Nonlinear Projection Trick in Kernel Methods

 Presented @ 2013 SNU-HU Joint WorkshopNojun Kwak nojunk@snu.ac.kr http://mipal.snu.ac.kr
Graduate School of Convergence Science and Technology Seoul National University, Korea

Dec. 13, 2013

This presentation is mostly based on the following paper:

- [1] Nojun Kwak, "Nonlinear Projection Trick in Kernel Methods: An Alternative to the Kernel Trick", IEEE TNNLS, vol. 24, no. 12, pp. 2113-2119, Dec. 2013.
Some of the sentences and figures in the overview are from the tutorial
- Nelly Cristianini "Kernel methods for general pattern analysis", http://www.kernel-methods.net/tutorials/KMtalk.pdf

Outline

- Overview on Kernel Methods
- Basic Idea
- Kernel Trick
- Limitation of Kernel Trick
- Nonlinear Projection Trick
- Motivation
- Algorithm
- Applications
- Conclusions and future works

Overview on Kernel Methods

- Kernel Methods are a new class of pattern analysis algorithms which can be applied to very general types of data.
- Kernel methods offer a modular framework.
(1) In a first step, a dataset is processed into a kernel matrix.
(2) In a second step, a variety of kernel algorithms can be used to analyze the data, using only the information contained in the kernel matrix.

Basic Idea: $x \rightarrow \phi(x)$

- Kernel methods work by
(1) Map data in a high (possibly infinite) dimensional vector space.
(2) Look for (linear) relations in such a space.
- If the mapping is chosen suitably, complex relations can be simplified, and easily detected.

Basic Idea: Kernel Trick

- Much of the geometry (relative position) of the data in the embedding space is contained in all pairwise inner products.
- We can work in that space by specifying an inner product function between points in it (rather than their coordinates!!)
- In many cases, inner product in the embedding space is very cheap to compute.
- Inner product matrix:

$$
K=\left[\begin{array}{cccc}
\left\langle x_{1}, x_{1}\right\rangle & \left\langle x_{1}, x_{2}\right\rangle & \cdot & \left\langle x_{1}, x_{n}\right\rangle \\
\left\langle x_{2}, x_{1}\right\rangle & \left\langle x_{2}, x_{2}\right\rangle & \cdot & \left\langle x_{2}, x_{n}\right\rangle \\
\cdot & \cdot & \cdot & \cdot \\
\left\langle x_{n}, x_{1}\right\rangle & \left\langle x_{n}, x_{2}\right\rangle & \cdot & \left\langle x_{n}, x_{n}\right\rangle
\end{array}\right]
$$

Kernel Trick: Applicable Algorithms

- There are a lot of algorithms that can be used with inner product (or L_{2}-norm) information:
- Principal component analysis (PCA)
- Fisher discriminant (FLD or LDA)
- Canonical correlation analysis (CCA)
- Ridge regression
- Support vector machines (SVM)
- Lots more
- But there are still more algorithms to which kernel trick is not applicable.
- where L_{2} norm is not used in the optimization.
- (e.g.) PCA-L1
- Motivation: Can we find a direct mapping of the input data to the embedding feature space by kernel methods?

Notations I

- $X \triangleq\left[x_{1}, \cdots, x_{n}\right] \in \mathbb{R}^{d \times n}$: the training data matrix
- d : the dimension of the input space
- n : the number of training samples
- $\Phi(X) \triangleq\left[\phi\left(x_{1}\right), \cdots, \phi\left(x_{n}\right)\right] \in \mathbb{R}^{f \times n}$: the mapped training data in the f-dimensional feature space
- $\phi\left(x_{i}\right)$ is considered as a vector with respect to a countable orthornormal basis of the respective RKHS (reproducing kernel Hilbert space). $\longrightarrow f$ can be infinite.
- $\Phi(X)$ is assumed to have zero mean, i.e., $\sum_{i=1}^{n} \phi\left(x_{i}\right)=0$.
- $k(x, y) \triangleq\langle\phi(x), \phi(y)\rangle=\phi(x)^{T} \phi(y) \in \mathbb{R}$: a kernel function of any two inputs $x, y \in \mathbb{R}^{d}$.
- $K \triangleq \Phi(X)^{T} \Phi(X)=\left[k\left(x_{i}, x_{j}\right)\right] \in \mathbb{R}^{n \times n}$: a kernel matrix of the training data.
- r : the rank of K
- $r \leq n-1 \longleftarrow \Phi(X)$ is assumed to be centered.
- $k(x) \triangleq \Phi(X)^{T} \phi(x) \in \mathbb{R}^{n}$: a kernel vector of any $x \in \mathbb{R}^{d}$.

