Introduction to CNNs and RNNs

Nojun Kwak nojunk@snu.ac.kr http://mipal.snu.ac.kr

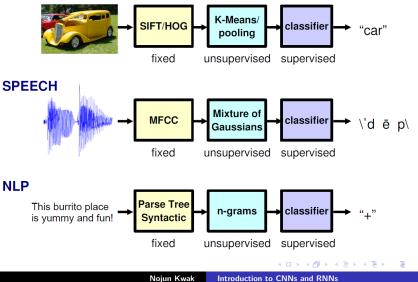
GSCST, Seoul National University, Korea

Aug. 2016

Many slides on CNNs are from Fei-Fei Li @Stanford, Raquel Urtasun @U. Toronto, and Marc'Aurelic Ranzato @Facebook. RNN parts are based on Colah's blog: http://colah.github.io/ and the slides of Daniel Renshaw

- Traditional Neural Networks (MLPs, ···)
- Convolutional Neural Networks (CNNs)
- Recurrent Neural Networks (RNNs)
- Applications

VISION



VISION

pixels \rightarrow edge \rightarrow texton \rightarrow motif \rightarrow part \rightarrow object

SPEECH sample \rightarrow spectral \rightarrow formant \rightarrow motif \rightarrow phone \rightarrow word band

NLP

character \rightarrow word \rightarrow NP/VP/.. \rightarrow clause \rightarrow sentence \rightarrow story

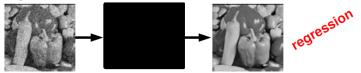
"car"

What is deep learning?

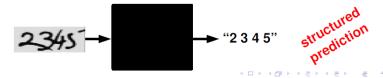
- Nothing new!
- (Many) cascades of nonlinear transformations
- End-to-end learning (no human intervention / no fixed features)

Classification

Denoising

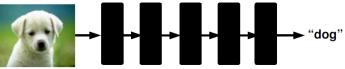


OCR

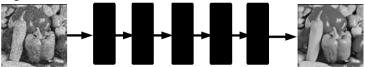


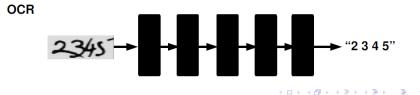
Nojun Kwak Introduction to CNNs and RNNs

Classification



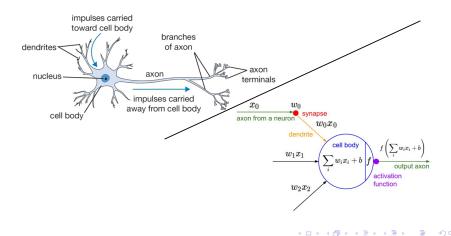
Denoising



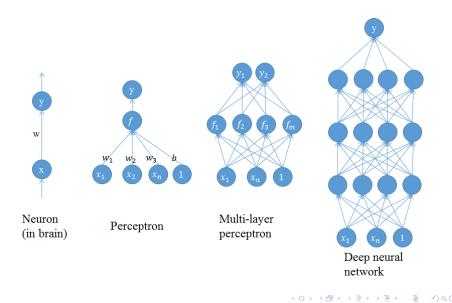


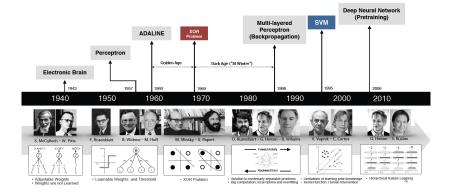
Nojun Kwak Introduction to CNNs and RNNs

• Biologically inspired models



Variants of ANNs



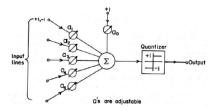


source of image: VUNO Inc.

Э

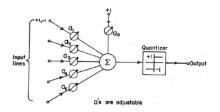
イロン イヨン イヨン イヨン

- $\bullet\,$ First Generation: 1957 $\sim\,$
 - Perceptron: Rosenblatt, 1957
 - Adaline: Widrow and Hoff, 1960

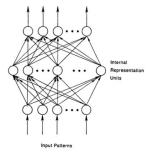


∃ >

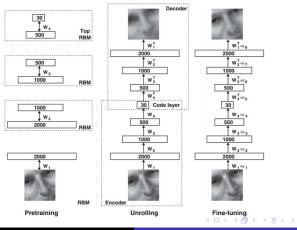
- $\bullet\,$ First Generation: 1957 $\sim\,$
 - Perceptron: Rosenblatt, 1957
 - Adaline: Widrow and Hoff, 1960



- $\bullet\,$ Second Generation: 1986 $\sim\,$
 - MLP with BP: Rumelhart



- $\bullet\,$ Third Generation: 2006 $\sim\,$
 - RBM: Hinton and Salkhutdinov
 - Reinvigorated research in Deep Learning



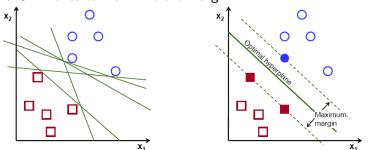
Nojun Kwak

Introduction to CNNs and RNNs

- Given inputs $\pmb{x},$ and outputs $t \in \{-1,1\}$
- Find a hyperplane that divides the space into half (binary classification)

$$y_* = \operatorname{sign}(\boldsymbol{w}_*^T \boldsymbol{x} + \boldsymbol{w}_0)$$

 \Rightarrow SVM tries to maximize the margin.

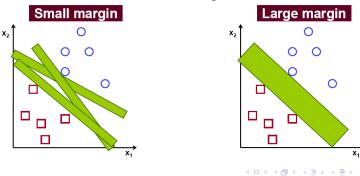


Classification problems

- Given inputs \pmb{x} , and outputs $t \in \{-1, 1\}$
- Find a hyperplane that divides the space into half (binary classification)

$$y = \mathsf{sign}(\boldsymbol{w}^T \boldsymbol{x} + b)$$

 \Rightarrow SVM tries to maximize the margin.



回 とう モン・ モン

How can we make our classifier more powerful?

