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Abstract-In this paper, we propose a model based distur- 
bance attenuator (MBDA) with the conventional PD con- 
troller for robot manipulators. It is a generalization of 
MBDA structure in [l] and is .applied to a robot manip- 
ulator which is nonlinear. This method does not require 
an accurate model of a robot manipulator and takes care of 
disturbances or modeling errors so that the plant output re- 
mains relatively unaffected by them. The output error due 
to  the gravity or constant disturbance can be completely 
eliminated by this method in the same way as PID con- 
trollers. In addition, this can he easily implemented at a 
moderate computational cost. We apply this to a two-link 
robot manipulator and compare its performance with P D  
and PID controllers. Simulation results show that the pro- 
posed method is very effective in controlling robot manipu- 
lators. 

Keywords- Robot manipulators, MBDA, position control, 
Lyapunov function, stability. 

I. INTRODUCTION 

0 achieve high performance in controlling robots, T much research has been conducted under the assump- 
tion that the dynamics of robot t;ystems are exactly known. 
But this assumption is not usually satisfied because it is 
very difficult to obtain an exact robot model due to its 
nonlinear dynamic structure and modeling uncertainties. 

To cope with these problems, many researchers have 
studied robust and adaptive control schemes extensively. 
A good survey on this topic c m  be found in [2]. Some 
of these researchers have proposed neural network models 
which adaptively compute the inverse model of the plant 
[3]-[7]. Though powerful in controlling robot manipulators 
with parametric uncertainties, these are by nature slow in 
updating weights and requires high computational efforts. 

Regarding robust controller designs [8] [9], quite a few 
algorithms rely on the linear-multivariable or the feedback- 
linearization approach [lo] where the inverse dynamics of 
the robot is used in order to globally linearize and decou- 
ple the robot dynamic equations. In doing so, strict uncer- 
tainty bounds on modeling error and disturbances must be 
satisfied, but these restrictions can sometimes be difficult 
to meet in real robot systems. 

On the other hand, the condentional PD or PID con- 
trollers are very easy to implement and there is little need 
to know the dynamics of the rohot. Thus, most robots em- 
ployed in industry are controlled by these algorithms in- 
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dependently acting on each joint. It has long been proven 
that PD control with gravity conipensation can be used to 
achieve global asymptotic stability for any positive values 
of the control gains [ I t ] .  However, it requires knowledge of 
the gravitational torque, which is not easy to measure. To 
overcome uncertainties on the gravitational torque, adap- 
tive schemes have been devised [12] [t3], but these require 
the system parameters such as masses and lengths of the 
robot to satisfy complex inequalities. 

In regard to PID controllers, their capability of distur- 
bance elimination motivated many researchers to prove its 
stability [t4]-[16]. Arimoto and Miazaki [14] proposed a 
proof for the stability of PID controller but the integral 
gain of the feedback loop must be so small that it actually 
falls on PD control scheme [15]. Rocco [I51 also proved 
local stability of the PID controller based on a Lyapunov 
function. Recently, Kelly [16] proved the global stability 
of a PID like controller by imposing a nonlinear integral 
action in addition to the PD controller. Even if the PID 
controller be globally stable, it usually exhibits overshoot 
and oscillation because robot dynamics behaves in a some- 
what similar manner to a second order linear system. 

In this paper, we propose a new method for controlling 
robot manipulators. The proposed method is easy to im- 
plement and very robust in regard to modeling errors and 
disturbances. It consists of a model in parallel with the 
plant. In the presence of disturbances, this method atten- 
uates the disturbance significantly, thus we call it a “model 
based disturbance attenuator”. MBDA was first proposed 
by Choi et. al. for a CNC machining center with the sta- 
bility analysis on linear systems [I] [17]. Here, we general- 
ize the structure of MBDA slightly, and apply it to robot 
systems whose dynamics are nonlinear. This MBDA con- 
troller has both the advantage of a PD controller in that 
it is globally asymptotically stable and the advantage of a 
PID controller which can eliminate steady state errors due 
to modeling errors or disturbances. 