Notations II

- P : an r-dimensional subspace of the feature space formed by the mapped training samples $\Phi(X)$.
- $\phi_{P}(x)$: the projection of $\phi(x)$ onto P. If x lies on P (e.g., one of the training samples), $\phi_{P}(x)=\phi(x)$.
- $\phi_{w}(x)$: the projection of $\phi(x)$ onto a one-dimensional vector space formed by a vector $w \in \mathbb{R}^{f}$, i.e., $\phi_{w}(x)=\langle w, \phi(x)\rangle$. In most cases, the vector w is restricted to reside in the subspace P, i.e., $w=\Phi(X) \alpha$ for some $\alpha \in \mathbb{R}^{n}$.

Notations III

Figure: Projections in the feature space.

Bases of the Kernel Space P

Lemma

(Bases of P)

- $K=U \Lambda U^{T}$: an eigenvalue decomposition of K
- $U=\left[u_{1}, \cdots, u_{r}\right] \in \mathbb{R}^{n \times r}$
- $\Lambda=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{r}\right) \in \mathbb{R}^{r \times r}$.
- r : rank of K
- $\Longrightarrow \Pi \triangleq \Phi(X) U \Lambda^{-\frac{1}{2}}=\left[\pi_{1}, \cdots, \pi_{r}\right] \in \mathbb{R}^{f \times r}$: orthonormal bases of P.

Proof.

Because K is the outer product of $\Phi(X)$ and itself, it is obvious that r, the rank of K, is the dimension of the subspace spanned by $\Phi(X)$. By utilizing the orthonormality of $U\left(U^{T} U=I_{r}\right)$ and the definition of $K\left(K=\Phi(X)^{T} \Phi(X)\right)$, it is easy to check that $\Pi^{T} \Pi=I_{r}$ and Π becomes orthonormal bases of P.

Coordinate of $\phi_{P}(x)$

Theorem

(Coordinate of $\phi_{P}(x)$) For any $x \in \mathbb{R}^{d}$,

$$
\begin{aligned}
& \phi_{P}(x)=\Pi y \\
& \text { where } y=\Lambda^{-\frac{1}{2}} U^{T} k(x)
\end{aligned}
$$

y : the coordinate of $\phi_{P}(x)$ w.r.t. the bases Π

Proof.

$\phi_{P}(x) \in P \longrightarrow \phi_{P}(x)=\Pi y$ for some $y \in \mathbb{R}^{r}$.

$$
y^{\star}=\underset{y}{\operatorname{argmin}}\|\phi(x)-\Pi y\|_{2}^{2}=\underset{y}{\operatorname{argmin}} y^{T} y-2 \phi(x)^{T} \Pi y
$$

$\therefore y=\Pi^{T} \phi(x)=\Lambda^{-\frac{1}{2}} U^{T} k(x)$.

Nonlinear Projection $x \rightarrow y$

- $\phi_{P}(x)$: nonlinear mapping of x onto r-dim. subspace of Π.
- Therefore, $y=\Lambda^{-\frac{1}{2}} U^{T} k(x)$ can be thought as a direct nonlinear projection.
- For training data $X, Y=\Lambda^{\frac{1}{2}} U^{T}$.
$\because Y=\Lambda^{-\frac{1}{2}} U^{T} K=\Lambda^{-\frac{1}{2}} U^{T} U \Lambda U^{T}=\Lambda^{\frac{1}{2}} U^{T}$.
- Note $K=U \Lambda U^{T}=Y^{T} Y$
- C.f.) Cholesky decomp. of $K=Y^{T} Y^{\prime}$. (Y^{\prime} : unique upper triangle)
- SVD of $Y^{\prime}: Y^{\prime}=V \Lambda^{\frac{1}{2}} U^{T}=V Y, V:$ unitary
- Y can be interpreted as a rotation of Y^{\prime}. (coordinates are not unique, but can be determined up to rotations (Euclidean invariant))

