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Abstract

In many one-class classification problems such as face detection and object verification, the con-

ventional linear discriminant analysis sometimes fails because it makes an inappropriate assumption

on negative samples that they are distributed according to a Gaussian distribution. In addition, it

sometimes can not extract sufficient number of features because it merely makes use of the mean value

of each class. In order to resolve these problems, in this paper, we extend the biased discriminant

analysis (BDA) which was originally developed for one-class classification problems. The BDA makes

no assumption on the distribution of negative samples and tries to separate each negative sample as far

away from the center of positive samples as possible. The first extension uses a saturation technique

to suppress the influence of the samples which are located far away from the decision boundary. The

second one utilizes the L1 norm instead of the L2 norm. Also we present a method to extend BDA

and its variants to multi-class classification problems. Our approach is considered useful in the sense

that without much complexity, it successfully reduces the negative effect of negative samples which

are far away from the center of positive samples, resulting in better classification performances. We

have applied the proposed methods to several classification problems and compared the performance

with conventional methods.
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I. Introduction

Classification has long been a classical problem in pattern recognition and machine

learning society. In classification problems with large number of input variables, dimen-

sionality reduction methods are typically used to simplify the classifier system without

degrading performances. Among these, linear dimensionality reduction (LDR) techniques

have been extensively studied by many researchers and the linear discriminant analysis

(LDA) [1] is the most popular and successful.

LDA tries to find a transformation which maximizes the ratio of the between class scatter

and the within class scatter. It is known to be optimal for the cases where each class

is distributed according to a uni-modal Gaussian distribution with the same covariance

matrix [1].

However, in many classification problems, we are sometimes interested in discriminating

only one class from the other samples. This problem is called as the one-against-rest prob-

lem or just as the one-class classification problem. Face detection and object verification
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problems are typical examples. In these problems, positive samples can be assumed to be

uni-modal, but no assumption can be made on the distribution of negative samples. For

these problems, a simple LDA approach may produce misleading results because it tries

to cluster negative samples, which is of little use in increasing discriminating power.

In addition, for these problems, the conventional LDA can produce only one feature

because it merely tries to separate the mean values of positive and negative samples as

much as possible. This scarcity of extracted features can be mitigated by several techniques

[2] [3]. In [3], the Chernoff criterion is incorporated into the original structure of LDA

to make use of the covariance differences among different classes as well as the mean

differences. However, it still assumes that all classes have uni-modal distributions with

different means and covariances. Thus, it does not fit to the problems where one can not

make any assumption on the distribution of negative samples.

Several approaches can be considered to cope with multi-modal characteristics of neg-

ative samples. The simplest one is to regard each negative sample as belonging to a

distinct class. Thus, in this approach, if the number of negative samples is ny, it becomes

an (ny +1)-class classification problem. On the other hand, in [4], each class is subdivided

into multiple subclasses by unsupervised clustering techniques and then LDA is applied

to discriminate the subclasses. However as stated in [5], for one-against-rest problems,

any constraint put on the negative samples other than “stay away from the positive” is

unnecessary and misleading.

For one-against-rest problems, BDA (biased discriminant analysis) was proposed in [5].

In this approach, the positive and negative samples are treated differently and the only

criterion put on the negative samples is “stay away from the positive”. Therefore, it

tries to find a transformation that concentrates the positive samples around their center

and separate the negative samples far away from the center. Though it is well suited to

one-against-rest problems, its result may sometimes depend too much on a few negative

samples which are very far away from the positive center because it tries to maximize an

objective function based on the L2 norm.

In this paper, we propose two methods to cope with this problem. The first one is to use

a saturation technique; by setting an upper bound on the distance of a negative sample
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from the positive center we can restrict the dominance of negative samples which are far

away from the decision boundary. In the second method, instead of using the L2 norm,

the L1 norm is used. In this way, the objective function increases linearly with the dis-

tance of a negative sample from the positive center rather than quadratically. In addition,

the method which combines the saturation scheme with L1 norm optimization is also pre-

sented. Finally, a simple method is presented in order to extend BDA which was originally

devised for one-class classification problems to multi-class classification problems.

This paper is organized as follows. In Section II, we briefly overview the conventional

BDA. Two extensions of BDA are proposed in Section III. Section IV shows experimental

results and an approach to extend BDA approaches to multi-class classification problems

is also presented in due course. Finally, conclusions follow in Section V.