The paper is organized as follows: In Section 11, we re- 
view some properties of robot manipulators. In Section 
111, we propose the MBDA controller, and give conditions 
of stability. In Section IV, simulation results are presented 
showing the merits of MBDA. Conclusions are presented in 
Section V. 

11. ROBOT DYNAMICS 

In this section, we provide a brief introduction to robot 
In the dynamics together with some of its properties. 
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Fig. 1. MBDA Controller 

absence of friction and disturbances, the dynamics of an 
n degree of freedom robot manipulator is given by the 
Lagrange-Euler vector equation: 

M(rl)Y + C(4,  4)4 + dd = -r (1) 

where q,  q ,  E 8" arc the vectors of generalized position, 
velocity, and acceleration respectively, of n links, M ( q )  E 
Rnxn  is the inertia matrix which is positive definite and 
symmetric, C(q, 4) E XnXn accounts for the centrifugal and 
Coriolis terms, g(q)  E !Rn is the gravity term, and T E Rn 
is the generalized torque acting on the links. 

The equation of motion (1) has the following properties 

Property I : Skew symmetry: The matrix N(q,q)  = 
M ( q )  - 2C(q, q)is skew symmetric. Thus, 

~ 6 1  ~ 9 1 .  

fiJid = C(q, 4) + CT(q, 4). 

Property 2 : Boundedness of centrifugal and Coriolis 
terms: There exists a positive constants IC,  such that 

Property 3 : Bonndedness of gravitational torque: There 
exists a positive constant k ,  satisfying 

liyll < kg, 
vq E Rn 

and 

I l S ( ~ )  -d?j)ll I k91b - 911, V Z , Y  E R2". 

111. THE MBDA CONTROLLER A N D  ITS STABILITY 
Now we propose the MBDA controller to control robot 

manipulators described above and give a stability analysis. 
Fig.1 shows thc structure of MBDA, where P is a plant, 
M is a model for the plant. q , q O , q d  E X n  are a position 
vector of the plant, a position vector of the model, and a 
desired position vector respectively, 7 , ~ ~  E Rn are input 
torques for plant and model. In the figure, K, K1, and K2 
are feedback gain matrices of appropriate dimensions. The 
conventional I'D gains are used for K and K1, and only D 
gains are used for Ka. If K a  = 0, it is the same structure 
as in [l] [17]. The dynamics of a model is 

where the subscript "0" is used to represent terms related 
to the model. Note that we omit the gravity term in the 
model dynamics. Then the inputs become 

7 = -K,@ - K d b  - Kp1(q - 40)  - K d l ( 4  - 40) 

TO = -Kp@ - Kdb f K d 2 ( Q  - 40) ( 3 )  
where 0 = q - q d  

Here, the diagonal matrices KP ( K P l )  and Kd (Kdl) are P 
and D gains of K (K1), and the diagonal matrix Kd2 is D 
gain of Kz. 

K ; ' ~ ( Q ) ) ~ ] ~ ,  and 7 A [(T - g ( q d ) ) T ,  T;]~, and rewrite 
(l), (2) and ( 3 )  with these augmented position vectors for 
&(t) = 0, t > 0 which corresponds to a ,constant input 
vector. 

Let q A [qT,  (40 - K,;'g(qd))T]T, @ A [QT,  (6 - 

7 - 9 ( 4 d )  = =M(q)Q + c(q> 4)4 f d q ,  q d )  [ 7~ ] 7. (5) 

Here, K p ,  Kd, M ( q ) ,  C(4,4), and g(q, q d )  are appropriately 
defined. To carry out the stability analysis, we consider the 
following Lyapunov function candidate: 

1 1 

2 Y 
where K is a symmetric positive definite constant matrix 
and y is a positive constant. 

(6) v = -(@TK@ + qTMq) + -@TMq 

Lemma: If the following condition holds 

a 1 y > 1 ,  K - % M > O  ( 7) Y 
for an arbitrary positive constant al, then 

Therefore V is positive definite function [HI. 
0 

Using this Lyapunov function and the the properties of 
robot dynamics described in the previous section, we can 
give conditions of stability. 

