our model only
within test classes L′ for predicting unseen classes. While the
test strategy is the same as the training strategy, we sample N
classes which denote L̂′ from test classes L′. Then we sample
support set S′ and input set X ′ in L̂′. For both processes, note
that we create a different support set respectively.

Labels of sampled classes are set from 0 to N − 1 for N-
way classification so that each class number has no meaning.
This strategy prevents the model to memorize the order of
classes. Therefore, this can endow the embedding mechanism
with the power of generalization to convert any classes into
an appropriate vector in the embedding space. We used UCF-
11 dataset and HMDB 51 dataset for the one-shot learning
experiment. In this experiment, we did not conduct LOOCV



TABLE II
RESULTS OF ONE-SHOT LEARNING ON UCF-11 ACTION DATASET WITH

BASELINES

Method 1-shot Clip Acc. 5-shot Clip Acc.
Baseline(Random) 20.0% 20.0%

Baseline(FC) 20.8% 20.1%
Baseline(Pixel) 23.9% 25.7%

Our Model 42.1% 50.8%

TABLE III
RESULTS OF ONE-SHOT LEARNING ON HMDB 51 ACTION DATASET WITH

BASELINES

Method 1-shot Clip Acc. 5-shot Clip Acc.
Baseline(Random) 20.0% 20.0%

Baseline(FC) 20.7% 20.3%
Baseline(Pixel) 24.4% 27.4%

Our Model 42.9% 58.0%

or cross-validation method. Only 5-way classification was
performed and both 1 shot and 5 shot of support set were
used for experiments.

For UCF-11 dataset, we randomly split 11 classes into 6
training classes and 5 test classes. On HMDB 51 dataset,
we randomly split 41 training classes and 10 test classes. In
this experimental setting, the correlation between train classes
L, test classes L′ can be crucial. More correlated splits can
show better performances due to the similar topology in a
vector space. Therefore we made 15 class-splits randomly for
each experiment and averaged best accuracies of all trials.
Other conditions for experiments are almost same as those
for supervised learning.

C. Experimental Results

1) Supervised Learning: Table 1 shows accuracies on three
datasets. Here, ‘shot’ (e.g., 1-shot, 5-shot) means the number
of examples per class in the support set. On UCF-11, a
relatively smaller set, our model outperforms a set of baselines
proposed recently. These results reveals our metric based
classification strategy has big advantages on datasets including
a small amount of data. Obviously, 5-shot MVN works better
than 1-shot because using more examples helps the model.

On HMDB 51 action dataset, our model shows comparable
results to recent works which only use RGB data as our
method did. In metric classification, classifying many classes
needs more comparison with examples. Hence, we obtained
lower performances than small datasets. And 5-shot model
also shows better performance than the 1-shot model.

Furthermore, we changed the size of sample per class
to understand how it effects performances. We performed
those experiments only on UCF-11 action dataset. Figure 4
shows that increasing the number of samples per class can
improve recognition accuracy. However, the ratio of perfor-
mance growth drops from the sample size of 5. From this,
we can conclude that too many samples do not give sufficient
advantages. Since the support set shares model capacities with
parameters in the model, too many samples in the support set
cause overfitting due to the high complexity.

Fig. 5. Experimental results of 5-shot learning on HMDB 51 dataset; Video
accuracy scores are inversely proportional to distances between train classes
and test classes

2) One-shot learning: For comparison, we considered three
kinds of baselines. First, we performed 5-way classification
experiments so that the random baseline can be 1/5 (20%).
Second baseline adapted a fully connected layer instead of
our nearest neighbor layer. The number of hidden nodes in
this layer is the same as the number of GRUs. Then with
this baseline, we can compare metric based classification with
conventional method. Lastly, we proposed third baseline which
only used raw pixel inputs to eliminate the representation
power of VGGNet. Each raw frame was resized to a 64x64
image and flattened to a 4096 length vector to have the same
size as the inputs from VGGNet. Note that the same structure
as our model was used for the third baseline.

Table 2 compares performances of our model with baselines.
In this experiment, clip accuracy is used as performance
measure instead of video accuracy. Compared with baseline
with fully-connected layer (FC), our model shows better
performance. In this experimental setting to predict unseen
classes, the fully connected layer has a big disadvantage
because of memorizing class information with parameters. In
contrast, nearest neighbor method only consider similarities
between vectors so that metric based classification can be
more suitable to this experiment. Third baseline shows better
performance than random baseline. However, compared with
our method, the result reveals that representation power of
VGGNet sufficiently influence performance.

Table 3 demonstrates that our model outperformed over
baselines. Although HMDB 51 action dataset has more classes
than UCF-11 action dataset, results shows similar scores as
previous experiment. Since we fixed 5 way classification, the
size of dataset would not crucially influence performances.
However, in both train and test phase, classes are sampled
from more classes so that model can see more various com-
bination of classes. Therefore, this could have led to better
performances compared to the previous experiment in Table
2.

We conducted 15 trials per each experiment due to the
correlation issue between train classes and test classes. Figure
5. shows how distances between train classes and test classes



in the HMDB 51 dataset affect performances in 30 trials. We
used a cosine distance metric between centroid vectors of two
splits. As distances between train classes and test classes are
larger, performances seem to be worse. We can conclude that
the one-shot learning can show good results for unseen classes
which are highly related to train classes as human can easily
generalize new concepts which are more familiar with.

V. CONCLUSION

In this paper, we proposed a novel model which improves
the performance on action recognition dataset with a small
amount of data. With the metric based classifier and the
external memory, we can train our model in a framework that
combines parametric networks in a non-parametric manner.
Therefore our model achieved state-of-the-art results on small
datasets and a comparable result on a larger dataset.

Furthermore, we tested our model on one-shot learning
problem. We can predict unseen classes from few examples
in the external memory based on a novel training strategy.
Compared to baselines, experimental results show improved
performances on various datasets.
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