II. A brief overview of BDA

In BDA, which was originally proposed for one-class classification problems, positive

samples and negative samples are treated differently. While the positive samples are

assumed to be generated by Gaussian distribution, no assumption is made on the distri-

bution of negative samples. In order to achieve good discriminating power, BDA tries to

find a transformation which concentrates the positive samples around their center while

separating the negative samples far away from the center. This is formulated to find M

projection vectors {wwwn}Mn=1 that maximizes the following objective function:

W ∗ = argmax
W

|W T SyW |
|W T SxW |

. (1)

Here the n-th column of W corresponds to wwwn. The matrices Sx and Sy are the positive

and negative scatter matrices respectively which are defined as:

Sx =
nx
∑

i=1

(xxxi −mxmxmx)(xxxi −mxmxmx)
T (2)

Sy =

ny
∑

i=1

(yyyi −mxmxmx)(yyyi −mxmxmx)
T , (3)

where {xxxi}nx

i=1 and {yyyi}ny

i=1 denote the positive and negative samples respectively and mxmxmx

is the mean vector of the positive samples.
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Fig. 1. Data distribution before and after sphering process

In solving the optimization problem (1), the following two-step procedure is generally

used.

1. Sphering: Solve the eigenvalue decomposition problem SxU = UΛ1. Then, scale each

column uuun of U to make {x̂in = û̂ûuT
n (xxxi−mxmxmx)}nx

i=1 have unit variance. Here û̂ûun is a scaled

version of uuun. If ||uuun|| = 1, this is equivalent to setting û̂ûun = uuun/
√

λ1n, where λ1n denotes

the n-th eigenvalue of Sx.

2. Maximization: Find M weight vectors {vvvn}Mn=1 that maximizes the following objective

function:

V = argmax
W

|W T ŜyW |, subject to W T W = I, (4)

where Ŝy = ÛT SyÛ . Then output W = ÛV . Here, Û = [û̂ûu1, û̂ûu2, · · · ].
This procedure is illustrated in Fig. 1. In the figure, the circles represent 100 positive

samples and ×marks represent 100 negative samples. The positive samples were generated

from normal distribution with zero mean and the covariance matrix of [1, 0; 0, 3]. The

average distance of the negative samples from the origin was set to 10 with a variance of

1, and their orientations were chosen randomly from a uniform distribution.

In the original input space (Fig. 1(a)), we can see that the horizontal direction has the

most discriminating power. After the sphering process, in Fig. 1(b), positive samples were

rescaled to have unit variance in all orientations. Applying the maximization step on Fig.

1(b), the horizontal direction will be chosen as the first feature as expected.

Note that if Sx is nonsingular, the sphering process is always possible. On the other
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hand, if Sx is singular, the regularization techniques [6] [7] [8] [5] [9] can be used to make

the sphering process possible. In the experiments in Section IV, we use the following

regularization technique for the BDA approaches [9] in which Sx is modified to S ′
x to avoid

singularity.

S ′
x = Sx + αId. (5)

Here a small scalar α(> 0) is a regularization parameter and Id denotes a d-dimensional

identity matrix.

From now on, we will assume that all the datasets are preprocessed by the sphering

process such that the positive samples have a Gaussian distribution with zero mean and

identity covariance matrix. In addition, V will be denoted as W hereafter.

III. Enhancements to BDA

A. Shaping the objective function

In BDA, the distances of negative samples from the positive mean are usually greater

compared to those of positive samples and the positive and negative samples can be

separated based on these distances (e.g., see Fig. 1.).

If we assume that positive samples have Gaussian distribution, they will have unit

variance in all orientations after the sphering operation. In an one-dimensional input

space, 99% of the positive samples will be within the ball of radius 3, and if a sample is

outside this ball, we can say with 99% confidence that this sample is not positive and thus

negative. Therefore, it does not make a big difference in discriminating power whether a

negative sample is projected at a point whose distance from the center of positive samples

is 10 or 100.

However, the objective function (4) is quadratic and it may be very sensitive to samples

with large norm. This can cause a serious problem when most of the negative samples are

near the center of the positive samples and only a few are located very far from the center.

In this case, the objective function is dominated by these few and the discriminating power

may degrade. For example, if we add a negative sample at location (0, 500) to the problem

shown in Fig. 1, this point will dominate the objective function and the transformation

www that maximizes the objective function will be close to the vertical line. In this case, we

April 29, 2008



6

−10 −5 0 5 10
0

50

100

150

w’x

(a)Original

−10 −5 0 5 10
0

50

100

150

w’x

(b)Modified (γ = 10)

Fig. 2. Objective functions

can see in Fig. 1 (b) that most of the negative samples projected along www will be close to

0 in the range of [-5, 5] while positive samples will be projected in the range of [-3, 3] and

classifying these samples will be difficult.

