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Abstract

Biased discriminant analysis (BDA), which extracts discriminative features for

one-class classification problems, is sensitive to outliers in negative samples. This

study focuses on the drawback of BDA attributed to the objective function based

on the arithmetic mean in one-class classification problems, and proposes an ob-

jective function based on a generalized mean. A novel method is also presented

to effectively maximize the objective function. The experimental results show that

the proposed method provides better discriminative features than the BDA and its

variants.
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1. Introduction

Dimensionality reduction, which reduces the number of input variables with-

out degrading the performance of classification systems, is a major topic in pattern

recognition and machine learning. A large number of methods have been proposed

for reducing the input dimensionality, which can be divided into two categories,

i.e., feature selection and feature extraction. The feature selection is to select a

subset of m good features from a set of n (n > m) input variables, while the fea-

ture extraction is to produce m good features from input variables [1]. Two of the

most popular feature extraction methods are principal component analysis (PCA)

and linear discriminant analysis (LDA). It is well known that LDA is more suitable

for classification problems than PCA [2], [3], [4]. LDA finds a subspace where

the samples within the same class are placed close together, whereas the samples

belonging to different classes are located far apart. It is assumed that the distribu-

tions of samples in each class are normal and homoscedastic, i.e., their covariance

matrices are identical. Thus, it may be difficult to find a good feature space if this

assumption is violated, which has been addresses by many researchers [5], [6],

[7], [8]. Furthermore, LDA may fail not only in heteroscedastic cases and some-

times even in homoscedastic cases [9]. In [10] and [11], Tao et al. addressed the

problem of conventional LDA by showing examples where classes located close to

each other in the input space overlap in the feature space generated by LDA, and

this problem is referred to as the class separation problem. They first showed that

under certain assumptions LDA maximizes the arithmetic mean of the Kullback-

Leibler divergences [12] between different classes, and then proposed to replace

the arithmetic mean with the geometric mean. In [13], the harmonic mean was also

used to replace the arithmetic mean instead of the geometric mean. Experiments

showed that the methods based on the geometric or harmonic mean gave better per-

2



formance than the original LDA, especially when the number of extracted features

was strictly smaller than the number of classes.

Nonetheless, LDA and its extensions generally fail to deliver good performance

in one-class classification problems such as image retrieval [14] and face or eye

detection [15], [16]. This is because they try to find a subspace where each of the

positive and negative samples is well clustered. In order to overcome this limitation

of LDA, Zhou and Huang [17] introduced biased discriminant analysis (BDA) by

modifying LDA for one-class classification problems. Unlike LDA, BDA tries

to cluster only the positive samples and place the negative samples far from the

mean of the positive samples, as much as possible. Unfortunately, it was shown in

[18] that this could degrade the discriminatory power of BDA because outliers in

the negative samples might be exaggerated. It was noted that the negative effect

of outliers was caused by the objective function of BDA, which was based on

the squared Euclidean distances, and two alternatives were proposed, i.e., SBDA

and L1-BDA [18]. SBDA reduces the negative effect due to the squared distances

by putting a limit on the distances of negative samples from the mean of positive

samples by a specific value, while L1-BDA reduces the negative effect by replacing

the Euclidean distances with the l1 distances. It was shown that SBDA and L1-

BDA gave similar performance, which was better than the conventional BDA.

In this paper, we propose a novel method to reduce the effect of outlier. First,

we show that conventional BDA gives a subspace that maximizes the arithmetic

mean of the squared distances between negative samples and the mean of positive

samples. To find a subspace where positive and negative samples are well separated

from each other, it is reasonable to try to place the negative samples, which are

close to the mean of the positive samples, far from the mean in the feature space.

However, maximizing the arithmetic mean only maximizes the sum of the squared

distances and it does not prevent some of negative samples from being projected
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close to the mean of positive samples. Note that this characteristic of BDA is

similar to the class separation problem in LDA. Inspired by the alternative solutions

to the problem presented in [11] and [13], we incorporate the generalized mean into

the objective function of BDA instead of the arithmetic mean. The generalized

mean of a set of positive numbers can vary from the minimum to the maximum

value of the set depending on its intrinsic parameter. We can obtain the arithmetic,

the geometric, and the harmonic means by tuning the parameter. By maximizing

the generalized mean with an appropriate value of the parameter, the proposed

method can find a lower dimensional feature space where the negative samples

close to the mean of the positive samples are located far away. Therefore, the

proposed method can find more discriminative features than BDA, SBDA and L1-

BDA. One of the difficulties in maximizing the objective function based on the

generalized mean is that the objective function is non-convex and there is no closed

form solution. Gradient-based methods can be applied to find a local maximum, but

they are slow in convergence. To expedite the process of maximizing the objective

function incorporating the generalized mean, we provide a novel method exploiting

the fact that the generalized mean of positive numbers can be represented as a non-

negative linear combination of the numbers.

There have been many researches on object detection problems, such as Viola-

Jones object detector [19] and human detection based on histogram of oriented

gradients [20]. These object detection problems can also be categorized as a one-

class classification problem. However, in this paper, we focus on linear feature

extraction methods for one-class classification problems.

The rest of this paper is organized as follows. The next section provides a brief

overview of BDA, SBDA and L1-BDA. The generalized mean is also introduced in

the section. In Subsection 3.1 we show that the second step of BDA is equivalent

to maximizing the arithmetic mean of the squared distances of negative samples
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from the mean of positive samples, and consequently the solution can be domi-

nated by some outliers of the negative samples. The proposed method is described

in Subsections 3.2 and 3.3. Section 4 demonstrates that the proposed method ef-

fectively overcomes the limitations of BDA and gives a better performance than

BDA, SBDA, and L1-BDA. Finally, the last section concludes this paper.