Mean of the mapped training data

Lemma

(Mean of the mapped training data) The mapped training data $Y=\Lambda^{\frac{1}{2}} U^{T}$ are centered, i.e., $\sum_{i=1}^{n} y_{i}=0$.

Proof.

From the Theorem, $y_{i}=\Lambda^{-\frac{1}{2}} U^{T} k\left(x_{i}\right)$ and it becomes $\sum_{i=1}^{n} y_{i}=$ $\Lambda^{-\frac{1}{2}} U^{T} \sum_{i=1}^{n} k\left(x_{i}\right)=\Lambda^{-\frac{1}{2}} U^{T} \Phi(X)^{T} \sum_{i=1}^{n} \phi\left(x_{i}\right)=0$.

Coordinate of the residual

For any $x \in \mathbb{R}^{d}$

- Augmented data: $X^{\prime} \triangleq[X, x] \in \mathbb{R}^{d \times(n+1)}$
- Projection: $\Phi\left(X^{\prime}\right) \triangleq[\Phi(X), \phi(x)] \in \mathbb{R}^{f \times(n+1)}$
- Residual: $\delta \phi_{P}(x) \triangleq \phi(x)-\phi_{P}(x)$.

Then,

- $\Phi\left(X^{\prime}\right)$ lies in a $(r+1)$-dimensional subspace containing P.
- Coord. of $\Phi(X):\left[Y^{T}, 0\right]^{T} \in \mathbb{R}^{(r+1) \times n}$
- Coord. of $\phi(x):\left[y^{T}, y_{r+1}\right]^{T} \in \mathbb{R}^{r+1}$ where

$$
y_{r+1}=\sqrt{k(x, x)-y^{T} y} .
$$

- $\because \phi(x)=\phi_{P}(x)+\delta \phi_{P}(x)$ and $\phi_{P}(x) \perp \delta \phi_{P}(x)$, it becomes

$$
\begin{aligned}
\left\|\delta \phi_{P}(x)\right\|_{2}^{2} & =\|\phi(x)\|_{2}^{2}-\left\|\phi_{P}(x)\right\|_{2}^{2} \\
& =k(x, x)-y^{T} y
\end{aligned}
$$

by Pythagorean trigonometric identity.

Coordinate of a vector w

Lemma

(Coordinate of a vector w) If a vector w in P can be written in the form of $w=\Phi(X) \alpha$, then it can also be written as $w=\Pi \beta$ where $\beta=Y \alpha$.

Proof.

Because Π is an orthonormal bases of P, any vector w in P can be written as $w=\Pi \Pi^{T} w$. Therefore,

$$
\begin{aligned}
w & =\Pi \Lambda^{-\frac{1}{2}} U^{T} \Phi(X)^{T} \Phi(X) \alpha=\Pi \Lambda^{-\frac{1}{2}} U^{T} K \alpha \\
& =\Pi Y \alpha=\Pi \beta
\end{aligned}
$$

Note that $\beta=Y \alpha$ is the coordinate of w in P.

Coordinate of $\phi_{w}(x)$

Corollary

(Coordinate of $\phi_{w}(x)$) The projection $\phi_{w}(x)$ of $\phi(x)$ onto w can be obtained by $\phi_{w}(x)=\Pi \gamma$ where $\gamma=\frac{\beta \beta^{T}}{\beta^{T} \beta} y$.

Proof.