In order to resolve this problem, instead of using a quadratic objective function (4), we

would like to modify the objective function to reduce the effect of the samples which have

large norms. The first thing we can think of is to set an upper bound on the norm and

change the objective function as the following:

www∗ = argmax
www

ny
∑

i=1

min((wwwTyyyi)
2, γ2) subject to ||www|| = 1. (6)

Here γ is a saturation constant. Figure 2 shows the original object function and the

modified one with γ = 10.

Because the minimization operation in (6) is nonlinear, it is difficult to find the optimal

vector www∗. In order to make the problem easier, instead of applying the minimization

operation after the projection, it is applied before the projection and the objective function

is modified as the following:

www∗ = argmaxwww

∑ny

i=1(www
Tzzzi)

2 where zzzi = yyyi

||yyyi||
min(||yyyi||, γ) (7)

subject to ||www|| = 1.
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This is equivalent to the following eigenvalue decomposition problem

W ∗ = argmax
W

|W T SzW | subject to W T W = I, (8)

where Sz =
∑ny

i=1(zzzi −mxmxmx)(zzzi −mxmxmx)
T , and this problem can easily be solved. From now

on, we will refer to this method as the Saturated-BDA or SBDA.

The minimization operation in (8) can be regarded as setting a ball in the hyperplane

with a radius γ and pulling down the negative samples outside this ball onto the surface

of the ball. If γ is too large, most of the samples will be within the ball and the solution

of SBDA will almost be the same as that of the conventional BDA. On the other hand, if

γ is too small, many samples will be outside the ball and these will be pulled down to the

surface of the ball leading to a distorted solution. As will be discussed in the experiments

in Section IV, we recommend the value of γ to be 1 to 10.

This approach is easy to apply without adding much complexity to the conventional

BDA. However, this approach does not give the optimal solution for (6) but an approximate

solution. We can show that the solution of (8) gives a lower bound to a solution of (6) as

follows.

min((wwwTyyyi)
2, γ2) = [min(|wwwTyyyi|, γ)]2 = [(wwwTyyyi) min(1,

γ

|wwwTyyyi|
)]2

≥ [(wwwTyyyi) min(1,
γ

||www|| ||yyyi||
)]2 (9)

= [wwwT [yyyi min(1,
γ

||yyyi||
)]]2 = (wwwTzzzi)

2.

The equality holds when yyyi and www are parallel. As the number of negative samples out-

side the ball which produce a large angle with the solution vector www increases, difference

between the solutions of (6) and (8) increases.

Note that BDA is not invariant to rotations in general. However, in case where the

positive mean is located at the origin, BDA is invariant to rotations. Likewise, if the

positive mean is at the origin, SBDA is invariant to rotations. In other words, if we rotate

the original data with a rotation matrix R whose columns are orthonormal vectors, the

solution Wo of SBDA on the original data and Wr which is the solution of SBDA on the

rotated data will be related by Wo = WrR.

April 29, 2008



8

B. L1-BDA

From a statistical point of view, it is well known that the methods based on the L1

norm are more robust to the samples, which have a large norm compared to the L2 norm

[10]. Therefore, an objective function based on the L1 norm will better reduce the effect of

negative samples which have a large norm. This L1 optimization problem can be defined

as follows:

www∗ = argmax
www

ny
∑

i=1

|wwwTyyyi| subject to ||www|| = 1. (10)

In order to find the solution vector www⋆, we replace the ‘maximization’ step of the conven-

tional BDA (Step 2 in Section II.A) with the following L1-BDA algorithm. This algorithm

was originally presented in [11] as a variant of principal component analysis.

1. Initialization: Pick any www(0) 6= 0. Set www(0)← www(0)/||www(0)|| and t = 0.

2. Polarity check: For all i, if wwwT (t)yyyi < 0, pi(t) = −1, otherwise pi(t) = 1.

3. Flipping and maximization: Set t ← t + 1. www(t) =
∑ny

i=1 pi(t − 1)yyyi. Set www(t) ←
www(t)/||www(t)||.

4. Convergence check:

a. If www(t) 6= www(t− 1), go to Step 2.

b. Else if there exists i such that wwwT (t)yyyi = 0, set www(t)← (www(t) +dwdwdw)/||www(t) +dwdwdw|| and

go to Step 2. Here, dwdwdw is a small nonzero random vector.

c. Otherwise, set www⋆ = www(t) and stop.