2. Background

2.1. BDA, SBDA, and L1-LDA

LDA is a simple and powerful feature extraction method for classification prob-

lems [2], [3], but it is not suitable for one-class classification problems because it

assumes that the samples belonging to the same class are clustered together. This

assumption is not reasonable for negative samples in one-class classification prob-

lems where the distribution of negative samples has no regular form. BDA was

proposed to overcome this limitation of LDA for one-class classification problems.

Let us consider Nx positive samples denoted as x ∈ ℜn and Ny negative samples

denoted as y ∈ ℜn. BDA requires two scatter matrices as follows:

Sy =
1

Ny

Ny∑
i=1

(yi −mx)(yi −mx)
T ,

Sx =
1

Nx

Nx∑
i=1

(xi −mx)(xi −mx)
T ,

(1)

where mx = 1
Nx

∑Nx
i=1 xi. Using these matrices, BDA can be formulated as

WBDA = argmax
W

tr
(
(WTSxW)−1(WTSyW)

)
, (2)

where tr(·) is the matrix trace operator. The objective function is large when pos-

itive samples are aggregated around their mean and negative samples are located

far away from the mean of the positive samples in the transformed space, so the
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solution of the problem WBDA = [w1, . . . ,wm] can be constructed using the

generalized eigenvectors with respect to the largest m generalized eigenvalues that

satisfy

Sywk = λkSxwk, k = 1, . . . ,m.

If Sx is non-singular, WBDA is obtained by the simultaneous diagonalization [2]

of Sx and Sy as

WBDA = W1W2,

WT
1 SxW1 = In,

WT
2 ŜyW2 = Λ,

WT
2 W2 = Im,

(3)

where Ŝy = WT
1 SyW1, Λ is an m×m diagonal matrix, and In is an n× n iden-

tity matrix, respectively. Equation (3) shows that the simultaneous diagonalization

consists of two steps. The first step is to whiten Sx, i.e., it finds W1 such that

WT
1 SxW1 = In, and the next is to perform the eigenvalue decomposition of Ŝy.

If the number of positive samples is smaller than the dimensionality of the sam-

ples, i.e., Nx < n, the simultaneous diagonalization can not be performed because

Sx is singular. This is the small sample size (SSS) problem. Many approaches

have been presented to overcome the SSS problem [21], [22], [23], [24], but the

regularization method [25] is simple and effective. It only requires Sx in (1) to be

replaced by Ŝx = Sx + µI where µ is a small positive constant. It also provides

a more robust solution when the number of samples is not sufficiently larger than

the dimensionality of the samples. After obtaining WBDA, an arbitrary sample z

can be transformed in the feature space as

zf = WT
BDA(z−mx). (4)
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Using z −mx instead of z, the mean of positive samples is mapped to the origin

in the transformed space. The sample can be classified as positive if the distance

between its projection and the mean of the positive samples, i.e., ∥zf∥2, is smaller

than a predetermined threshold, otherwise it is classified as negative.

The conventional BDA tries to find a feature space where each of the negative

samples is as far away from the mean of the positive samples as possible. However,

the subspace produced by BDA tends to be sensitive to the outliers of negative

samples. SBDA was proposed to alleviate the negative effect of the outliers in

[18]. When Sy is calculated in SBDA, the distance of a negative sample from the

mean of the positive samples is set to a positive number γ if the distance is greater

than γ. This can be implemented by modifying Sy in (1) as

S′
y =

1

Ny

Ny∑
i=1

(y′
i −mx)(y

′
i −mx)

T ,

y′
i =

yi

∥yi∥2
min(∥yi∥2, γ).

(5)

where ∥x∥2 is the l2 norm of a vector x. This is equivalent to constructing a hyper-

sphere with a radius γ and projecting the negative samples outside the hypersphere

onto the surface of the hypersphere. The transformation matrix WSBDA can be

obtained by the simultaneous diagonalization of S′
y and Sx, and test samples can

be classified using their projections transformed by WSBDA.

SBDA limits the distances of negative samples to γ to reduce the effects of the

outliers, whereas L1-BDA utilizes the l1 norm instead of the Euclidean norm in

placing negative samples far from the mean of positive samples. After whitening

Sx in (1), as in BDA and SBDA, its optimization problem is formulated as the
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following:

w∗ =argmax
w

1

Ny

Ny∑
i=1

|wT (y′
i −m′

x)|,

s.t. wTw = 1.

Here, y′
i = WT

1 yi and m′
x = WT

1 mx such that WT
1 SxW1 = I. A novel method,

which was originally presented as an alternative to PCA in [26], was developed to

solve the above problem. Note that the solution w∗ is a vector and not a matrix.

Therefore, the projection vectors are obtained one by one under the constraint that

they are mutually orthogonal. Further details can be found in [18].

2.2. Generalized Mean

For a non-zero p, the generalized mean or power mean [27]Mp of N positive

numbers a1, a2, . . . , aN is defined as

Mp{a1, . . . , aN} =

(
1

N

N∑
i=1

api

)1/p

.

