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Note

This presentation is mostly based on the following paper:

[1] Nojun Kwak, “Nonlinear Projection Trick in Kernel Methods: An
Alternative to the Kernel Trick”, IEEE TNNLS, vol. 24, no. 12, pp.
2113–2119, Dec. 2013.

Some of the sentences and figures in the overview are from the tutorial

Nelly Cristianini “Kernel methods for general pattern analysis”,
http://www.kernel-methods.net/tutorials/KMtalk.pdf
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Overview on Kernel Methods

Kernel Methods are a new class of pattern analysis algorithms
which can be applied to very general types of data.

Kernel methods offer a modular framework.
1 In a first step, a dataset is processed into a kernel matrix.
2 In a second step, a variety of kernel algorithms can be used to

analyze the data, using only the information contained in the
kernel matrix.
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Basic Idea: x→ φ(x)

Kernel methods work by
1 Map data in a high (possibly infinite) dimensional vector space.
2 Look for (linear) relations in such a space.

If the mapping is chosen suitably, complex relations can be
simplified, and easily detected.
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Basic Idea: Kernel Trick

Much of the geometry (relative position) of the data in the
embedding space is contained in all pairwise inner products.

We can work in that space by specifying an inner product
function between points in it (rather than their coordinates!!)

In many cases, inner product in the embedding space is very
cheap to compute.

- Inner product matrix:

K =


〈x1, x1〉 〈x1, x2〉 · 〈x1, xn〉
〈x2, x1〉 〈x2, x2〉 · 〈x2, xn〉
· · · ·

〈xn, x1〉 〈xn, x2〉 · 〈xn, xn〉
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Kernel Trick: Applicable Algorithms

There are a lot of algorithms that can be used with inner
product (or L2-norm) information:

Principal component analysis (PCA)
Fisher discriminant (FLD or LDA)
Canonical correlation analysis (CCA)
Ridge regression
Support vector machines (SVM)
Lots more · · · · · ·

But there are still more algorithms to which kernel trick is not
applicable.

where L2 norm is not used in the optimization.
(e.g.) PCA-L1

Motivation: Can we find a direct mapping of the input data
to the embedding feature space by kernel methods?
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Notations I

X , [x1, · · · , xn] ∈ Rd×n : the training data matrix

d : the dimension of the input space
n : the number of training samples

Φ(X) , [φ(x1), · · · , φ(xn)] ∈ Rf×n : the mapped training
data in the f -dimensional feature space

φ(xi) is considered as a vector with respect to a countable
orthornormal basis of the respective RKHS (reproducing kernel
Hilbert space). −→ f can be infinite.
Φ(X) is assumed to have zero mean, i.e.,

∑n
i=1 φ(xi) = 0.

k(x, y) , 〈φ(x), φ(y)〉 = φ(x)Tφ(y) ∈ R: a kernel function of
any two inputs x, y ∈ Rd.

K , Φ(X)TΦ(X) = [k(xi, xj)] ∈ Rn×n: a kernel matrix of
the training data.

r: the rank of K
r ≤ n− 1 ←− Φ(X) is assumed to be centered.

k(x) , Φ(X)Tφ(x) ∈ Rn: a kernel vector of any x ∈ Rd.
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Notations II

P : an r-dimensional subspace of the feature space formed by
the mapped training samples Φ(X).

φP (x): the projection of φ(x) onto P . If x lies on P (e.g.,
one of the training samples), φP (x) = φ(x).

φw(x): the projection of φ(x) onto a one-dimensional vector
space formed by a vector w ∈ Rf , i.e., φw(x) = 〈w, φ(x)〉. In
most cases, the vector w is restricted to reside in the subspace
P , i.e., w = Φ(X)α for some α ∈ Rn.
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Notations III

Figure : Projections in the feature space.
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Bases of the Kernel Space P

Lemma

(Bases of P )

K = UΛUT : an eigenvalue decomposition of K

U = [u1, · · · , ur] ∈ Rn×r

Λ = diag(λ1, · · · , λr) ∈ Rr×r.
r: rank of K

=⇒ Π , Φ(X)UΛ−
1
2 = [π1, · · · , πr] ∈ Rf×r: orthonormal

bases of P .