Theorem: Let Kp = KPl,  Kd = Kdl + Kd2 and 

2561 



Fig. 2. Two-link manipulator 

K 
MBDA K l  

For a constant input q d  in the control system of Fig.1, 
(6, q)  = (0,O) is .a globally asyriptotically stable cquilib- 
rium point when the following condition is satisfied. 

P gain D gain I gain 
1000 300 
1000 100 

1 k C l l S l l  
Y Y 2 

K d  + Kdl - -M - --In - A I n  > 0 

K2 
PID 
PD 

Y Yk, 2Kp - kgIn - -E - --In > 0 
a2 2w 

- 200 
1000 300 1000 
1000 300 

Here a2 and a3 are arbitrary positive constants and the 
elements of matrix E is given as 

0 

The proof is omitted because of space limitation. Al- 
though the conditions in (8) seem hard to be satisfied, these 
conditions can be easily met if K,, Kdl, and K d 2  can be set 
sufficiently large. In section IV we will study this in more 
detail. 

(Remark) At the equilibrium point, the position error 
of the plant 6 = 0, but the position error of the model 

= K;lg(qd). The gravitational force g ( y ) ,  which is a 
disturbance, is compensated by the model's position error 
and do not affect the plant output in the steady state. 

IV. SIMULATION RESULTS 

In this section, the MBDA controller is applied to a two- 
link manipulator and its perfor,mance is compared with 
those of conventional PD and €'ID controllers. The two- 
link robot manipulator is assumed to be a rigid body with 
point masses a t  each end of the link and moves under 
the gravity as shown in Fig.2 .with the initial condition 

For this plant, the manipulator dynamics in vector form 
(el(o),eZ(o)) = (0,O). 

is as follows [19]. 

~ 
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TABLE I 
GAINS FOR 2-LINK MANIPULATOR 

where 

and 

91 = (m1 + mdg11 cos01 + m2ga2 cos(& + 0,) 
g2 = m 2 g a ~  cos(& + &). 

For this manipulator, the lengths are 11 = 12 = 0.5(m) 
and masses are m l  = m2 = 5(lcg), and the gravitational 
acceleration is 9.8(m/ sec2). 

The feedback gain for each joint is set to be equal as 
shown in Table I. For the MBDA controller, the feedback 
loop gain matrix K is the same as that of P D  and the 
gain matrices K1 and K2 are set as K p  = Kpl and K d  = 

For these feedback gains and manipulator parameters, 
we will check the conditions (7)  and (8). In computing the 
norms in (8), we will use 1-norm for ease of computation. 

K d l  + Kd2. 

In (9), CTq becomes 

Now the upper bounds of Coriolis and centrifugal forces 
and gravity terms become 

where k ,  = m21112, and 

Using these results, we can set I C ,  = 1.25 and kg = 98 for 
our manipulator. For simplicity, we set y = 0.1 to make 



matrix E in (8) zero, and we set a2 = a3 = 0.1. Then the 
first condition in (8) becomes 

1.2- 

1 -  

2 0.8- 

.- 8 0.6- 

8 0.4- 

- 
Y 

Y .- 
a 

1 357.6- 2 5 ~ 0 ~ 8 2  - 12.511~ll-12.5 - i2.5cosea 
= [ -12.5 - 1 2 . 5 ~ 0 ~ 8 2  382.6 - 12.511ij/l 
2 0, 

because 1 1 @ 1 1  < 27~.  
When the modcl is exactly the same as the plant with 

the exception of the gravity term (&lo = M, CO = C), the 
second condition in (8) becomes 

PID - - -  

Y 
a2 2w 

2 K P  - k,In - -E - &In 

2000 0 1850 0 
= [ o 20001 - [1:1!0] = [ o B ~ O ]  > O. 

Now lct a1 5 + E .  Then: 

a1 
Y 

K - - M  

and we can always find E > 0 such that K - Y M  > 0 by 

The robot manipulator is moved from the initial position 
(8,(0),02(0))  = (0,O) to the desired position ( O l d , O ~ d )  = 
(1,l) where the units are in radian. Fig.3 and Fig.4 show 
the step responses of the MBDA, PID, and PD controllers 
for various modeling errors in the masses. 