Let $w^{\prime}=\frac{w}{\|w\|_{2}}$ be a unit vector. Then

$$
\begin{aligned}
\phi_{w}(x) & =w^{\prime}\left(w^{T} \phi(x)\right)=w^{\prime} w^{T}\left(\phi_{P}(x)+\delta \phi_{P}(x)\right) \\
& =w^{\prime} w^{T} \phi_{P}(x)=w^{\prime} w^{T} \Pi \Lambda^{-\frac{1}{2}} U^{T} k(x) \\
& =\frac{1}{\beta^{T} \beta} \Pi \beta \beta^{T} \Pi^{T} \Pi \Lambda^{-\frac{1}{2}} U^{T} k(x) \\
& =\Pi \frac{\beta \beta^{T}}{\beta^{T} \beta} \Lambda^{-\frac{1}{2}} U^{T} k(x)=\Pi \frac{\beta \beta^{T}}{\beta^{T} \beta} y=\Pi \gamma .
\end{aligned}
$$

Centerization I

- Centerization is a necessary step in practical application of the kernel methods.
- $\Psi(X) \triangleq\left[\psi\left(x_{1}\right), \cdots, \psi\left(x_{n}\right)\right] \in \mathbb{R}^{f \times n}$: uncentered data in the feature space
- $\bar{\psi} \triangleq \frac{1}{n} \sum_{i=1}^{n} \psi\left(x_{i}\right)=\frac{1}{n} \Psi(X) \mathbf{1}_{n} \in \mathbb{R}^{f}$: mean of $\Psi(X)$

$$
\begin{aligned}
\Phi(X) & =\Psi(X)-\bar{\psi} \mathbf{1}_{n}^{T}=\Psi(X)\left(I_{n}-\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{T}\right) \\
& =\Psi(X)\left(I_{n}-E_{n}\right)
\end{aligned}
$$

- $\mathbf{1}_{n}=[1, \cdots, 1]^{T} \in \mathbb{R}^{n}$
- $I_{n}: n \times n$ identity matrix
- $E_{n} \triangleq \frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{T}$

Centerization II

- $\kappa(a, b)=\psi(a)^{T} \psi(b)$: uncenterd kernel function
- $\mathcal{K} \triangleq\left[\kappa\left(x_{i}, x_{j}\right)\right]=\Psi(X)^{T} \Psi(X) \in \mathbb{R}^{n \times n}$: uncentered kernel matrix
- $K=\Phi(X)^{T} \Phi(X)=\left(I_{n}-E_{n}\right) \mathcal{K}\left(I_{n}-E_{n}\right)$: centered kernel matrix
- $\kappa(x) \triangleq\left[\kappa\left(x_{1}, x\right), \cdots, \kappa\left(x_{n}, x\right)\right]^{T} \in \mathbb{R}^{n}$: uncentered kernel vector for any $x \in \mathbb{R}^{d}$
- Centered kernel vector:

$$
\begin{aligned}
k(x) & =\Phi(X)^{T} \phi(x) \\
& =\left[\Psi(X)\left(I_{n}-E_{n}\right)\right]^{T}(\psi(x)-\bar{\psi}) \\
& =\left(I_{n}-E_{n}\right) \Psi(X)^{T}\left(\psi(x)-\frac{1}{n} \Psi(X) \mathbf{1}_{n}\right) \\
& =\left(I_{n}-E_{n}\right)\left[\kappa(x)-\frac{1}{n} \mathcal{K} \mathbf{1}_{n}\right] .
\end{aligned}
$$

Nonlinear Projection Trick I

Algorithm: Kernel method $K M$ (Input: $X, x, \kappa(\cdot, \cdot)$, method M)

- Training phase
(1) Compute the uncentered kernel matrix \mathcal{K} such that $\mathcal{K}_{i j}=\kappa\left(x_{i}, x_{j}\right)$.
(2) Compute the centered kernel K by $K=\left(I_{n}-E_{n}\right) \mathcal{K}\left(I_{n}-E_{n}\right)$.
(3) Obtain the eigenvalue decomposition of K such that $K=U \Lambda U^{T}$ where Λ is composed of only the nonzero eigenvalues of K and the columns of U are the corresponding unit eigenvectors of K.
(9) Compute Y, the coordinates of $\Phi(X)$, by $Y=\Lambda^{\frac{1}{2}} U^{T}$.
(0) Apply the method M to Y, then it is equivalent to applying the kernel method $K M$ to X, i.e., $M(Y) \equiv K M(X)$.