Proof.

Because K is the outer product of Φ(X) and itself, it is obvious
that r, the rank of K, is the dimension of the subspace spanned by
Φ(X). By utilizing the orthonormality of U (UTU = Ir) and the
definition of K (K = Φ(X)TΦ(X)), it is easy to check that
ΠTΠ = Ir and Π becomes orthonormal bases of P .
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Coordinate of φP (x)

Theorem

(Coordinate of φP (x)) For any x ∈ Rd,

φP (x) = Πy

where y = Λ−
1
2UTk(x)

y: the coordinate of φP (x) w.r.t. the bases Π

Proof.

φP (x) ∈ P −→ φP (x) = Πy for some y ∈ Rr.

y? = argmin
y
||φ(x)−Πy||22 = argmin

y
yT y − 2φ(x)TΠy

∴ y = ΠTφ(x) = Λ−
1
2UTk(x).
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Nonlinear Projection x→ y

φP (x): nonlinear mapping of x onto r-dim. subspace of Π.

Therefore, y = Λ−
1
2UTk(x) can be thought as a direct

nonlinear projection.

For training data X, Y = Λ
1
2UT .

∵ Y = Λ−
1
2UTK = Λ−

1
2UTUΛUT = Λ

1
2UT .

Note K = UΛUT = Y TY

C.f.) Cholesky decomp. of K = Y ′TY ′. (Y ′: unique upper
triangle)

SVD of Y ′: Y ′ = V Λ
1
2UT = V Y , V : unitary

Y can be interpreted as a rotation of Y ′. (coordinates are not
unique, but can be determined up to rotations (Euclidean
invariant))
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Mean of the mapped training data

Lemma

(Mean of the mapped training data) The mapped training data

Y = Λ
1
2UT are centered, i.e.,

∑n
i=1 yi = 0.

Proof.

From the Theorem, yi = Λ−
1
2UTk(xi) and it becomes

∑n
i=1 yi =

Λ−
1
2UT

∑n
i=1 k(xi) = Λ−

1
2UTΦ(X)T

∑n
i=1 φ(xi) = 0.
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Coordinate of the residual

For any x ∈ Rd

Augmented data: X ′ , [X,x] ∈ Rd×(n+1)

Projection: Φ(X ′) , [Φ(X), φ(x)] ∈ Rf×(n+1)

Residual: δφP (x) , φ(x)− φP (x).

Then,

Φ(X ′) lies in a (r + 1)-dimensional subspace containing P .

Coord. of Φ(X): [Y T , 0]T ∈ R(r+1)×n

Coord. of φ(x): [yT , yr+1]
T ∈ Rr+1 where

yr+1 =
√
k(x, x)− yT y.

∵ φ(x) = φP (x) + δφP (x) and φP (x)⊥δφP (x), it becomes

||δφP (x)||22 = ||φ(x)||22 − ||φP (x)||22
= k(x, x)− yT y

by Pythagorean trigonometric identity.
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Coordinate of a vector w

Lemma

(Coordinate of a vector w) If a
vector w in P can be written in
the form of w = Φ(X)α, then it
can also be written as w = Πβ
where β = Y α.

Proof.

Because Π is an orthonormal bases of P , any vector w in P can be
written as w = ΠΠTw. Therefore,

w = ΠΛ−
1
2UTΦ(X)TΦ(X)α = ΠΛ−

1
2UTKα

= ΠY α = Πβ.

Note that β = Y α is the coordinate of w in P .
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Coordinate of φw(x)

Corollary

(Coordinate of φw(x)) The projection φw(x) of φ(x) onto w can

be obtained by φw(x) = Πγ where γ = ββT

βT β
y.

Proof.

Let w′ = w
||w||2 be a unit vector. Then

φw(x) = w′(w′Tφ(x)) = w′w′T (φP (x) + δφP (x))

= w′w′TφP (x) = w′w′TΠΛ−
1
2UTk(x)

=
1

βTβ
ΠββTΠTΠΛ−

1
2UTk(x)

= Π
ββT

βTβ
Λ−

1
2UTk(x) = Π

ββT

βTβ
y = Πγ.
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Centerization I

Centerization is a necessary step in practical application of the
kernel methods.