The iMBDA controller has little overshoot and little os- 
cillation compare to the PID controller, because it does not 
include an integrator. Also it shows no steady state posi- 
tioning error which is not the case for the PD controller. 
Moreover the results shows the MBDA controller is quite 
robust with respect to large modeling errors. This property 
is very useful for robot nianipulators with varying masses in 
grasping action where the masses change drastically before 
and after grasping. 

Fig.5 shows the responses when a constant disturbance 
is applied at t = l.O(sec) to the first joint. The MBDA 
controller attenuates the disturbance very quickly compare 
to the PID controller while there is a steady state error for 

(8). 

0.4 

0.2 
a 

MBDA ~ 

P D  ....... 

2 time(sec) 1 -0. 

(a) m = 0.5 x mo 
1.4 

I o.2v 0 i MBDA ~ 

P D  ,...... 

(b) m = mo 

1.4 

MBDA - 

O C y  
2 A:: 1 

-0 time(sec) 

( c ) m = 2 x m o  

PID - - - -  1 
-0. 1 2 time(sec) 

(d) m = 5 x mo 

Fig. 3. Unit step responses of MBDA, PID and P D  controllers (01) 
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1-  - p 0.8- 
v 

0.6- .... 
.- * 
8 0.4t e 

MBDA model o.21 0 
PID - - - - -  I 

-0. 1 2 time(sec) 

o.2r 0 
PID 

1 2 time(sec) -0. 

1.21 

n 91 1 

(d) m = 5 >: mo 

Fig. 4. Unit step responses of MBDA, PID and P D  controllers (82) 

I MBDA plant ~ 

P D  
PID 

h 

0.4- 

0.2- 
a 

MBDA plant ~ 

PD 

time(sec) 

(b) 8 2  

Fig. 5 Unit stcp responscs of MBDA, PID and PD controllcrs whcn 
the disturbance is presented at t = 1. 

the PD controller. This shows that the MBDA controller 
is very efficient in disturbance attenuation compare to the 
PID. In the figure, the dotted line shows the output of the 
model. Note that its behavior is almost opposite to that of 
the output produced by thc I'D controller. This output of 
the model cancels the disturbancc cffcctively so that there 
is no steady state error in the plant output. 

Fig.6 is a comparison of a plant output with perfect 
model and that with a simple model which has only di- 
agonal constant terms in its Jacobian matrix, i.e., 

From (9) one can see that all the terms involving 81 and 
8 2  are eliminated. The figure shows that there is little dif- 
fercncc between thc output produced with a perfect model 
and that produced with a simple one. This result indicates 
that the modeling process can be simplified significantly 
by using the MBDA controller without compromising the 
performance of a robot manipulator. We may discard the 
terms like CO and off-diagonal elements in MO in addition 
to gravity t,erms. This elimination also ea.ses the stability 
condition (8) because k , ~  and all the off-diagonal terms in 
MO become zeros. In addition, though not presented here, 
the computational burden of the MBDA controller with the 
simple model does not increase significantly as the number 
of links increases. 

Also, a simulation for a robot with three links was done, 
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and similar results wcre obtained. 

V. CONCLUSIONS 

In this paper, we have proposed a new control method, 
the MBDA controller, for robot manipulators. The struc- 
ture of MBDA is it generalization of [l], [17] and its usage 
had been extended to nonlinear robot systems. We can 
garantee the global asymptotic stability of the proposed 
method under certain conditions. The proposed method 
is robust with respect to modeling errors, very effective in 
disturbance attenuation, and gives no steady state error 
caused by either gravity or constant disturbance. 

Unlike other controllers which require an exact robot 
model, a simple model may be sufficient for the MBDA 
controller. By using simple models, the computational bur- 
den for the MBDA does not increase rapidly as the number 
of links increases, which is very important for robot with 
many links. The MBDA controller is also well suited for 
industrial robots whose masses change during operations. 
Due to these advantages, the MBDA controller is expected 
to find widespread applications in industrial robot manip- 
ulators. 
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