• Compute nonlinear functions of the input

$$y = F(\pmb{x}, \pmb{w})$$

• Compute nonlinear functions of the input

$$y = F(\boldsymbol{x}, \boldsymbol{w})$$

Two types of widely used approaches

• Compute nonlinear functions of the input

$$y = F(\boldsymbol{x}, \boldsymbol{w})$$

Two types of widely used approaches

• Kernel Trick: Fixed functions and optimize linear parameters on nonlinear mappings $\phi(\mathbf{x})$

$$y = \mathsf{sign}(\pmb{w}^T \phi(\pmb{x}) + b)$$

• Compute nonlinear functions of the input

$$y = F(\boldsymbol{x}, \boldsymbol{w})$$

Two types of widely used approaches

• Kernel Trick: Fixed functions and optimize linear parameters on nonlinear mappings $\phi(\pmb{x})$

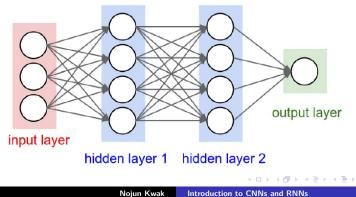
$$y = \text{sign}(\pmb{w}^T \phi(\pmb{x}) + b)$$

• Deep Learning: Learn parametric nonlinear functions

$$y = F(\boldsymbol{x}, \boldsymbol{w}) = \cdots (\boldsymbol{h}_2(\boldsymbol{w}_2^T \boldsymbol{h}_1(\boldsymbol{w}_1^T \boldsymbol{x} + b_1) + b_2) \cdots$$

 $\boldsymbol{h}_{1,2}$: activation function at layer 1 or 2

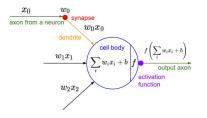
- Deep learning uses composite of simpler functions, e.g., ReLU, sigmoid, tanh, max
- Note: a composite of linear functions is linear!
- Example: 2 layer NNet (Convention: input and output layers are not taken as a layer)



- Deep learning uses composite of simpler functions, e.g., ReLU, sigmoid, tanh, max
- Note: a composite of linear functions is linear!
- Example: 2 layer NNet (Convention: input and output layers are not taken as a layer)

$$\mathbf{x} \longrightarrow \mathbf{h1} (W_1^T \mathbf{x}) \xrightarrow{\mathbf{h}^1} \mathbf{h2} (W_2^T \mathbf{h}^1) \xrightarrow{\mathbf{h}^2} W_3^T \mathbf{h}^2 \longrightarrow \mathbf{y}$$

- ullet x is the input
- y is the output
- h^i is the *i*-th hidden layer output
- W^i is the set of parameters of the i-th layer

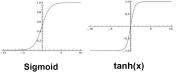


- A singlue neuron can be used as a binary linear classifier
- Regularization has the interpretation of gradual forgetting

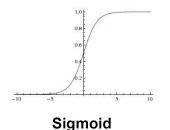
Classical NNs used sigmoid or tanh function as an activation function.

• sigmoid:
$$\sigma(x) = \frac{1}{1+e^{-x}}$$

• tanh:
$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

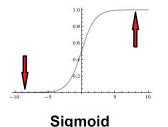


Sigmoid function



- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

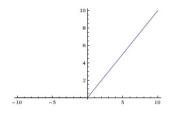
Sigmoid function



- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

- 2 BIG problems:
 - Saturated neurons kill the gradients (cannot backprop further) ⇒ Major bottleneck for the conventional NNs: not able to train more than 2 or 3 layers
 - Sigmoid outputs are not zero-centered
 - \Rightarrow Restriction on the gradient directions

ReLU: Rectified Linear Unit



ReLU

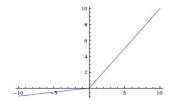
- $f(x) = \max(0, x)$
- Does not saturate
- Computationally very efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)

ReLU: Rectified Linear Unit

• $f(x) = \max(0, x)$

- Does not saturate
- Computationally very efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- One annoying problem \Rightarrow Dead neurons

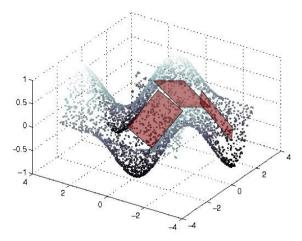
ReLU: Rectified Linear Unit



Leaky ReLU

- $f(x) = \max(0, x)$
- Does not saturate
- Computationally very efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- One annoying problem \Rightarrow Dead neurons
- Solution: leaky ReLU (small slope for negative input)
 - Never dies.
 - However, almost the same performance in practice.

Why ReLU?



Piecewise linear tiling: mapping is locally linear

Montufar et al. "On the number of linear regions of DNNs", arXiv 2014

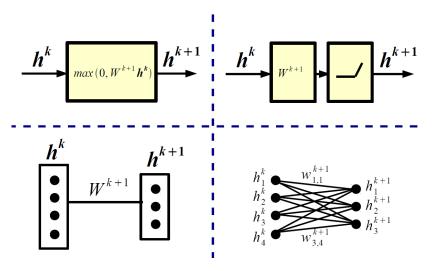
ullet Forward propagation: compute the output y given the input x

$$\mathbf{x} \longrightarrow \left[\max(0, W_1^T \mathbf{x}) \right] \stackrel{\mathbf{h}^1}{\longrightarrow} \left[\max(0, W_2^T \mathbf{h}^1) \right] \stackrel{\mathbf{h}^2}{\longrightarrow} \left[W_3^T \mathbf{h}^2 \right] \stackrel{\mathbf{y}}{\longrightarrow} \mathbf{y}$$

- Fully connected layer
- Nonlinearity comes from ReLU
- Do it in a compositional way

$$oldsymbol{x} \Rightarrow oldsymbol{h}^1 \Rightarrow oldsymbol{h}^2 \Rightarrow oldsymbol{y}$$

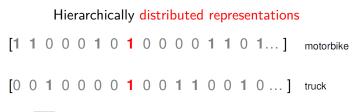
Alternative graphical representation

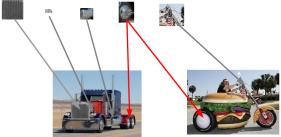


Slide from M. Ranzato

크

ヘロア 人間 アメヨア 人間アー

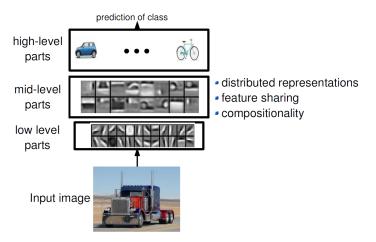




Lee et al. "Convolutional DBN's · · · " ICML 2009

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Hierarchically distributed representations