Ψ(X) , [ψ(x1), · · · , ψ(xn)] ∈ Rf×n: uncentered data in the
feature space

ψ̄ , 1
n

∑n
i=1 ψ(xi) = 1

nΨ(X)1n ∈ Rf : mean of Ψ(X)

Φ(X) = Ψ(X)− ψ̄1Tn = Ψ(X)(In −
1

n
1n1

T
n )

= Ψ(X)(In − En).

1n = [1, · · · , 1]T ∈ Rn

In: n× n identity matrix
En , 1

n1n1
T
n
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Centerization II

κ(a, b) = ψ(a)Tψ(b): uncenterd kernel function

K , [κ(xi, xj)] = Ψ(X)TΨ(X) ∈ Rn×n: uncentered kernel
matrix

K = Φ(X)TΦ(X) = (In − En)K(In − En): centered kernel
matrix

κ(x) , [κ(x1, x), · · · , κ(xn, x)]T ∈ Rn: uncentered kernel
vector for any x ∈ Rd

Centered kernel vector:

k(x) = Φ(X)Tφ(x)

= [Ψ(X)(In − En)]T (ψ(x)− ψ̄)

= (In − En)Ψ(X)T (ψ(x)− 1

n
Ψ(X)1n)

= (In − En)[κ(x)− 1

n
K1n].
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Nonlinear Projection Trick I

Algorithm: Kernel method KM (Input: X, x, κ(·, ·), method M)

Training phase

1 Compute the uncentered kernel matrix K such that
Kij = κ(xi, xj).

2 Compute the centered kernel K by K = (In−En)K(In−En).
3 Obtain the eigenvalue decomposition of K such that
K = UΛUT where Λ is composed of only the nonzero
eigenvalues of K and the columns of U are the corresponding
unit eigenvectors of K.

4 Compute Y , the coordinates of Φ(X), by Y = Λ
1
2UT .

5 Apply the method M to Y , then it is equivalent to applying
the kernel method KM to X, i.e., M(Y ) ≡ KM(X).
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Nonlinear Projection Trick II

Test phase
1 Compute the uncentered kernel vector κ(x).
2 Compute the centered kernel vector k(x) by
k(x) = (In − En)[κ(x)− 1

nK1n].

3 Obtain y, the coordinate of φ(x), by y = Λ−
1
2UT k(x).

4 Apply the method M to y, then it is equivalent to applying the
kernel method KM to x, i.e., M(y) ≡ KM(x).
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Application: KPCA I

Objective

w? = argmax
w

||wTΦ(X)||22

s. t. ||w||2 = 1.

Figure : Basic idea of KPCA (from [2])
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Application: KPCA II

Kernel Trick

Scatter matrix:
Sfwi = λiwi

Trick: w = Φ(X)α
→ Kαi = λiαi

Solution: αi = uiλ
− 1

2
i

Nonlinear feature:
z = W Tφ(x) = ATk(x)

= Λ
− 1

2
m UTmk(x).

Nonlinear Projection Trick

Nonlinear projection:
Y = Λ

1
2UT

Scatter matrix:
SY = Y Y T = Λ
→ ei: eigenvector

Nonlinear feature:
zi = eTi y =

eTi Λ−
1
2UTk(x) =

λ
− 1

2
i uTi k(x).

→ z = Λ
− 1

2
m UTmk(x).
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Application: KSVM I

Training data: {(xi, ci)}ni=1 where xi ∈ Rd and ci ∈ {−1, 1}

Objective

(w?, b?) = argmin
(w,b)

1

2
||w||22

subject to ci(w
Tφ(xi) + b) ≥ 1 ∀i = 1, · · · , n

Figure : Basic idea of KSVM
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Application: KSVM II

Kernel Trick

Dual form by Lagrange multipliers {αi}ni=1

α? = argmax
α

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjcicjk(xi, xj)

subject to
n∑
i=1

αici = 0 and αi ≥ 0 ∀i = 1, · · · , n
(1)

Once αi’s are found, w =
∑n
i=1 αiciφ(xi) and b can be computed so

that it meets the KKT condition αi[ci(w
Tφ(xi) + b)− 1] = 0 for all

i = 1, · · · , n.