Theorem 1: With the above L1-BDA algorithm, the weight vector www(t) converges to www⋆,

which is a local maximum point of
∑ny

i=1 |wwwTyyyi|.
Proof: Firstly, we can show that

∑ny

i=1 |wwwT (t)yyyi| is a non-decreasing function of t as

the following:

ny
∑

i=1

|wwwT (t)yyyi| = wwwT (t)(

ny
∑

i=1

pi(t)yyyi) ≥ wwwT (t)(

ny
∑

i=1

pi(t− 1)yyyi)

≥ wwwT (t− 1)(

ny
∑

i=1

pi(t− 1)yyyi) =

ny
∑

i=1

|wwwT (t− 1)yyyi|.
(11)

In the above, the first inequality is due to the fact that {pi(t)}ny

i=1 is the set of optimal

polarity corresponding to www(t), such that for all i, pi(t)www
T (t)yyyi ≥ 0. Note that the inner

product of two vectors is maximized when the two vectors are parallel. Since ||www(t)|| =
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||www(t−1)|| (= 1) and the vectors www(t) (=
∑ny

i=1 pi(t−1)yyyi

||
∑ny

i=1 pi(t−1)yyyi||
) and

∑ny

i=1 pi(t−1)yyyi are parallel,

the second inequality holds.

Because the objective function is non-decreasing and there are finite number of training

samples, the L1-BDA algorithm converges to a weight www⋆.

Secondly, we show that the objective function has a local maximum value at www⋆. This

can be shown as follows.

Because www(t) converges to www⋆, www⋆pi(t)yyyi ≥ 0 for all i. Since the number of training

samples is finite and www⋆yyyi 6= 0 for all i which is ensured by Step 4b, there exists a small

neighborhood N(www⋆) of www⋆ such that wwwpi(t)yyyi ≥ 0 for all i and www ∈ N(www⋆). Since www⋆ is

parallel to
∑ny

i=1 pi(t)yyyi, the inequality
∑ny

i=1 |www⋆Tyyyi| >
∑ny

i=1 |wwwTyyyi| holds for all www ∈ N(www⋆)

and www⋆ is a local maximum point.

Therefore, the L1-BDA algorithm finds a local maximum point www⋆.

Because the projection vector www(t) is determined by a linear combination of data points

yyyi’s, i.e., www(t) ∝∑n

i=1 pi(t−1)yyyi, the proposed algorithm is naturally invariant to rotations.

Note that this algorithm tries to find a local maximum solution and there is a possibility

that it may not be the global solution. Note also that the initial value www(0) can be set

arbitrarily. By setting the initial value appropriately, e.g., www(0) = argmaxyyyi
||yyyi|| or the

solutions of the conventional BDA (L2 solution) or SBDA, we expect to find the global

maximum point with higher probability in fewer iterations.

The L1-BDA algorithm is described by an example in Fig. 3. In this example, we

assume that the dataset was preprocessed by the sphering process and we focus only on

the negative samples. Fig. 3 (a) is the negative samples of the original dataset which has

been created as follows. Firstly, 20 random samples {(ai, bi)}20i=1 were generated in a two

dimensional space with the mean distance of 5 from the origin and the variance of 1 with

a uniform random orientation. And the point (ai, bi) is transformed to (2ai, bi) for all i.

If we set the initial weight www(0) = [0.8151, 0.5794]T as shown in Fig. 3 (b), the polarities

of the points located below the line are set to −1 in the polarity checking step and these

are flipped across the origin and marked as ‘x’. By averaging all the points marked as ‘o’

and ‘x’, we get a new weight www(1) = [0.9967,−0.0812]T as shown in Fig. 3 (c). By the

same procedure, we get www(2) = [0.9826,−0.1859]T as shown in Fig. 3 (d). After this, the
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Fig. 3. L1-BDA procedure

polarity of each point does not change any more and the convergence condition is fulfilled.

Thus, www(2) becomes www⋆, which is the global maximum point in this case.

We initialized the sample points as well as the weight www(0) randomly for this example

and the solution was found in 3.26 iterations on average with the standard deviation of

0.8 for 1,000 experiments. On the other hand, it required only 3 iterations in all 1000

experiments when we set the initial weight as www(0) = argmaxyyyi
||yyyi||.

For this L1-BDA algorithm, we can also apply the saturation scheme in the previous

subsection in order to further suppress the effect of the too far-away negative samples as

follows:

1. Initialization: Pick any www(0) 6= 0. Set www(0)← www(0)/||www(0)|| and t = 0.

2. Polarity check and saturation: For all i, if wwwT (t)yyyi < 0, pi(t) = −1, else pi(t) = 1.
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zzzi =











yyyi, if wwwT (t)yyyi ≤ γ

γ

|wwwT (t)yyyi|
yyyi, if wwwT (t)yyyi > γ.