This equation is very similar to the lp-norm of a vector a = [a1, a2, . . . , aN ]T ,

which is a generalization of the length of the vector [28]. However, the general-

ized mean quite differs from the lp-norm. Figure 1 shows thatMp{1, 2, . . . , 10}

monotonically increases as p changes from −10 to 10. For some positive num-

bers, the arithmetic mean, the geometric mean, and the harmonic mean are special

cases of the generalized mean. Moreover, the maximum and minimum values of

the numbers are also obtained from the generalized mean by making p → ∞ and

p→ −∞, respectively. For example, the generalized mean of the two numbers a1
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Figure 1: The generalized mean of {1, . . . , 10} for various values of p.

and a2 (0 < a1 ≤ a2) can have various values for different p values as

Mp{a1, a2} =



a1 (min(a1, a2)) if p→ −∞,

2a1a2
a1+a2

(harmonic mean) if p = −1,
√
a1a2 (geometric mean) if p→ 0,

a1+a2
2 (arithmetic mean) if p = 1,

a2 (max(a1, a2)) if p→∞.

Note that as p decreases (increases), the generalized mean is more affected by the

smaller (larger) number than the larger (smaller) number, i.e., controlling p makes

it possible to adjust the contribution of each ai to the generalized mean. In the

next section, this property of the generalized mean will be utilized to extract more

discriminative features for one-class classification problems.
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Figure 2: Data distribution before and after whitening Sx.
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3. Biased Discriminant Analysis Using the Generalized Mean

3.1. A limitation of BDA

As mentioned above, the simultaneous diagonalization to solve BDA can be

divided into two steps. Figure 2 shows a two-dimensional example of 300 positive

samples and 300 negative samples before and after whitening Sx, which is the first

step of simultaneous diagonalization. Note that the positive samples in Fig. 2(b)

are normally distributed. The next step is to find an orthogonal matrix W2 that

places the negative samples far away from the mean of the positive samples in the

transformed space, which is formulated as

W2 =argmax
W

tr(WT ŜyW),

s.t. WTW = I.

(6)

where Ŝy = WT
1 SyW1. However, it may fail to find a subspace where positive

and negative samples are well separated. For the negative samples in Fig. 2(b), Fig.

3(a) shows the value of the objective function in (6). In the figure, Degree is the an-

gle by which the projection vector is counterclockwise rotated from the horizontal

axis, [1 0]T . Even though the optimal projection vector is 0 degrees ([1 0]T ),

the objective function is maximized at 90 degrees, i.e., W2 = [0 1]T as shown in

Fig. 3(a). This limitation of the conventional BDA is due to the fact that (6) maxi-

mizes the arithmetic mean of the squared Euclidean distances of negative samples

from the mean of positive samples. Let us denote the negative sample after whiten-

ing Sx as y. It is also assumed that the negative samples are transformed into a

lower dimensional subspace by (4) so that the mean of positive samples is placed

at the origin, i.e., WTmx = 0. Thus, the Euclidean distance between the trans-

formed negative sample WTyi and the mean of the positive samples is represented
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Figure 3: Values of the objective functions for (a) BDA and (b) SBDA and L1-BDA.
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as
√

(WTyi)T (WTyi) and the arithmetic mean of their squared values is

1

Ny

Ny∑
i=1

yT
i WWTyi

=
1

Ny

Ny∑
i=1

tr(WTyiy
T
i W)

= tr

WT

 1

Ny

Ny∑
i=1

(yi −mx)(yi −mx)
T

W


= tr

(
WTSyW

)
.

This shows that the solution given in (6) maximizes the arithmetic mean of the

squared Euclidean distances of negative samples in the feature space. It can be

expected that the difficulty encountered in finding the optimal projection by BDA,

demonstrated in Fig. 2, is caused by the squared distances in the objective function.

This point of view was considered in [18] where the conventional BDA can be

affected too much by some negative samples referred to as outliers, which results

in the degradation of classification performance. Two alternatives, SBDA and L1-

BDA, were suggested in [18] and it was shown that they could alleviate the negative

effects of outliers to some extent. However, both methods also fail to find the

optimal solution to the problem in Fig. 2, as shown in Fig. 3(b).

Another reason why the conventional BDA fails for the problem shown in Fig.

2 is that it focuses on the average distance of negative samples in the feature space.

Since the positive samples are normally distributed around their mean after whiten-

ing Sx, it is desirable to place negative samples with small distances from the mean

of positive samples (mx) as far away as possible in the lower dimensional feature

space. However, maximizing the arithmetic mean is guaranteed to maximize the

average squared distances of negative samples from mx in the feature space, re-

gardless of the distribution of the negative samples close to mx. This problem can
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Figure 4: The objective functions for p = −0.5 and p = −1.

be overcome by substituting the arithmetic mean with the generalized mean. As

mentioned in Subsection 2.2, the generalized mean is dominated by small values

of given positive numbers as p decreases below zero whereas the arithmetic mean

depends equally on every number. This property of the generalized mean makes

it possible to construct a more discriminative feature space. Indeed, for the neg-

ative samples in the problem shown in Fig. 2, a modified objective function with

a generalized mean of p = −0.5 or p = −1 is maximized at 0 and 180 degrees,

as shown in Fig. 4, both of which gives the optimal projection for the problem.

This indicates that the objective function using the generalized mean with an ap-

propriate p value can provide a more discriminative feature space than SBDA or

L1-BDA. In the following subsections, we show how to find the solution for the

objective function using the generalized mean.

3.2. Maximizing the generalized mean: 1st-order approximation

Under the assumptions that yi denotes the i-th negative sample in the space

where Sx has been whitened and that all of the samples are transformed using (4),
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the squared distance between yi and the mean of positive samples in the feature

space can be represented as

di(W) =yT
i WWTyi

=tr
(
WTSiW

)
,

where Si = yiy
T
i . If the arithmetic mean is replaced by the generalized mean, the

optimization problem in (6) becomes

W2 = argmax
W

J(W)

= argmax
W

 1

Ny

Ny∑
i=1

di(W)p

1/p

,

s.t. WTW = I.