Lee et al. "Convolutional DBN's · · · " ICML 2009

イロン 不同 とくほど 不同 とう

크

$$\mathbf{x} \longrightarrow \left[\max(0, W_1^T \mathbf{x}) \right] \xrightarrow{\mathbf{h}^1} \left[\max(0, W_2^T \mathbf{h}^1) \right] \xrightarrow{\mathbf{h}^2} \left[W_3^T \mathbf{h}^2 \right] \xrightarrow{\mathbf{y}} \mathbf{y}$$

- We want to estimate the parameters, biases and hyper-parameters (e.g., number of layers, number of neurons) for good predictions.
- Collect a training set of input-output pairs $\{\boldsymbol{x}_i, t_i\}_{i=1}^N$.
- Encode the output with 1-K encoding $t = [0, \dots, 1, \dots, 0]$.

$$\mathbf{x} \longrightarrow \left[\max(0, W_1^T \mathbf{x}) \right] \xrightarrow{\mathbf{h}^1} \left[\max(0, W_2^T \mathbf{h}^1) \right] \xrightarrow{\mathbf{h}^2} \left[W_3^T \mathbf{h}^2 \right] \xrightarrow{\mathbf{y}} \mathbf{y}$$

- We want to estimate the parameters, biases and hyper-parameters (e.g., number of layers, number of neurons) for good predictions.
- Collect a training set of input-output pairs $\{\boldsymbol{x}_i, t_i\}_{i=1}^N$.
- Encode the output with 1-K encoding $t = [0, \cdots, 1, \cdots, 0]$.
- Define a loss per training example and minimize the empirical loss

$$\mathcal{L}(\boldsymbol{w}) = \frac{1}{N} \sum_{i=1}^{N} l(\boldsymbol{w}, \boldsymbol{x}_i, t_i) + \mathcal{R}(\boldsymbol{w})$$

- N: number of training examples
- \mathcal{R} : regularizer
- w: set of all parameters

Loss functions

$$\mathcal{L}(\boldsymbol{w}) = \frac{1}{N} \sum_{i=1}^{N} l(\boldsymbol{w}, \boldsymbol{x}_i, t_i) + \mathcal{R}(\boldsymbol{w})$$

• Softmax (Probability of class k given input):

$$p(c_k = 1 | \boldsymbol{x}) = \frac{\exp(y_k)}{\sum_{j=1}^{C} \exp(y_j)}$$

< ≣⇒

∢ ≣⇒

Loss functions

$$\mathcal{L}(\boldsymbol{w}) = rac{1}{N} \sum_{i=1}^{N} l(\boldsymbol{w}, \boldsymbol{x}_i, t_i) + \mathcal{R}(\boldsymbol{w})$$

• Softmax (Probability of class k given input):

$$p(c_k = 1 | \boldsymbol{x}) = \frac{\exp(y_k)}{\sum_{j=1}^C \exp(y_j)}$$

• Cross entropy (most popular loss function for classification):

$$l(\boldsymbol{w}, \boldsymbol{x}, t) = -\sum_{k=1}^{C} t^{(k)} \log p(c_k | \boldsymbol{x})$$

Loss functions

$$\mathcal{L}(\boldsymbol{w}) = rac{1}{N} \sum_{i=1}^{N} l(\boldsymbol{w}, \boldsymbol{x}_i, t_i) + \mathcal{R}(\boldsymbol{w})$$

• Softmax (Probability of class k given input):

$$p(c_k = 1 | \boldsymbol{x}) = \frac{\exp(y_k)}{\sum_{j=1}^{C} \exp(y_j)}$$

• Cross entropy (most popular loss function for classification):

$$l(\boldsymbol{w}, \boldsymbol{x}, t) = -\sum_{k=1}^{C} t^{(k)} \log p(c_k | \boldsymbol{x})$$

• Gradient descent to train the network

$$\boldsymbol{w}^* = \operatorname*{argmin}_{\boldsymbol{w}} \mathcal{L}(\boldsymbol{w})$$

Backpropagation

- Efficient way of computing gradient (Chain rule)
- Partial derivatives and gradients

$$\begin{split} f(x,y) &= xy \quad \to \quad \frac{\partial f}{\partial x} = y \quad \frac{\partial f}{\partial y} = x \\ \frac{df(x)}{dx} &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \qquad f(x+h) = f(x) + h \frac{df(x)}{dx} \end{split}$$

< ≣ >

Backpropagation

回 とう ヨン うちとう

- Efficient way of computing gradient (Chain rule)
- Partial derivatives and gradients

$$\begin{split} f(x,y) &= xy \quad \to \quad \frac{\partial f}{\partial x} = y \quad \frac{\partial f}{\partial y} = x \\ \frac{df(x)}{dx} &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \qquad f(x+h) = f(x) + h \frac{df(x)}{dx} \end{split}$$

• Example: $x = 4, y = -3 \Rightarrow f(x, y) = -12$

$$\frac{\partial f}{\partial x} = -3 \quad \frac{\partial f}{\partial x} = 4 \qquad \nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

Backpropagation

A 3 6 A 3 6 6

- Efficient way of computing gradient (Chain rule)
- Partial derivatives and gradients

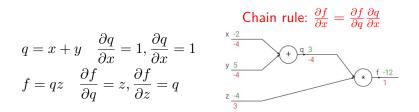
$$\begin{split} f(x,y) &= xy \quad \to \quad \frac{\partial f}{\partial x} = y \quad \frac{\partial f}{\partial y} = x \\ \frac{df(x)}{dx} &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \qquad f(x+h) = f(x) + h \frac{df(x)}{dx} \end{split}$$

• Example: $x = 4, y = -3 \Rightarrow f(x, y) = -12$

$$\frac{\partial f}{\partial x} = -3 \quad \frac{\partial f}{\partial x} = 4 \qquad \nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

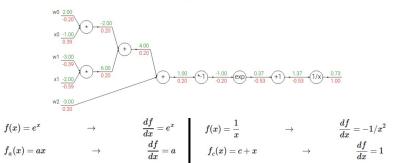
• Question: If I increase x by h, how would the output f change?