Nonlinear Projection Trick II

- Test phase
(1) Compute the uncentered kernel vector $\kappa(x)$.
(2) Compute the centered kernel vector $k(x)$ by $k(x)=\left(I_{n}-E_{n}\right)\left[k(x)-\frac{1}{n} \mathcal{K} \mathbf{1}_{n}\right]$.
(3) Obtain y, the coordinate of $\phi(x)$, by $y=\Lambda^{-\frac{1}{2}} U^{T} k(x)$.
(9) Apply the method M to y, then it is equivalent to applying the kernel method $K M$ to x, i.e., $M(y) \equiv K M(x)$.

Application: KPCA I

Objective

$$
\begin{gathered}
w^{\star}=\underset{w}{\operatorname{argmax}}\left\|w^{T} \Phi(X)\right\|_{2}^{2} \\
\text { s. t. }\|w\|_{2}=1
\end{gathered}
$$

linear PCA

Figure: Basic idea of KPCA (from [2])

Application: KPCA II

Nonlinear Projection Trick

Kernel Trick

- Scatter matrix:

$$
S_{f} w_{i}=\lambda_{i} w_{i}
$$

- Trick: $w=\Phi(X) \alpha$

$$
\rightarrow K \alpha_{i}=\lambda_{i} \alpha_{i}
$$

- Solution: $\alpha_{i}=u_{i} \lambda_{i}^{-\frac{1}{2}}$
- Nonlinear feature:

$$
\begin{aligned}
& z=W^{T} \phi(x)=A^{T} k(x) \\
& =\Lambda_{m}^{-\frac{1}{2}} U_{m}^{T} k(x) .
\end{aligned}
$$

- Nonlinear projection:

$$
Y=\Lambda^{\frac{1}{2}} U^{T}
$$

- Scatter matrix:
$S_{Y}=Y Y^{T}=\Lambda$
$\rightarrow e_{i}$: eigenvector
- Nonlinear feature:

$$
\begin{aligned}
& z_{i}=e_{i}^{T} y= \\
& e_{i}^{T} \Lambda^{-\frac{1}{2}} U^{T} k(x)= \\
& \lambda_{i}^{-\frac{1}{2}} u_{i}^{T} k(x) . \\
& \rightarrow z=\Lambda_{m}^{-\frac{1}{2}} U_{m}^{T} k(x) .
\end{aligned}
$$

Application: KSVM I

Training data: $\left\{\left(x_{i}, c_{i}\right)\right\}_{i=1}^{n}$ where $x_{i} \in \mathbb{R}^{d}$ and $c_{i} \in\{-1,1\}$

Objective

$$
\begin{gathered}
\left(w^{\star}, b^{\star}\right)=\underset{(w, b)}{\operatorname{argmin}} \frac{1}{2}\|w\|_{2}^{2} \\
\text { subject to } \quad c_{i}\left(w^{T} \phi\left(x_{i}\right)+b\right) \geq 1 \quad \forall i=1, \cdots, n
\end{gathered}
$$

complex in low dimensions
Figure: Basic idea of KSVM

Application: KSVM II

Kernel Trick

- Dual form by Lagrange multipliers $\left\{\alpha_{i}\right\}_{i=1}^{n}$

$$
\begin{align*}
& \quad \alpha^{\star}=\underset{\alpha}{\operatorname{argmax}} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} c_{i} c_{j} k\left(x_{i}, x_{j}\right) \tag{1}\\
& \text { subject to } \sum_{i=1}^{n} \alpha_{i} c_{i}=0 \text { and } \alpha_{i} \geq 0 \quad \forall i=1, \cdots, n
\end{align*}
$$

- Once α_{i} 's are found, $w=\sum_{i=1}^{n} \alpha_{i} c_{i} \phi\left(x_{i}\right)$ and b can be computed so that it meets the KKT condition $\alpha_{i}\left[c_{i}\left(w^{T} \phi\left(x_{i}\right)+b\right)-1\right]=0$ for all $i=1, \cdots, n$.
- Classification of $x: \operatorname{sgn}\left(w^{T} \phi(x)+b\right)$.
- Need not have to find an explicit expression for w

$$
\because w^{T} \phi(x)=\sum_{i=1}^{n} \alpha_{i} c_{i} k\left(x_{i}, x\right)
$$