(7)

Note that this problem is equivalent to the problem given in (6) if p = 1. The nec-

essary condition for W to be a local maximum is that the gradient of the objective

function with respect to W is zero, and the gradient of (7) is calculated as

∇W =
∂

∂W


 1

Ny

Ny∑
i=1

di(W)p

1/p


=
2

Ny

 1

Ny

Ny∑
i=1

di(W)p


1−p
p
 Ny∑

i=1

di(W)p−1Si

W.

(8)

Unlike the optimization problem in (6) it is difficult to find a closed form solution

that makes (8) equal to zero. Furthermore, the objective function is not convex if

p < 0, as shown in Fig. 4. In this case, W2 can be obtained iteratively using the

gradient method [29]. Its update rule at the t-th iteration is represented as

W
′
= W(t) + η∇W, (9)
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where η is the learning rate. In order to satisfy the constraint WTW = I, the

following process is included in each iteration:

W(t+1) = Orth(W
′
). (10)

where Orth(A) is the orthonormalization of a matrix A, which can be performed

by QR decomposition [30]. Using a randomly initialized W that satisfies the or-

thonormality condition, (9) and (10) are repeated until the difference in the ob-

jective function values during an iteration is less than a small positive number ϵ,

i.e.,

|J(W(t+1))− J(W(t))| < ϵ. (11)

It is well known that the solutions obtained from gradient based optimization meth-

ods such as (9) are sensitive to initial points. One approach to mitigate this problem

is to solve the optimization problem many (Nr) times with different initial values,

and W2 is selected that yields the maximum convergent value. However, this

approach is unlikely to find a satisfactory local maximum because the objective

function has a large number of local maxima as shown in Fig. 4. This occurs when

maximizing the generalized mean with p < 0 because di(W)p becomes extremely

large when di(W) is close to zero. In order to eliminate large fluctuations in the

objective function, we modify the objective function by adding a small positive

number ρ to each di(W), i.e.,

d̂i(W) = di(W) + ρ. (12)

Although this modification distorts the original objective function, it effectively

prevents di(W)p from being very large when p < 0. Figure 5 shows the original

and the modified objective functions with p = −1 in (7). Note that as ρ increases,

the objective function becomes smoother and the number of local maximum points

decreases. This figure also shows the recommended range for ρ, i.e., it is acceptable
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Figure 5: The original and smoothed objective functions with p = −1.

to set ρ to a number between 0.5 and 1.5 after Sx is whitened. This procedure is

summarized in Algorithm 1. However, this gradient-based method still has some

drawbacks. In particular, it converges very slowly. In the next subsection, we will

present a novel method that finds the solution more efficiently.

3.3. Maximizing the generalized mean: 2nd order approximation

The slow convergence of gradient-based methods is due to the first order ap-

proximation of the objective function. In order to improve the convergence speed,

we propose to approximate the objective function in (7) as a second order function

of W by the following theorem.

Theorem 1. For a fixed p ̸= 0 and N positive numbers {a1, . . . , aN}, the gener-

alized meanMp{a1, . . . , aN} can be expressed as a nonnegative combination of

a1, a2, . . . , aN , i.e.,(
1

N

N∑
i=1

api

)1/p

= c1a1 + c2a2 + · · ·+ cNaN (13)
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Algorithm 1 The gradient-based method
1: Input: {y1, . . . ,yNy}, m, p, η, Nr, and ϵ.

2: for r = 1→ Nr do

3: t←− 0.

4: Randomly initialize an orthonormal matrix W(0) ∈ ℜn×m.

5: Calculate J(W(0)).

6: repeat

7: t←− t+ 1.

8: Calculate the gradient using (8).

9: Update W(t) using (9) and (10).

10: until |J(W(t))− J(W(t−1))| < ϵ

11: Wr ←−W(t).

12: end for

13: Output: W2 = argmaxWr
J(Wr).

18



where

ci =
1

N

(
1

N

∑
i

api

) 1
p
−1

ap−1
i > 0. (14)

Proof. By replacing ci in (13) with (14), the equality holds in (13). Each ci in (14)

can be obtained by differentiating (13) with respect to ai.

Note that each ci has the same value 1
N if p = 1, where the generalized mean

becomes the arithmetic mean. We can see in (14) that the coefficient ci corre-

sponding to a smaller ai becomes relatively larger as p decreases below one. This

is related to the property that the generalized mean is a monotonically increasing

function of p as described in Subsection 2.2. For a fixed W, the generalized mean

in (7) can be represented as a linear combination of di(W) by Theorem 1. 1

Ny

Ny∑
i=1

di(W)p

 1
p

= α1d1(W) + · · ·+ αNydNy(W)

=

Ny∑
i=1

αidi(W),

where

αi =
1

Ny

 1

Ny

Ny∑
i=1

di(W)p


1−p
p

di(W)p−1. (15)

Therefore, the objective function near the fixed W can be approximated as 1

Ny

Ny∑
i=1

di(W)p

 1
p

≈
Ny∑
i=1

αitr
(
WTSiW

)
= tr

(
WTSαW

)
,

where Sα =
∑Ny

i=1 αiSi. If we assume that Sα is fixed, then the optimal solution

of the approximated objective function, i.e.,

Ŵ = argmax
W

tr
(
WTSαW

)
, (16)
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can easily be obtained by the eigenvalue decomposition of Sα. However, Ŵ does

not guarantee J(Ŵ) > J(W) because Ŵ is the maximizer of the approximated

objective function near the fixed W rather than the original objective function. To

find W(t+1), which satisfies J(W(t+1)) > J(W(t)), it is necessary to include a

line search step, as follows:

W′ ←− βŴ + (1− β)W(t),

W(t+1) ←− Orth(W′),
(17)

where β is a search parameter. We initially set β to 1, and reduce it by βj+1 ←−

δβj , (0 < δ < 1) until J(W(t+1)) > J(W(t)). This step is stopped if j is equal

to or greater than a predefined value. In this paper, δ is set to 0.5. As mentioned

above, d(W) is replaced by d̂(W) in (12) to smooth the objective function when

p < 0. This changes Sα in (16) to

Ŝα =

Ny∑
i=1

αi

(
yiy

T
i +

ρ

n

)
,

where n is the dimensionality of yi.

These processes are summarized in Algorithm 2. As a simple test, Algorithm

2 was applied to the problem shown in Fig. 2. The samples in the figure were first

transformed by W1 such that WT
1 SxW1 = I2, and p, Nr, and ρ were set to−1, 1,

and 1, respectively. The initial value W(0) was set as the unit vector rotated from

the x axis by +80 degrees, and Algorithm 2 was terminated at t = 3. We obtained

the solution, which is the unit vector rotated by +178.05 degrees. Note that the

optimal solution of the problem, which was 0 or 180 degrees, could not be founded

by Algorithm 1 if W(0) was set to degree 80. The positive and negative samples

in Fig. 2 were well discriminated in the feature space generated by Algorithm 2,

but the solution W2 was not exactly the same as to the optimal solution in Fig. 5.

From this observation, we can see that Algorithm 2 gives a solution that is close to
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Algorithm 2 The 2nd-order approximation using Theorem 1
1: Input: {y1, . . . ,yNy}, m, p, Nr, β, δ, and ϵ.

2: for r = 1→ Nr do

3: t←− 0.

4: Randomly initialize an orthonormal matrix W(0) ∈ ℜn×m.

5: Calculate J(W(0)).

6: repeat

7: t←− t+ 1.

8: Calculate each αi using (15).

9: Find Ŵ by solving (16).

10: Obtain a new W(t) satisfying J(W(t)) > J(W(t−1)) by (17).

11: until |J(W(t))− J(W(t−1))| < ϵ

12: Wr ←−W(t).

13: end for

14: Output: W2 = argmaxWr
J(Wr).
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a local optimum rather than the local optimum, although it converges much faster

than Algorithm 1. Therefore, we perform Algorithm 2 and then Algorithm 1 by

setting its W(0) as the output of Algorithm 2. Indeed, a satisfactory solution of

179.97 degrees was found for the problem in Fig. 2 by performing Algorithm 1

successively.

Finally, the method proposed in this paper, which is referred to as BDAGM, is

described in Algorithm 3. The first step is to whiten Sx as BDA. It then finds Nr

local maxima by running Algorithm 2 Nr times using random initial values. This

allows us to rapidly search for intermediate solutions, among which we select the

solution that yields the largest value for the objective function to set as the initial

value for Algorithm 1. Then, we find the solution W2 by Algorithm 1, and finally

obtain WBDAGM = W1W2.

Algorithm 3 BDA using the Generalized Mean (BDAGM)
1: Input: {x1, . . . ,xNx}, {y1, . . . ,yNy}, p and m.

2: Calculate Sx from {x1, . . . ,xNx}.

3: Calculate W1 such that WT
1 SxW1 = In.

4: Project {y1, . . . ,yNy} using (4).

5: Perform Algorithm 2 Nr times.

6: Calculate W2 by Algorithm 1.

7: Output: WBDAGM = W1W2.

4. Experiments

In this section, the effectiveness of BDAGM is demonstrated by experimental

results on some artificial and real-world data sets.
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Figure 6: The toy problems (a) σy = 5 (b) σy = 10 (c) σy = 15 (d) σy = 20.

Table 1: The average number of false positives

σy BDA SBDA L1-BDA BDAGM

5 9.13 9.12 9.08 8.48

10 12.23 12.19 12.22 11.10

15 10.37 10.36 10.35 8.91

20 9.14 9.08 9.11 7.09
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4.1. Toy problems

BDAGM was motivated by the simple problem depicted in Fig. 2. Although

the problem shows the advantage of BDAGM over other conventional methods,

the distribution of the negative samples in the problem is somewhat artificial. In

order to evaluate the proposed method in more realistic situations, we consid-

ered four more toy problems, each of which consists of 300 positive and 300

negative samples. For each problem, positive samples were randomly generated

from a two-dimensional Gaussian distribution with the mean mx = 0 and covari-

ance matrix Σx = diag
[
3, 13
]
, whereas negative samples were randomly gen-

erated from another two-dimensional Gaussian distribution with my = 0 and

Σy = diag
[
σ2
y , σ

2
y

]
, where σy is set to 5, 10, 15, and 20, respectively. We made

500 sets of such positive and negative samples for each problem. To make the

positive and negative samples mostly separated in the input space, the following

constraint was imposed on each negative sample y:

yTΣ−1
x y > 20.