3. Flipping and maximization: Set t ← t + 1. www(t) =
∑ny

i=1 pi(t − 1)zzzi. Set www(t) ←
www(t)/||www(t)||.

4. Convergence check:

a. If ||www(t)−www(t− 1)|| ≥ τ , go to Step 2.

b. Else if there exists i such that wwwT (t)yyyi = 0, set www(t)← (www(t) +dwdwdw)/||www(t) +dwdwdw|| and

go to Step 2. Here, dwdwdw is a small nonzero random vector.

c. Otherwise, set www⋆ = www(t) and stop.

In this saturated version of L1-BDA algorithm (SL1-BDA), the saturation scheme is

applied in every iterations in Step 2. By doing this, the error in the solution can be

reduced.

Note that the convergence criterion in Step 4 is different from the convergence criterion in

the original L1-BDA algorithm. This is because the convergence speed decreases compared

to the original L1-BDA algorithm when we use the saturation scheme in every iterations.

However, by incorporating an appropriate tolerance τ , the convergence speed will not be a

serious problem in the saturated L1-BDA algorithm. As an alternative, instead of setting

a tolerance τ , we can set a maximum number of iterations tmax to an appropriate value.

Until now, we have shown that we can extract one best feature that maximizes the

L1 objective function. The proposed method can be easily extended to extract arbitrary

number of features by applying the same procedure to the remainder of the projected

samples as follows:

www0 = 000, {yyy0
i = yyyi}ny

i=1.

For m = 1 to M ,

For all i, i = 1 · · ·ny, yyym
i = yyym−1

i − (wwwT
m−1yyyi)wwwm−1.

In order to find wwwm, apply the L1-BDA or saturated L1-BDA algorithms to {yyym
i }

ny

i=1.

end
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(a)Positive samples

(b)Negative samples

Fig. 4. Eye and noneye samples for training

IV. Experimental Result

In order to show the effectiveness of the proposed methods, we have applied the proposed

feature extraction methods to various real world problems and compared the performances

with other conventional feature extraction algorithms.

A. Eye dataset in FERET database

This dataset was generated from the Color FERET face database [12] to distinguish

whether an image is an eye or not. In each face image in the FERET database, both left

and right eyes were selected for positive samples. On the other hand, negative samples

were randomly chosen from the other regions of images. The training set consists of 400

positive and 400 negative samples obtained from the fa images of the FERET database

while the test set contains 400 positive and 400 negative samples from the fb images of

FERET database. Figure 4 shows some positive and negative samples in the training set.

Each positive sample was cropped in proportion to the distance between two eyes and

was rescaled to a size of 20× 20. The negative samples were also cropped with the same

size. Each pixel was considered as an input variable constituting a 400-dimensional input

space.

For this dataset, we compared the classification performances of the proposed methods,

April 29, 2008



13

TABLE I

Classification rates for FERET Eye dataset. (1-NN)

# of features LDA Cher. LDA BDA SBDA

(γ = 1)

L1BDA SL1BDA

(γ = 1)

1 86.875 84.625 81.875 86.25 87.625 86.625

2 – 83.75 88 95 91.125 94.5

3 – 81.375 91.25 96.625 96.375 96.75

4 – 78.75 93 97.5 97.125 97.625

5 – 80.625 93 98.25 97.375 98.25

6 – 79.75 94.875 98.625 97.375 98.625

7 – 78 94.75 98.5 97.875 98.125

8 – 79.125 95 98.125 98 98.125

9 – 78.625 95 98.375 98 98.5

10 – 79.75 95.875 98 97.875 98.125

SBDA, L1-BDA, and SL1-BDA with those of LDA, BDA and Chernoff LDA [3] in Table

I.

Because this is a binary classification problem, LDA can extract only one feature while

the other methods can produce more features. For the other methods, we extracted up to

10 features. For the Chernoff LDA and BDA family, the regularization method of (5) was

used with α = 0.1. As a classifier, the one nearest neighbor (1-NN) classifier was used.

For SBDA and SL1-BDA, the performance depends on the value of γ. In the table for

both SBDA and SL1-BDA, γ = 1 was used. The best classification rates of each method

were shown in bold faces.