Compound expressions with graphics (example from F.F. Li)



Another example:

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



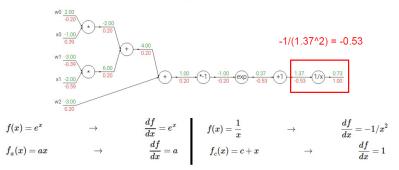
Fei-Fei Li & Andrej Karpathy

Lecture 5 - 14 21 Jan 2015

→ < Ξ >

Another example:

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



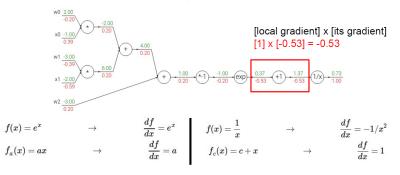
Fei-Fei Li & Andrej Karpathy

Lecture 5 - 15 21 Jan 2015

→ < ≥ >

Another example:

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



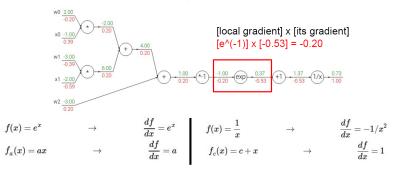
Fei-Fei Li & Andrej Karpathy

Lecture 5 - 16 21 Jan 2015

御 ト メ ヨ ト

Another example:

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



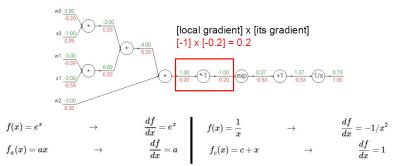
Fei-Fei Li & Andrej Karpathy

Lecture 5 - 17 21 Jan 2015

<回と < 回と < 回と

Another example:

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



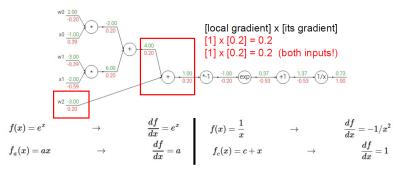
Fei-Fei Li & Andrej Karpathy

Lecture 5 - 18 21 Jan 2015

<回と < 回と < 回と

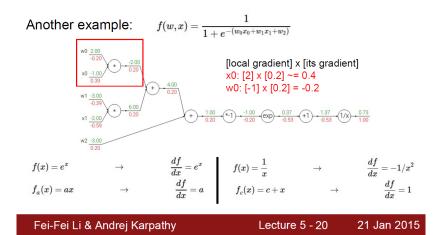
Another example:

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

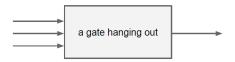


Fei-Fei Li & Andrej Karpathy

Lecture 5 - 19 21 Jan 2015



・ロン ・四 と ・ ヨン ・ ヨン



Every gate during backprop computes, for all its inputs:

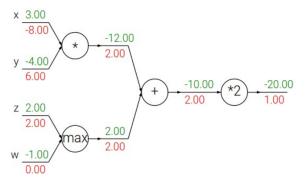
[LOCAL GRADIENT] × [GATE GRADIENT]

1

Can be computed right away, even during forward pass

The gate receives this during backpropagation

- Add: gradient distributor
- Max: gradient router
- Mul: gradient switcher



• Gradient descent to train the network

$$oldsymbol{w}^* = \operatorname*{argmin}_{oldsymbol{w}} rac{1}{N} \sum_{i=1}^N l(oldsymbol{w}, oldsymbol{x}_i, t_i) + \mathcal{R}(oldsymbol{w})$$

• At each iteration, we need to compute

$$\boldsymbol{w}_{n+1} = \boldsymbol{w}_n - \gamma_n \nabla \mathcal{L}(\boldsymbol{w}_n)$$

- Use the backward pass to compute $abla \mathcal{L}(\boldsymbol{w}_n)$ efficiently
- Recall that the backward pass requires the forward pass first

• At each iteration, we need to compute

$$\boldsymbol{w}_{n+1} = \boldsymbol{w}_n - \gamma_n \nabla \mathcal{L}(\boldsymbol{w}_n)$$

with

$$abla \mathcal{L}(oldsymbol{w}_n) = rac{1}{N} \sum_{i=1}^N
abla l(oldsymbol{w}_n, oldsymbol{x}_i, t_i) +
abla \mathcal{R}(oldsymbol{w}_n)$$

• Too expensive when having millions of training examples

• At each iteration, we need to compute

$$\boldsymbol{w}_{n+1} = \boldsymbol{w}_n - \gamma_n \nabla \mathcal{L}(\boldsymbol{w}_n)$$

with

$$abla \mathcal{L}(oldsymbol{w}_n) = rac{1}{N} \sum_{i=1}^N
abla l(oldsymbol{w}_n, oldsymbol{x}_i, t_i) +
abla \mathcal{R}(oldsymbol{w}_n)$$

- Too expensive when having millions of training examples
- Instead, approximate the gradient with a mini-batch (subset of examples: $100 \sim 1,000$) called stochastic gradient descent

$$\frac{1}{N}\sum_{i=1}^{N}\nabla l(\boldsymbol{w}_n, \boldsymbol{x}_i, t_i) \approx \frac{1}{|S|}\sum_{i\in S}\nabla l(\boldsymbol{w}_n, \boldsymbol{x}_i, t_i)$$

• Stochastic Gradient Descent update

$$\boldsymbol{w}_{n+1} = \boldsymbol{w}_n - \gamma_n \nabla \mathcal{L}(\boldsymbol{w}_n)$$

with

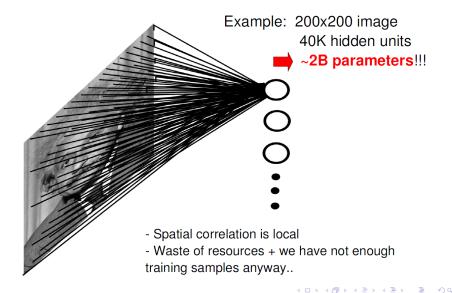
$$abla \mathcal{L}(oldsymbol{w}_n) = rac{1}{|S|} \sum_{i \in S}
abla l(oldsymbol{w}_n, oldsymbol{x}_i, t_i)$$