Figure 6 shows the distributions of positive and negative samples corresponding

to different σy values. For the purpose of comparison, BDA, SBDA, L1-BDA,

and BDAGM were performed to obtain one-dimensional subspace. To evaluate the

discriminating power of each method, the samples were projected to the subspace

obtained by each method, and the distance from the mean of positive samples in

the subspace was computed. Then, the number of negative samples, whose dis-

tances were smaller than the maximum distance of the projected positive samples,

were counted. With this setting, this number corresponds to the number of false

positives with zero miss rate. To find a suitable value of p in BDAGM, we con-

ducted BDAGM ten times using the values {−0.1,−0.2, . . . ,−1} and chose the

value showing the best performance. Table 1 shows the average numbers of false

24



Figure 7: Examples of face and non-face images.

positives for all of the 500 sets. On average, for these problems, the performances

of BDA, SBDA, and L1-BDA are almost the same, but BDAGM yields a better per-

formance. This means that the proposed method can provide better discriminative

features than the conventional methods if p is appropriately chosen.

4.2. Discriminating faces from non-faces

We tested the proposed method on three real-world problems. The first problem

is to distinguish face images from non-face images. We collected 2000 face and

2000 non-face images from the Color FERET face database [31]. The face images

were cropped based on the centers of the right and left pupils and they were resized

to 24 × 24 pixels. The non-face images were also randomly cropped and resized

to have the same size. Histogram equalization was applied to the resized face

and non-face images for illumination normalization. Figure 7 shows some of the

normalized face and non-face images. Each of the images was converted into a

576-dimensional vector. In this experiment, the face images were considered to

be positive samples whereas the non-face images were considered to be negative

samples. The regularization method was applied using µ = 0.01 for Sx, and the

parameter γ in SBDA was also set to 3, which is the value recommended in [18].

To select an appropriate value of p, BDAGM was performed for the values of p in

{−0.25,−0.5,−0.75,−1,−1.25,−1.5,−1.75,−2}.

After performing BDA, SBDA, L1-BDA, and BDAGM using all of 2000 pos-
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Figure 8: The positive and negative samples projected onto the feature spaces, which are constructed

using (a) BDA, (b) SBDA, (c) L1-BDA, and (d) BDAGM with p = −0.25.
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itive and 2000 negative samples, the samples were projected to the corresponding

feature space. Figure 8 shows the positive and negative samples projected to the

two-dimensional feature spaces. As in Figs. 2 and 6, the positive samples are

denoted as ·, whereas the negative samples are denoted as ×. The radius of each

circle in the figure is the maximum distance of the positive samples from the origin,

which corresponds to the mean of the positive samples. We can see that there are

much less negative samples near the origin in Fig. 8(d) than in Figs. 8(a), 8(b), and

8(c). This desirable characteristic is attributed to the use of the generalized mean

with p < 0. The negative samples in the circles represent the false positives if the

threshold for classification is set to the maximum distance of the positive samples

from the origin. Note that the numbers of the negative samples within the four

circles in Fig. 8 are 1333, 318, 537, and 127, respectively. This indicates that the

proposed method can produce more discriminative features than BDA, SBDA, and

L1-BDA.

To compare the generalization ability of the proposed method with BDA, SBDA

and L1BDA, a 10-fold cross validation was performed using 2000 positive and

2000 negative samples. In this test, after obtaining feature spaces using a training

set, we projected the test samples to the feature space and computed the hit rate,

i.e., the ratio of the positive samples among the 200 test samples that were near the

mean of the positive samples in a training set. If the hit rate is 100%, all of the

positive samples in a test set can be distinguished from the negative samples in the

test set by comparing their distances from WTmx and a proper threshold. Also,

training samples were normalized before extracting features so as to make each in-

put variable have zero-mean and unit-variance, and test samples were normalized

before projecting into feature space. This normalization was applied in each of the

following experiments. Table 2 shows the average hit rates with the corresponding

standard deviations. Regardless of the number of extracted features m, the best hit
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Table 2: Hit rates of face/non-face problem using 10-fold cross validation (%)

m BDA SBDA L1-BDA
BDAGM (p)