Application: KSVM III

Nonlinear Projection Trick

- Nonlinear projection: $Y=\Lambda^{\frac{1}{2}} U^{T}=\left[y_{1}, \cdots, y_{n}\right]$
- Then a linear SVM is solved for $\left\{y_{i}, c_{i}\right\}_{i=1}^{n}$.
- Primal problem:

$$
\begin{gathered}
\left(v^{\star}, d^{\star}\right)=\underset{(v, d)}{\operatorname{argmin}} \frac{1}{2}\|v\|_{2}^{2} \\
\text { subject to } \quad c_{i}\left(v^{T} y_{i}+d\right) \geq 1 \quad \forall i=1, \cdots, n
\end{gathered}
$$

- Dual problem:

$$
\begin{align*}
& \qquad \beta^{\star}=\underset{\beta}{\operatorname{argmax}} \sum_{i=1}^{n} \beta_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \beta_{i} \beta_{j} c_{i} c_{j} y_{i}^{T} y_{j} \tag{2}\\
& \text { subject to } \sum_{i=1}^{n} \beta_{i} c_{i}=0 \text { and } \beta_{i} \geq 0 \quad \forall i=1, \cdots, n
\end{align*}
$$

- (1) and (2) are exactly the same $\because k\left(x_{i}, x_{j}\right)=y_{i}^{T} y_{j}$

Other applications

- The above examples (KPCA and KSVM) use L_{2} norm in the optimization.
- In this case, we have shown that KT and NPT are equivalent.
- However, when other norm is used in the optimization, KT cannot be used because dot product is not used.
- An example will follow - PCA-L1.

Formulation of PCA-L1 [3] I

- Motivation:
- Previous methods (L1-PCA, R1-PCA) minimizes reconstruction error (E, 1st interpretation).
- Instead of solving minimization problem, maximize the dispersion of projection (D, 2nd interpretation).
- Problem formulation

$$
\begin{gather*}
W^{*}=\underset{W}{\operatorname{argmax}} D_{1}(W) \text { subject to } W W^{T}=I_{m} \tag{3}\\
D_{1}(W)=\sum_{i=1}^{n}\left\|W^{T} \boldsymbol{x}_{i}\right\|_{1}=\sum_{i=1}^{n} \sum_{k=1}^{m}\left|\boldsymbol{w}_{k}^{T} \boldsymbol{x}_{i}\right| \tag{4}
\end{gather*}
$$

- Pros and Cons of (3)
- (3) is invariant to rotations.
- As R1-PCA, the solution depends on m.
- Smaller problem: $m=1$

$$
\begin{align*}
& \boldsymbol{w}^{*}=\underset{\boldsymbol{w}}{\operatorname{argmax}}\left\|\boldsymbol{w}^{T} X\right\|_{1}=\underset{\boldsymbol{w}}{\operatorname{argmax}} \sum_{i=1}^{n}\left|\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right| \tag{5}\\
& \text { subject to }\|\boldsymbol{w}\|_{2}=1
\end{align*}
$$

Algorithm: PCA-L1

(1) Initialization: Pick any $\boldsymbol{w}(0)$. Set $\boldsymbol{w}(0) \leftarrow \boldsymbol{w}(0) /\|\boldsymbol{w}(0)\|_{2}$ and $t=0$.

Algorithm: PCA-L1

(1) Initialization: Pick any $\boldsymbol{w}(0)$. Set $\boldsymbol{w}(0) \leftarrow \boldsymbol{w}(0) /\|\boldsymbol{w}(0)\|_{2}$ and $t=0$.
(2) Polarity check: For all $i \in\{1, \cdots, n\}$, if $\boldsymbol{w}^{T}(t) \boldsymbol{x}_{i}<0$, $p_{i}(t)=-1$, otherwise $p_{i}(t)=1$.