• We can use momentum

$$\boldsymbol{w} \longleftarrow \boldsymbol{w} - \gamma \Delta$$
$$\Delta \longleftarrow \boldsymbol{\kappa} \Delta + \nabla \mathcal{L}$$

 \bullet We can also decay learning rate γ as iterations goes on

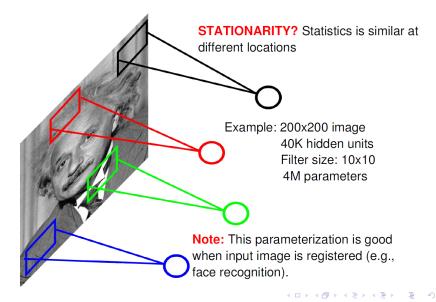
Fully Connected Layer



Locally Connected Layer

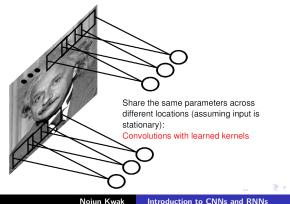
Example: 200x200 image 40K hidden units Filter size: 10x10 4M parameters Note: This parameterization is good when input image is registered (e.g., face recognition).

Locally Connected Layer

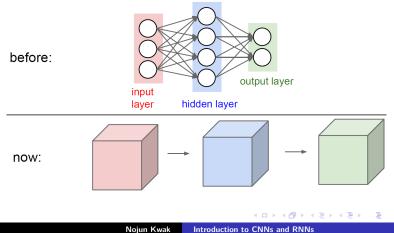


Convolutional Neural Networks

- Idea: statistics are similar at different locations (Lecun 1998)
- Connect each hidden unit to a small input patch and share the weight across space
- This is called convolution layer and the network is a convolutional neural network

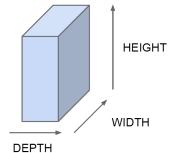


- Number of filters (neurons) is considered as a new dimension (depth)
 - \Rightarrow Volumetric representation



- Number of filters (neurons) is considered as a new dimension (depth)
 - $\Rightarrow \mathsf{Volumetric}\ \mathsf{representation}$

All Neural Net activations arranged in **3 dimensions**:



For example, a CIFAR-10 image is a 32x32x3 volume 32 width, 32 height, 3 depth (RGB channels)

∢ ≣ ≯

CNNs are just neural nets BUT:

1. Local connectivity

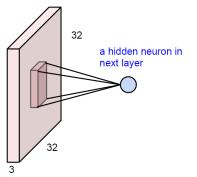
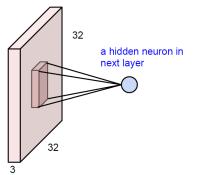


image: 32x32x3 volume

CNNs are just neural nets BUT:

1. Local connectivity



before: fully connected: 32x32x3 weights

now: one neuron will connect to, e.g., 5x5x3 chunk (receptive field) and only have 5x5x3 weights

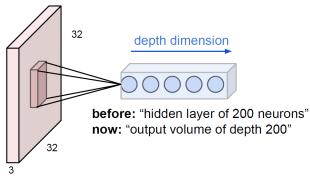
connectivity is:

- local in space (5x5 instead of 32x32)
- but full in depth (all 3 depth channels)

▶ ★ □ ▶ ★ □ ▶ ★ □ ▶

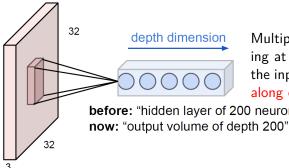
CNNs are just neural nets BUT:

1. Local connectivity



CNNs are just neural nets BUT:

1. Local connectivity



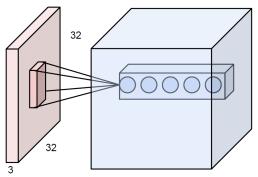
Multiple neurons all looking at the same region of the input volume, stacked along depth.

before: "hidden layer of 200 neurons"

≣ >

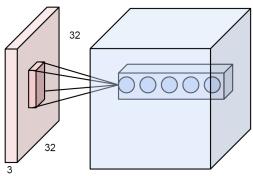
CNNs are just neural nets BUT:

2. Weight sharing

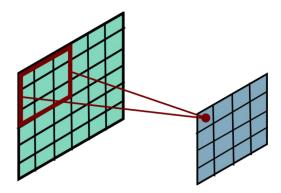


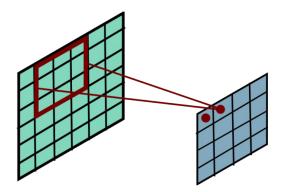
CNNs are just neural nets BUT:

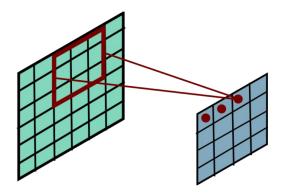
2. Weight sharing

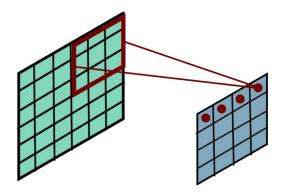


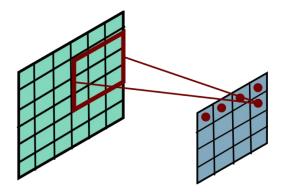
- Weights are shared across different locations
- Each depth slice is called one feature map



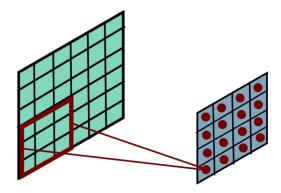




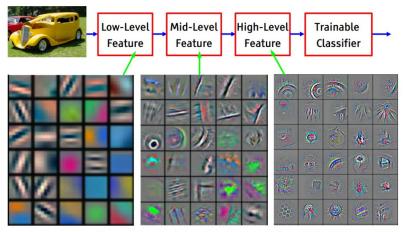




Convolutional Layer



- Input volume of size [W1 \times H1 \times D1]
- \bullet using K neurons with receptive fields F \times F
- and applying them at strides of S gives



Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

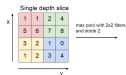
イロト イヨト イヨト イヨト

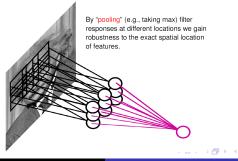
臣

Pooling

In CNNs, Conv layers are often followed by Pool layers

- Pooling layer: makes the representations smaller and more manageable without losing too much information
- Increased receptive field
- Most common: MAX pooling
- Others: average, L2 pooling · · ·

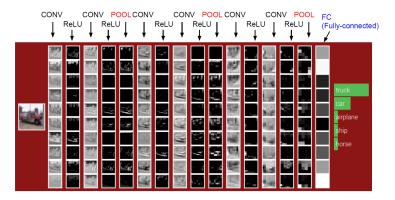


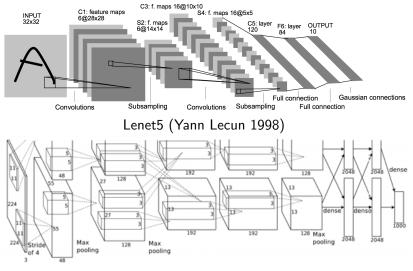


- Weight sharing (Reduce the number of parameters)
- Data augmentation (e.g., jittering, noise injection, tranformations)
- Dropout [Hinton et al.]: randomly drop units (along with their connections) from the neural network during training. Use for the fully connected layers only
- Regularization: Weight decay (L2, L1)
- Sparsity in the hidden units
- Multi-task learning
- Transfer learning

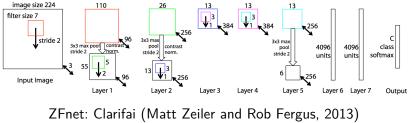
ConvNets

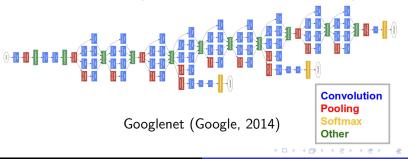
Typical ConvNet: Image \rightarrow [Conv - ReLU] \rightarrow (Pool) \rightarrow [Conv - ReLU] \rightarrow (Pool) \rightarrow FC (fully-connected) \rightarrow Softmax



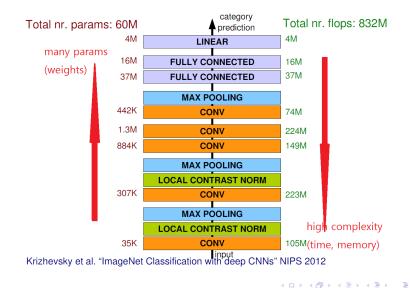


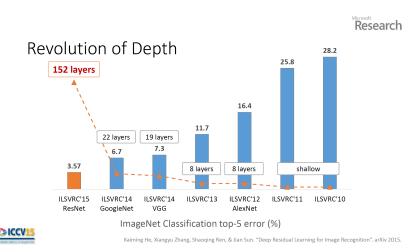
Alexnet (Alex Krizhevsky et. al., 2012)





Complexity (Alexnet)

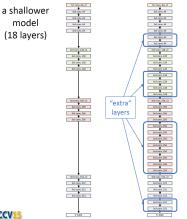




• Human: 5.1% (Karpathy), Baidu cheating (2015.05) - 4.58%

Nojun Kwak Introduction to CNNs and RNNs

イロト イヨト イヨト イヨト

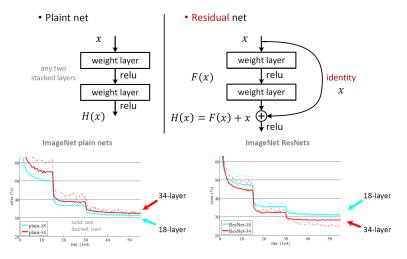


a deeper counterpart (34 layers)

- A deeper model should not have higher training error
- A solution by construction:
 - original layers: copied from a learned shallower model
 - extra layers: set as identity
 - · at least the same training error
- Optimization difficulties: solvers cannot find the solution when going deeper...

イロト イヨト イヨト イヨト

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

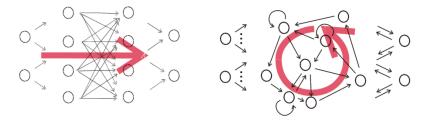


- Deep ResNets can be trained without difficulties
- Deeper ResNets have lower training error, and also lower test error

・ロト ・回ト ・ヨト ・ヨト

臣

- Deep Learning = learning hierarhical models.
- ConvNets are the most successful example. Leverage large labeled datasets.
- Optimization
 - Don't we get stuck in local minima? No, they are all the same!
 - In large scale applications, local minima are even less of an issue.
- Scaling
 - GPUs
 - Distributed framework (Google)
 - Better optimization techniques
- Generalization on small datasets (curse of dimensionality):
 - data augmentation
 - weight decay
 - dropout
 - unsupervised learning
 - multi-task learning

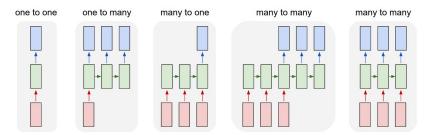


- Feedforward networks
 - Activation is fed forward from input to output through "hidden layers"
 - Static input-output mappings (functions)
 - Basic theoretical result: MLPs can approximate arbitrary (term needs some qualification) nonlinear maps with arbitrary precision ("universal approximation property")
 - Most popular supervised training algorithm: backpropagation algorithm

Feedforward vs. Recurrent Neural Networks II

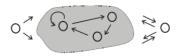
- Huge literature, 95% of neural network publications concern feedforward nets
- have proven useful in many practical applications as approximators of nonlinear functions and as pattern classifiers.
- Recurrent Neural Networks
 - All biological neural networks are recurrent
 - RNNs implement dynamical systems
 - Basic theoretical result: RNNs can approximate arbitrary (term needs some qualification) dynamical systems with arbitrary precision ("universal approximation property")
 - Several types of training algorithms are known, no clear winner
 - theoretical and practical difficulties by and large have prevented practical applications so far (?)