-0.25 -0.5 -0.75 -1 -1.25 -1.5 -1.75 -2

2
81.60 88.35 88.65 91.10 90.65 90.15 90.75 90.75 90.05 89.35 87.80

±1.78 ±0.91 ±1.29 ±1.47 ±0.75 ±1.20 ±1.46 ±0.75 ±2.71 ±2.78 ±2.06

4
91.25 94.35 93.05 95.15 94.90 95.10 95.15 95.15 95.00 94.90 94.75

±1.38 ±0.67 ±1.42 ±0.97 ±0.77 ±0.97 ±0.85 ±1.00 ±0.82 ±0.70 ±1.09

6
93.75 96.25 95.15 96.55 96.75 96.65 96.60 96.60 96.95 96.45 96.75

±1.14 ±0.98 ±1.45 ±0.72 ±0.92 ±0.75 ±0.46 ±0.81 ±0.69 ±0.76 ±0.86

8
94.70 97.05 96.00 97.55 97.25 97.30 97.40 97.85 97.65 97.25 97.30

±0.95 ±0.55 ±1.18 ±0.55 ±0.59 ±0.54 ±0.39 ±0.58 ±0.85 ±0.95 ±0.48

10
95.40 97.30 96.40 97.60 97.60 97.70 97.75 97.95 97.90 98.05 97.70

±0.70 ±0.54 ±0.94 ±0.61 ±0.52 ±0.63 ±0.68 ±0.60 ±0.74 ±0.83 ±0.59

12
95.90 97.75 96.70 97.70 98.00 97.90 98.00 98.10 97.80 98.10 98.05

±0.84 ±0.92 ±0.95 ±0.67 ±0.71 ±0.77 ±0.78 ±0.77 ±0.86 ±0.81 ±0.69

14
95.90 97.70 96.95 97.90 97.75 97.95 98.00 98.05 98.10 97.95 97.90

±0.99 ±0.89 ±1.01 ±0.77 ±0.86 ±1.04 ±0.82 ±0.64 ±0.94 ±0.69 ±0.52

16
95.90 97.60 97.25 97.75 97.70 97.95 97.95 97.75 98.10 97.75 98.00

±1.33 ±0.61 ±0.92 ±1.01 ±0.95 ±0.83 ±0.93 ±0.90 ±0.74 ±0.90 ±1.03

18
96.10 97.55 97.40 97.70 97.70 97.70 97.70 98.15 98.05 98.20 98.10

±1.22 ±0.93 ±0.91 ±0.67 ±1.03 ±0.98 ±0.82 ±0.91 ±0.69 ±0.92 ±0.81

20
96.15 97.55 97.30 97.60 97.80 97.90 97.90 98.05 98.00 98.00 98.20

±1.06 ±0.96 ±0.98 ±0.94 ±0.82 ±0.99 ±0.88 ±0.83 ±0.82 ±0.88 ±0.79

rate of BDAGM was higher than those of the other conventional methods. Espe-

cially, when m = 2, the BDAGM with p = −0.25 resulted in 9.5% higher average

hit rate than BDA, and 2.75% and 2.45% higher than SBDA and L1-BDA. When

m = 20, the average hit rate of BDAGM with p = −2 was 98.2%, which was

2.05%, 0.65%, and 0.9% better than BDA, SBDA, and L1-BDA, respectively. It is

worth noting that except for the cases of m = 2 and m = 12, the lowest hit rate of

BDAGM is greater than the highest hit rate of BDA, SBDA, and L1-BDA.

In order to interpret the statistical significance of the results in Table 2, the

one tailed Welch’s t-test [32] was performed. The null hypothesis H0 and the

alternative hypothesis HA for the test were defined as follows:

• H0: For the same dimensionality m, the maximum performance of BDA,

SBDA, L1-BDA is equal to the maximum performance of BDAGM.
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Table 3: Welch’s t-test for the results in Table 2

m 2 4 6 8 10 12 14 16 18 20

T -value 3.961 2.337 1.847 3.164 2.395 0.922 0.977 1.648 1.571 1.653

DOF 18 17 16 18 15 17 18 17 18 17

T95% 1.734 1.740 1.746 1.734 1.753 1.740 1.734 1.740 1.734 1.740

T90% 1.330 1.333 1.337 1.330 1.341 1.333 1.330 1.333 1.330 1.333

Accepted (95%) HA HA HA HA HA H0 H0 H0 H0 H0

Accepted (90%) HA HA HA HA HA H0 H0 H0 HA HA

Figure 9: Examples of car and non-car images.

• HA: For the same dimensionality m, the maximum performance of BDAGM

is higher than the maximum performance of BDA, SBDA, L1-BDA.

Table 3 shows the computed T -values, degree of freedom (DOF), and the target

T -values T95% and T90%. The test indicates that H0 is rejected with 95% (90%) of

confidence if T -value is greater than T95% (T90%), thus HA is accepted. Actually,

HA was accepted with 95% of confidence when m is 2, 4, 6, 8, and 10. Note that

for the cases of m = 2 and m = 8, T -values are greater than 3, which makes the

alternative hypotheses accepted with 99% of confidence. When m = 18 and m =

20, the alternative hypotheses can be accepted if the confidence level decreases

to 90%. These results demonstrate that BDAGM outperforms BDA, SBDA, and

L1-BDA in the problem of discriminating face images from non-face images.
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Table 4: Hit rates of vehicle/non-vehicle problem using 10-fold cross validation (%)

m BDA SBDA L1-BDA
BDAGM (p)