Algorithm: PCA-L1

(1) Initialization: Pick any $\boldsymbol{w}(0)$. Set $\boldsymbol{w}(0) \leftarrow \boldsymbol{w}(0) /\|\boldsymbol{w}(0)\|_{2}$ and $t=0$.
(2) Polarity check: For all $i \in\{1, \cdots, n\}$, if $\boldsymbol{w}^{T}(t) \boldsymbol{x}_{i}<0$, $p_{i}(t)=-1$, otherwise $p_{i}(t)=1$.
(3) Flipping and maximization: Set $t \leftarrow t+1$ and $\boldsymbol{w}(t)=\sum_{i=1}^{n} p_{i}(t-1) \boldsymbol{x}_{i}$. Set $\boldsymbol{w}(t) \leftarrow \boldsymbol{w}(t) /\|\boldsymbol{w}(t)\|_{2}$.

Algorithm: PCA-L1

(1) Initialization: Pick any $\boldsymbol{w}(0)$. Set $\boldsymbol{w}(0) \leftarrow \boldsymbol{w}(0) /\|\boldsymbol{w}(0)\|_{2}$ and $t=0$.
(2) Polarity check: For all $i \in\{1, \cdots, n\}$, if $\boldsymbol{w}^{T}(t) \boldsymbol{x}_{i}<0$, $p_{i}(t)=-1$, otherwise $p_{i}(t)=1$.
(3) Flipping and maximization: Set $t \leftarrow t+1$ and $\boldsymbol{w}(t)=\sum_{i=1}^{n} p_{i}(t-1) \boldsymbol{x}_{i}$. Set $\boldsymbol{w}(t) \leftarrow \boldsymbol{w}(t) /\|\boldsymbol{w}(t)\|_{2}$.
(9) Convergence check:
a. If $\boldsymbol{w}(t) \neq \boldsymbol{w}(t-1)$, go to Step 2 .
b. Else if there exists i such that $\boldsymbol{w}^{T}(t) \boldsymbol{x}_{i}=0$, set $\boldsymbol{w}(t) \leftarrow(\boldsymbol{w}(t)+\Delta \boldsymbol{w}) /\|\boldsymbol{w}(t)+\Delta \boldsymbol{w}\|_{2}$ and go to Step 2. Here, $\Delta \boldsymbol{w}$ is a small nonzero random vector.
c. Otherwise, set $\boldsymbol{w}^{\star}=\boldsymbol{w}(t)$ and stop.

Simple Example (2D case)

Application: KPCA-L1

Objective

$$
\begin{gather*}
w^{\star}=\underset{w}{\operatorname{argmax}}\left\|w^{T} \Phi(X)\right\|_{1}=\underset{w}{\operatorname{argmax}} \sum_{i=1}^{n}\left|w^{T} \phi\left(x_{i}\right)\right| \tag{6}\\
\text { subject to }\|w\|_{2}=1
\end{gather*}
$$

- Kernel trick is not applicable to KPCA-L1.
- The PCA-L1 algorithm can directly be applied to Y to obtain the KPCA-L1. (NPT)

Conclusions \& Future Works

- NPT was proposed as an alternative to the KT.
- The two are equivalent.
- NPT is intuitive and easy to implement.
- Eigenvalue decomposition (or singular value decompotion) of Kernel matrix plays an essential role in NPT.
- NPT widens the applicability of Kernel methods to any problems that can be done in the input space. (e.g. gradient search, L1 optimization, ...)

References

[1] N. Kwak,
"Nonlinear Projection Trick in Kernel Methods: An Alternative to the Kernel Trick,"
IEEE TNNLS, vol. 24, no. 12, pp. 2113-2119, Dec. 2013.
[2] B. Schölkopf1, A. Smola and K.R. Müller, Kernel Principal Component Analysis ADVANCES IN KERNEL METHODS - SUPPORT VECTOR LEARNING, MIT Press pp. 327-352, 1999.
[3] N. Kwak,
"Principal component analysis based on L1 norm maximization,"
IEEE TPAMI, vol. 30, no. 9, pp. 1672-1680, Sep. 2008.