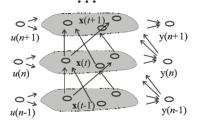
∢ ⊒ ⊳



• RNN as dynamic classifiers (variable length output)

Backpropatation through time (BPTT)





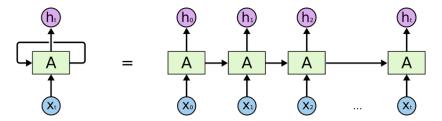
А.

B.

. . .

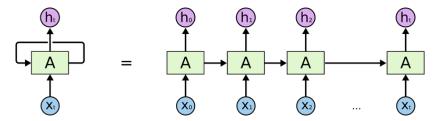
- Unfolding
- Weight sharing
- How many stacks?
- Vanishing & exploding gradients \rightarrow ReLU?

Recurrent Neural Networks



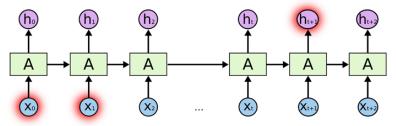
- Like HMM, the model can connect previous information to the present task. (video, NLP, ···)
- Predicting the last word: "the <u>clouds</u> are in the <u>____</u>"

Recurrent Neural Networks



- Like HMM, the model can connect previous information to the present task. (video, NLP, ···)
- Predicting the last word: "the clouds are in the sky"
- \Rightarrow Nearby information is passed to predict the present word.

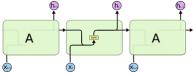
- Predicting the last word:
 - "I grew up in France., I speak fluent _____."
- Long gap between the hint and the word needing prediction.
- RNNs are unable to deliver information through the long gap.



• The limitation is almost the same as that of HMM.

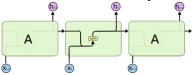
LSTM Networks

- Long Short Term Memory Networks (LSTMs): Hochreiter & Schmidhuber (1997)
- Standard RNNs one layer of tanh

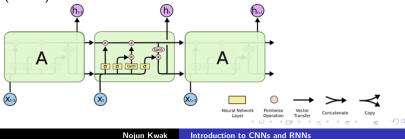


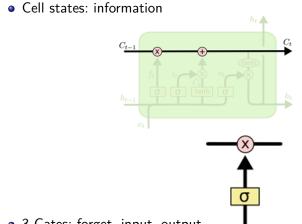
LSTM Networks

- Long Short Term Memory Networks (LSTMs): Hochreiter & Schmidhuber (1997)
- Standard RNNs one layer of tanh



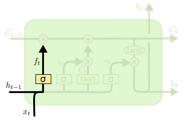
 4 components – forget, input, output gates + information (states)





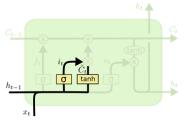
• 3 Gates: forget, input, output

- Outputs a number between 0 and 1 for each cell state C_{t-1} .
- How much information from the previous states should we keep?



$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

• Input gates: How much information should we update from the input?

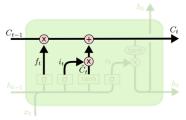


$$\begin{split} i_t &= \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right) \\ \tilde{C}_t &= \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) \end{split}$$

Э

≣ >

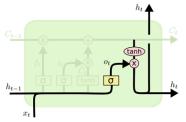
• Tanh layer (information): creates new additive information value \tilde{C}_t .



$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Э

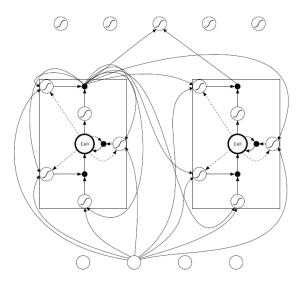
- Output: filtered cell states
- How much information should be output?



$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$
$$h_t = o_t * \tanh \left(C_t \right)$$

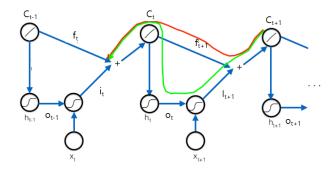
Putting it all together

▶ ★ 문 ▶ ★ 문 ▶ ... 문



• $\cdots >$: peephole

Backpropagation in LSTM



- f = 1, i = 0: long term dependency
- f = 0, i = 1: standard RNN
- red: linear (easy) path, green: nonlinear (difficult) path

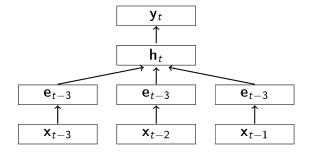
- RNNs suffer from the problem of Vanishing Gradients
- The sensitivity of the network decays over time as new inputs overwrite the activations of the hidden layer, and the network forgets the first inputs.
- This problem is remedied by using LSTM blocks instead of sigmoid cells in the hidden layer.
- LSTM blocks can choose to retain their memory over arbitrary periods of time and also forget if necessary.
- Very good at finding hierarchical structure
- Can induce nonlinear oscillation (for counting and timing)
- But error flow among blocks truncated
- Difficult to train: weights into gates are sensitive

直 ト イヨ ト イヨト

- Vocabulary, size V.
- $x_t \in \mathbb{R}^V$: true word in position t (one-hot)
- $y_t \in \mathbb{R}^{V}$: predicted word in position t (distribution)
- Assume all sentences are zero padded to length L.
- Model: $y_{t+1} = p(x_{t+1} | x_t, x_{t-1}, \cdots, x_1)$ for $1 \le t < L$
- Minimize cross-entropy objective:

$$J = \sum_{t=2}^{L} H(y_t, x_t) \triangleq -\sum_{t=2}^{L} \sum_{i=1}^{V} x_{t,i} \log(y_{t,i})$$

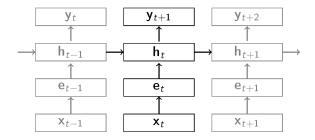
- $\sigma(\cdot)$ is some sigmoid-like (squashing) function (e.g. logistic or tanh)
- b· is a bias vector, W· is a weight vector.