Classification of x: sgn(wTφ(x) + b).

Need not have to find an explicit expression for w
∵ wTφ(x) =

∑n
i=1 αicik(xi, x)
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Application: KSVM III

Nonlinear Projection Trick

Nonlinear projection: Y = Λ
1
2UT = [y1, · · · , yn]

Then a linear SVM is solved for {yi, ci}ni=1.

Primal problem:

(v?, d?) = argmin
(v,d)

1

2
||v||22

subject to ci(v
T yi + d) ≥ 1 ∀i = 1, · · · , n

Dual problem:

β? = argmax
β

n∑
i=1

βi −
1

2

n∑
i,j=1

βiβjcicjy
T
i yj

subject to
n∑
i=1

βici = 0 and βi ≥ 0 ∀i = 1, · · · , n
(2)

(1) and (2) are exactly the same ∵ k(xi, xj) = yTi yj
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Other applications

The above examples (KPCA and KSVM) use L2 norm in the
optimization.

In this case, we have shown that KT and NPT are equivalent.

However, when other norm is used in the optimization, KT
cannot be used because dot product is not used.

An example will follow - PCA-L1.
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Formulation of PCA-L1 [3] I

Motivation:

Previous methods (L1-PCA, R1-PCA) minimizes
reconstruction error (E, 1st interpretation).
Instead of solving minimization problem, maximize the
dispersion of projection (D, 2nd interpretation).
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Formulation of PCA-L1 [3] II

Problem formulation

W ∗ = argmax
W

D1(W ) subject to WW T = Im (3)

D1(W ) =

n∑
i=1

||W Txxxi||1 =

n∑
i=1

m∑
k=1

|wwwTkxxxi| (4)

Pros and Cons of (3)

(3) is invariant to rotations.
As R1-PCA, the solution depends on m.

Smaller problem: m = 1

www∗ = argmax
www

||wwwTX||1 = argmax
www

n∑
i=1

|wwwTxxxi|

subject to ||www||2 = 1.

(5)
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Algorithm: PCA-L1

1 Initialization: Pick any www(0). Set www(0)← www(0)/||www(0)||2 and
t = 0.

2 Polarity check: For all i ∈ {1, · · · , n}, if wwwT (t)xxxi < 0,
pi(t) = −1, otherwise pi(t) = 1.

3 Flipping and maximization: Set t← t+ 1 and
www(t) =

∑n
i=1 pi(t− 1)xxxi. Set www(t)← www(t)/||www(t)||2.

4 Convergence check:

a. If www(t) 6= www(t− 1), go to Step 2.
b. Else if there exists i such that wwwT (t)xxxi = 0, set
www(t)← (www(t) + ∆www)/||www(t) + ∆www||2 and go to Step 2. Here,
∆www is a small nonzero random vector.

c. Otherwise, set www? = www(t) and stop.
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Simple Example (2D case)
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Simple Example (2D case)
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Simple Example (2D case)
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Application: KPCA-L1

Objective

w? = argmax
w

||wTΦ(X)||1 = argmax
w

n∑
i=1

|wTφ(xi)|

subject to ||w||2 = 1.

(6)

Kernel trick is not applicable to KPCA-L1.

The PCA-L1 algorithm can directly be applied to Y to obtain
the KPCA-L1. (NPT)

Nojun Kwak Nonlinear Projection Trick in Kernel Methods



Conclusions & Future Works

NPT was proposed as an alternative to the KT.

The two are equivalent.

NPT is intuitive and easy to implement.

Eigenvalue decomposition (or singular value decompotion) of
Kernel matrix plays an essential role in NPT.

NPT widens the applicability of Kernel methods to any
problems that can be done in the input space. (e.g. gradient
search, L1 optimization, · · · )
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