In this problem, the positive samples look very similar, while the negative samples

show little resemblance. Therefore, this problem fits better to the BDA family than the

conventional LDA and its variants. As a result, we can see that the best classification

rates of BDA, SBDA, L1-BDA, and SL1-BDA are higher than those of LDA and Chernoff

LDA by around 10%. However, when the number of extracted feature is one, the BDA

family does not show noticeable performance difference from LDA. The reason for this can

be ascribed to the use of the 1-NN classifier. Because LDA tries to congregate negative

samples as well as positive ones, the projection of the samples are separated in two distinct

regions: positive and negative. On the other hand, in BDA family, positive samples are
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highly concentrated near the center, whereas negative samples will be randomly distributed

apart from the center like clouds. Although most of the negative samples will be far away

from the center, some will be close to the center, especially when the number of feature

is very small, and 1-NN classifier will perform poorly in this case. Therefore, it is more

likely that 1-NN will perform worse for the BDA family than for the LDA. Actually, when

we applied 3-NN classifier, the correct classification rates for BDA, SBDA, L1-BDA, and

SL1-BDA using only one feature were raised to 85.375%, 89.375%, 88.5%, and 89.375%

respectively, while they were 87.5% and 86.125% for LDA and Chernoff LDA respectively.

Comparing the performances of the proposed methods (SBDA, L1-BDA, and SL1-BDA)

with that of BDA, we can see that SBDA, L1-BDA, and SL1-BDA outperformed the con-

ventional BDA regardless of the number of extracted features. This shows that the negative

samples far away from the center of the positive samples have a detrimental effect on the

performance of BDA and this problem is alleviated by the proposed methods. Comparing

the three proposed methods, we can see that SBDA and SL1-BDA performed slightly bet-

ter than L1-BDA for this problem except when the number of extracted features was one.

Comparing SBDA and SL1-BDA, the performance difference was negligible. From this

result, we can infer that once the saturation scheme was applied, whether optimization

was performed in L2-sense (SBDA) or in L1-sense (SL1-BDA), the classification perfor-

mance were almost the same for this problem because all the samples were already moved

near the center of the positive samples by the saturation scheme and there is no single

sample that affects the optimization function dominantly. However, without the satura-

tion scheme, L1-optimization (L1-BDA) was more effective than L2-optimization (BDA)

in reducing the effect of the negative samples far away from the positive mean.

To see the effect of γ in SBDA and SL1-BDA, various values of γ from 1 to 20 was tested

with various numbers of extracted features (1, 2, 3, 5, and 10) and the performances were

shown in Figure 5. In the figure, we can see that as γ increases the performance of SBDA

decreases slightly but gradually when γ > 4 for SBDA. However, the performance of SL1-

BDA does not decrease significantly for large values of γ. When we checked the norms

of negative samples in the training data, all the 400 negative samples had their norms

larger than 4 and the numbers of samples whose norm exceeds 5, 10, and 20 were 396,
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Fig. 5. The effect of γ for SBDA and SL1-BDA

344, and 234 respectively. This shows the reason for a constant performance of SBDA

when γ ≤ 4. However, for SL1-BDA, the saturation scheme is applied in each iteration

with different initial weight and the performances were different for γ ≤ 4. Comparing

Fig. 5 (b) and Table I, we can see that the performances of SL1-BDA were the same as

those of L1-BDA for γ ≥ 5. This shows that negative samples with large norm does not

affect the performance of L1-BDA heavily.

B. ETH-80 dataset

Object categorization is a classical problem in computer vision. In this section, we

applied the proposed feature extraction algorithms to the ETH-80 database [13] which is

for object categorization. It contains images of the eight categories: apple, car, cow, cup,

dog, horse, pear, and tomato. For each category, there are ten objects, each of which

contains 41 images from different viewpoints. Overall, the database contains 3,280 images

of 80 objects. The examples of the 80 objects are shown in Fig. 6.

We first generated subimages corresponding to the smallest rectangle that includes the

boundary of the object by cropping the original images. Since each subimage is different

in size, we rescaled each of them into a size of 30 × 25 pixels. Each pixel was considered

as an input variable and therefore, each image corresponds to a point in a 750-dimensional

input space. Each of 8 categories was regarded as a class. Thus, it became an eight-class

classification problem.

Because the BDA family was originally developed for one-class problems, we should
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Fig. 6. 80 objects of ETH-80 databases

find ways to extend the BDA family to multiclass problems in order to apply them to this

ETH-80 problem. Many researches have been conducted to extend binary classifiers to

multi-class classification problems [14] [15] [16] [17], but the simplest way of extending the

BDA family to D-class classification problems is to construct D datasets with only two

classes (positive and negative) as shown in Fig. 7. In constructing the i-th dataset, the

samples from the i-th class are regarded as the positive samples and the rest are regarded

as the negative samples. Then we apply the BDA family to each of these datasets as

shown in Fig. 7.