$$y_{t+1} = \operatorname{softmax}(W^{yh}h_t)$$
$$h_t = \sigma(W^{he}[e_{t-1}; e_{t-2}; e_{t-3}] + b^h)$$
$$e_t = W^{ex}x_t$$

イロト イヨト イヨト イヨト

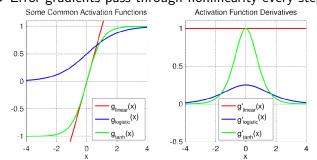
æ



$$\begin{split} y_{t+1} &= \mathsf{softmax}(W^{yh}h_t) \\ h_t &= \sigma(W^{he} e_t + W^{hh}h_{t-1} + b^h) \\ e_t &= W^{ex} x_t \end{split}$$

Ð,

Vanishing gradients



• Error gradients pass through nonlinearity every step

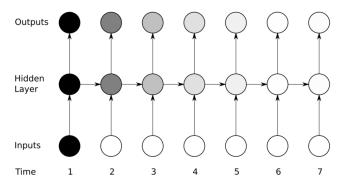
Image from https://theclevermachine.wordpress.com

• Unless weights large, error signal will degrade $\delta_h = \sigma'(\cdot) W^{(h+1)h} \delta_{h+1}$

イロト イヨト イヨト イヨト

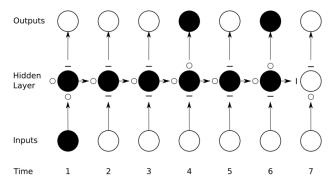
Vanishing gradients

- Gradients may vanish or explode
- Can affect any 'deep' network
 - e.g. fine-tuning a non-recurrent deep NN.



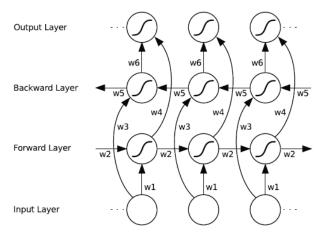
Gradients no longer vanish with LSTM

• If the input gate = 0 and forget gate = 1, gradient pass through the cell



$$C_t = f_t * C_{t-1} + i_t * \hat{C}_t$$

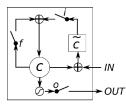
• Bidirectional



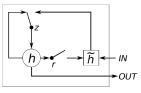
・ロト ・回ト ・ヨト ・ヨト

æ

Chung, J., et al. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv'14.



(a) Long Short-Term Memory



(b) Gated Recurrent Unit

LSTM Unit:

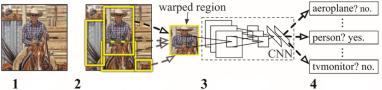
$$\begin{split} \mathbf{h}_t^j &= \boldsymbol{o}_t^j \tanh(\boldsymbol{c}_t^j) \\ \boldsymbol{o}_t^j &= \boldsymbol{\sigma}(W_o \mathbf{x}_t + U_o \mathbf{h}_{t-1} + V_o \mathbf{c}_t)^j \\ \boldsymbol{c}_t^j &= f_t^j \boldsymbol{c}_{t-1}^j + i_t^j \tilde{\boldsymbol{c}}_t^j \\ \tilde{\boldsymbol{c}}_t^j &= \tanh(W_c \mathbf{x}_t + U_c \mathbf{h}_{t-1})^j \\ f_t^j &= \boldsymbol{\sigma}(W_f \mathbf{x}_t + U_f \mathbf{h}_{t-1} + V_f \mathbf{c}_t)^j \\ i_t^j &= \boldsymbol{\sigma}(W_i \mathbf{x}_t + U_i \mathbf{h}_{t-1} + V_i \mathbf{c}_t)^j \end{split}$$

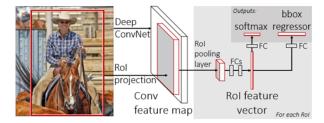
GRU Unit:

$$\begin{split} h_t^j &= (1 - z_t^j) h_{t-1}^j + z_t^j h_t^j \\ z_t^j &= \sigma (W_t \mathbf{x}_t + U_t \mathbf{h}_{t-1})^j \\ \tilde{h}_t^j &= \tanh(W \mathbf{x}_t + U(\mathbf{r}_t \odot \mathbf{h}_{t-1}))^j \\ r_t^j &= \sigma (W_r \mathbf{x}_t + U_r \mathbf{h}_{t-1})^j \end{split}$$

イロト イヨト イヨト イヨト

• Object detection: R-CNN, fast-RCNN, faster-RCNN



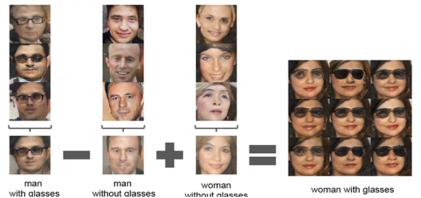


イロト イヨト イヨト イヨト

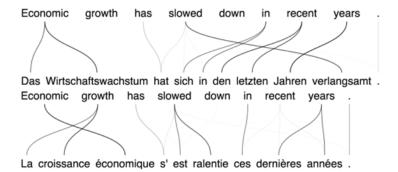
Synthetic bedroom ¹

¹Radford, Alec et al. "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks," arXiv:1511.06434, 2015.

Synthetic face with glasses ²



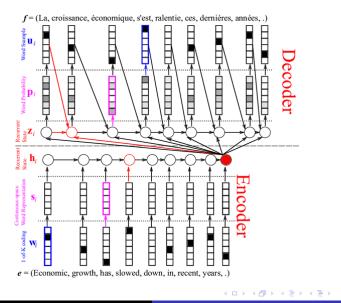
²Radford, Alec et al. "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks," arXiv:1511.06434, 2015.



イロト イヨト イヨト イヨト

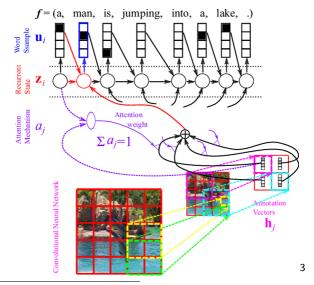
크

э



Neural Machine Translation (NMT) III

글 🛌 글



³"Introduction to Neural Machine Translation with GPUs# >