Note that in Fig. 7, the i-th dataset focuses only on the i-th class and the samples from

the other classes are regarded as negative ones. As a result, if Mi features are extracted for

the i-th dataset, the total number of extracted features becomesM =
∑D

i=1 Mi. Note that

the features for the i-th dataset may not be orthogonal to features of the other datasets.

Also,M may be larger than the dimension of the original input space d.

Once the features are extracted, the classification can be done by various classifiers such
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Fig. 7. BDA for D-class classification problem

as multi-layer perceptrons, decision trees, nearest neighborhood (NN) and so on.

We used this extension of the BDA family in order to classify 8 categories of the ETH-80

database. For the test, we performed the leave-one-object-out test. In other words, 79

objects were used in the training and the remaining one object was used as a test set. In

this way, 80 tests were performed in total, each of which contains 3,239 training samples

and 41 test samples.

Before applying feature extraction algorithms, in order to reduce the processing time,

we preprocessed the data with PCA and obtained the best 60 features corresponding to

the highest eigenvalues. On this 60 preliminary features we have applied various feature

extraction algorithms such as LDA, Chernoff LDA, BDA, SBDA, L1-BDA, and SL1-BDA.

Figure 8 shows the classification performances of various feature extraction methods.

The numbers of extracted features were also varied from 5 to 60 for each method. For

the BDA family, the numbers of extracted features shown in the figure are the numbers

for each class; therefore, the total numbers of features are 8 times the numbers shown in

the figure. As a classifier, the 1-NN classifier was used. For SBDA and SL1-BDA, the

parameter γ was set to 1.

Because it is an eight-class classification problem, LDA can produce only 7 features.

The best performance of LDA was 65.18% when the number of extracted features was 7.

Due to the difference in the number of extracted features and its low performances, the

classification results of LDA were omitted in the figure.

In the figure, we can see that SBDA performed best regardless of the number of features

and its best classification rate reached 74.05%. L1-BDA and SL1-BDA were also better

than BDA regardless of the number of extracted features and their best classification rates
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Fig. 8. Correct classification rates for ETH-80 dataset (using 1-NN classifier).

were 72.59% and 73.11% respectively. The best classification rates of Chernoff-LDA was

71.25%. Regardless of the number of extracted features, SL1-BDA was better than L1BDA

but it was worse than SBDA. From this result, we can see that the saturation scheme

effectively reduces the bad effect of the negative samples with large norm. By optimizing

L1-norm instead of L2-norm, we could also get better classification performance. However,

we can see that combining saturation scheme with L1-norm optimization was not always

better than applying the saturation scheme alone. Instead, once the saturation scheme

was applied, optimizing L2-norm was better than optimizing L1-norm for this problem.

C. UCI datasets

We also applied SBDA, L1-BDA, and SL1-BDA to several datasets in UCI machine

learning repositories [18] and compared their performances with those of other conventional

feature extraction methods such as BDA, LDA and Chernoff LDA.

Table II shows a brief summary of the datasets used in this paper. These datasets have

been used in many studies [3] [19] [20]. As a classifier, 1-NN classifier was used.

For each dataset except the ‘Glass’, we performed 10-fold cross validation (CV) 10
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TABLE II

UCI Data sets used in the experiments

Data set # of variables # of class # of instances

Austrailian 14 2 690

Balance 4 3 625

Breast cancer 9 2 683

Glass 9 6 214

Heart disease 13 2 297

Iris 4 3 150

Liver 6 2 345

Pima 8 2 768

Sonar 60 2 208

Vehicle 18 4 846

times and computed the average classification rate and its standard deviation. Because

the ‘Glass’ dataset has relatively small number of samples (i.e., 214) compared to its six

classes and its data distribution is highly unbalanced such that there are only 9 samples for

the third class whereas the fourth class includes 76 samples, we used 3-fold CV instead of

10-fold CV. Before training, each input variable in the training set was normalized to have

zero mean and unit variance. Of course, the variables in the test set were also normalized

using the means and the variances of the training set. For the SBDA and SL1-BDA γ

was set to 1. For each feature extraction method, the regularization method of (5) was

used with the regularization parameter α = 0.1. Because the datasets are not one-class

problems, for the BDA family, the extension method shown in Fig. 7 was used and the

dimensions of different subspaces were set to be the same, i.e., Mi = M , for i = 1, · · · , D
where D is the number of classes.

Table III shows the performance of various feature extraction methods. The perfor-

mances shown in the table are the best classification rates among the results obtained by

varying the numbers of extracted features from one to d− 1 (for LDA) or d (for the other

methods). Here, d is the number of original input variables. The numbers in the paren-

theses are the optimal numbers of features. For LDA and Chernoff LDA, these numbers

represent the dimension of the feature vector, whereas for BDA family, these are the di-

mensions of one subspace, M , obtained by applying the corresponding BDA algorithm to
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TABLE III

Experimental Results on UCI datasets (1-NN classifier)

Data set LDA Chernoff LDA BDA SBDA (γ = 1) L1BDA SL1BDA (γ = 1)

Austrailian 80.55±1.02 (1) 81.35±0.82 (6) 80.68±1.28 (3) 81.29±0.74 (4) 81.57±1.19 (4) 81.67±1.19 (3)

Balance 88.00±0.49 (2) 87.68±0.79 (2) 91.25±0.99 (3) 95.73±0.62 (2) 95.76±0.64 (2) 94.38±0.87 (3)

Breast 96.03±0.34 (1) 96.34±0.35 (2) 95.94±0.44 (2) 96.28±0.29 (6) 96.05±0.62 (2) 96.09±0.20 (6)

Glass 62.85±1.73 (5) 63.55±1.43 (9) 66.19±2.21 (3) 70.65±1.12 (6) 67.66±2.32 (3) 68.74±1.37 (8)

Heart 76.43±1.19 (1) 76.60±1.78 (1) 76.73±1.41 (2) 76.73±1.41 (2) 77.44±1.41 (4) 77.44±1.41 (4)

Iris 96.93±0.72 (1) 97.13±0.77 (1) 97.20±0.69 (1) 96.87±0.63 (1) 97.13±0.77 (1) 96.60±0.21 (4)

Liver 61.01±3.28 (1) 65.65±2.50 (4) 65.04±2.20 (3) 65.42±2.24 (3) 65.13±1.39 (5) 65.13±1.39 (5)

Pima 69.13±1.32 (1) 69.78±0.51 (8) 69.79±0.74 (5) 70.01±0.56 (5) 70.42±1.55 (4) 70.42±1.55 (4)

Sonar 73.03±2.27 (1) 81.06±2.25 (54) 78.56±2.03 (5) 84.86±1.59 (18) 80.86±1.28 (5) 84.90±1.51(17)

Vehicle 74.33±1.10 (3) 81.55±0.51 (9) 73.45±0.66 (5) 76.32±0.75 (15) 74.65±0.46 (2) 80.01±0.50 (3)

Average 77.83 80.07 79.48 81.41 80.67 81.54

one of the binary problems shown in Fig. 7. Therefore, the total number of the extracted

features for BDA family was M = M × D. The best classification rate for each dataset

was indicated in boldface. At the last row, the average of 10 datasets was reported for

each method.

In the table, we can see that the performances of SBDA, L1-BDA, and SL1-BDA were

better compared to the conventional BDA for all the datasets except for Iris. Even in this

case, we can see that the performance differences were very small. The performance of the

proposed methods were better than that of BDA at least 1% on average. The performance

of BDA was better than that of LDA on average but it was slightly worse than that of

Chernoff LDA. Comparing the performances of the proposed methods, SBDA and SL1-

BDA were slightly better than L1-BDA on average and the two showed almost the same

results.

Comparing the proposed algorithms with LDA, we can see that the proposed algorithms

are better than LDA for all the datasets except for Iris. For Iris dataset, all the methods

showed almost the same classification rate. Although the performance enhancements are

rather small, the performances of SBDA, L1-BDA, and SL1-BDA were slightly better than

that of Chernoff LDA on average.
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V. Conclusions

In this paper, we proposed two methods to enhance the performance of BDA which was

originally proposed for one-class problems.

The first method, SBDA tries to reduce the negative effect in extracting features due

to the negative samples which are very far away from the center of positive samples. By

restricting the distance between a negative sample and the center of positive samples to a

moderate value, SBDA can produce good features for better classification performance.

The second method, L1-BDA tries to solve the same problem by using the objective

function based on the L1 norm instead of the L2 norm. In due course, a new method of

L1-norm optimization was introduced and was proven to find a local maximum point. The

proposed L1-norm optimization technique is intuitive, simple, and easy to implement.

These two methods successfully suppress the negative effect of the too far away negative

samples from the center of positive samples without adding much complexity. The two

schemes were combined to produce a third method, SL1-BDA and a simple method that

extends the applicability of the BDA family to multi-class classification problems was also

provided.

We have applied the proposed methods to several classification problems and compared

the performance with the conventional methods. By applying the proposed methods,

we could obtain better classification performances than the conventional BDA, LDA and

Chernoff LDA on average.
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