-0.25 -0.5 -0.75 -1 -1.25 -1.5 -1.75 -2

2
89.05 89.40 90.25 93.30 93.45 92.60 92.75 90.45 90.00 87.55 89.05

±1.54 ±1.61 ±1.55 ±1.77 ±1.76 ±1.13 ±1.18 ±1.80 ±2.29 ±3.27 ±3.10

4
91.40 93.30 93.15 94.55 95.05 95.35 95.45 95.60 95.40 95.25 95.30

±1.45 ±1.34 ±1.45 ±1.23 ±1.19 ±0.97 ±1.04 ±1.13 ±1.52 ±0.86 ±1.23

6
91.65 95.00 93.35 95.10 95.30 95.45 95.45 95.50 95.70 95.60 95.85

±1.45 ±1.11 ±1.31 ±1.29 ±1.30 ±1.40 ±1.14 ±1.15 ±0.75 ±0.99 ±0.91

8
91.60 94.15 93.60 94.70 95.20 95.30 95.35 95.60 95.65 95.65 95.75

±1.20 ±1.27 ±1.52 ±1.21 ±1.40 ±1.21 ±1.16 ±0.94 ±1.20 ±0.94 ±1.21

10
92.20 94.30 93.45 94.30 94.50 94.75 94.75 94.80 95.10 95.10 95.20

±1.06 ±0.98 ±1.34 ±1.30 ±1.35 ±1.21 ±1.00 ±1.09 ±0.99 ±0.91 ±0.79

12
92.20 94.00 93.80 94.00 94.15 94.45 94.35 94.50 94.65 94.50 94.65

±1.09 ±1.33 ±1.30 ±1.29 ±1.06 ±0.80 ±1.06 ±1.03 ±0.91 ±0.97 ±0.85

14
92.60 93.65 93.30 93.70 94.10 94.15 94.05 93.95 94.40 94.50 94.45

±1.54 ±1.20 ±1.18 ±1.14 ±0.91 ±0.97 ±1.01 ±0.98 ±0.99 ±0.88 ±1.07

16
92.05 93.70 92.95 93.75 94.15 94.10 94.20 93.95 93.95 93.95 94.00

±1.35 ±1.06 ±1.21 ±1.14 ±0.94 ±0.91 ±0.79 ±1.17 ±1.14 ±1.32 ±1.31

18
92.05 93.35 92.95 93.70 93.85 93.70 93.85 93.75 93.80 93.60 93.60

±1.23 ±1.08 ±1.21 ±0.98 ±1.03 ±1.11 ±1.13 ±1.06 ±1.21 ±1.24 ±1.05

20
91.65 92.90 92.65 93.30 93.70 93.55 93.50 93.50 93.25 93.35 93.35

±1.18 ±1.02 ±1.29 ±1.09 ±0.86 ±1.07 ±1.13 ±1.05 ±1.18 ±1.13 ±1.29

Table 5: Welch’s t-test for the results in Table 4

m 2 4 6 8 10 12 14 16 18 20

T -value 4.315 4.419 1.873 2.884 2.261 1.302 1.806 1.196 1.059 1.896

DOF 18 18 17 18 17 15 17 17 18 18

T95% 1.734 1.734 1.740 1.734 1.740 1.753 1.740 1.740 1.734 1.734

T90% 1.330 1.330 1.333 1.330 1.333 1.341 1.333 1.333 1.330 1.330

Accepted (95%) HA HA HA HA HA HN HA HN HN HA

Accepted (90%) HA HA HA HA HA HN HA HN HN HA
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4.3. Discriminating vehicles from non-vehicles

The next experiment aimed to distinguish vehicle images from non-vehicle im-

ages. Some samples of the vehicle and non-vehicle images are shown in Fig. 9.

In total, 2000 rear images of vehicles and 4000 random non-vehicle images were

collected from video sequences, which were captured using a camera mounted on

a moving vehicle. In this experiment, each vehicle image was considered to be a

positive sample, whereas non-vehicle images were regarded as negative samples.

Each positive sample was scaled and aligned to an image of 24×24 pixels while

the negative samples were resized to 24×24 pixels. After this scale normalization,

histogram equalization was performed for all of the samples to normalize the il-

lumination variation. The 10-fold cross validation was also conducted to compare

the generalization performance of BDAGM with those of BDA, SBDA, L1-BDA.

Note that the numbers of positive and negative samples were not balanced. These

uneven class priors are very common in one-class classification problems such as

face detection [33]. The same candidates used in the previous experiment were

considered for the parameter p of BDAGM. Table 4 shows the average hit rates for

the 200 nearest test samples from WTmx in each feature space. This table demon-

strates that BDAGM produced a feature space where the vehicle images could be

more readily distinguished from the non-vehicle images compared to BDA and

its variants. When m = 2 in particular, the BDAGM with p = −0.5 delivered

4.4%, 4.05%, and 3.2% higher average hit rates than BDA, SBDA, and L1-BDA,

respectively. Table 4 also shows a similar result of the previous experiments, i.e.,

except for m = 2, the minimum hit rates of BDAGM are higher than or equal to

the maximum hit rates of BDA, SBDA, and L1BDA.

The Welch’s t-test was also performed based on the results in Table 4 as in the

previous experiment. Table 5 shows the necessary information for the test and the

accepted hypotheses. With 95% of confidence HA was adopted for all of m values
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Table 6: Hit rates of each category in ETH-80 database using 10-fold cross validation (m = 2)

Category BDA SBDA L1-BDA
BDAGM (p)

-0.25 -0.5 -0.75 -1 -1.25 -1.5 -1.75 -2

Apple
19.61 44.49 31.41 53.95 57.07 59.76 59.80 61.46 62.15 61.90 60.39

±4.95 ±3.52 ±4.02 ±4.67 ±4.39 ±4.54 ±5.53 ±3.93 ±4.69 ±3.54 ±5.28

Car
29.90 49.27 49.27 52.59 53.61 54.73 54.88 54.68 54.05 54.15 54.39

±8.46 ±6.62 ±8.65 ±7.53 ±6.94 ±6.47 ±5.70 ±6.44 ±5.14 ±5.45 ±5.85

Cow
7.76 37.07 39.02 47.71 48.73 49.17 48.98 48.05 48.34 48.05 46.49

±9.25 ±3.58 ±5.14 ±6.32 ±6.51 ±6.44 ±6.25 ±6.66 ±7.09 ±6.80 ±6.58

Cup
29.46 48.78 46.15 52.24 52.73 52.88 53.07 53.71 51.27 44.44 49.51

±18.42 ±20.07 ±19.70 ±19.32 ±19.07 ±18.59 ±19.21 ±18.29 ±19.20 ±22.12 ±16.84

Dog
28.10 39.61 40.15 43.27 43.80 43.71 43.90 42.88 43.41 43.85 42.05

±9.15 ±5.82 ±6.30 ±7.72 ±7.29 ±6.78 ±7.94 ±7.86 ±7.86 ±8.07 ±7.29

Horse
31.46 34.88 32.88 37.22 38.44 39.71 39.46 40.68 39.27 40.10 40.73

±3.91 ±4.40 ±5.24 ±5.30 ±6.14 ±4.81 ±5.61 ±6.87 ±5.65 ±6.19 ±5.98

Pear
52.44 58.73 64.68 75.27 76.39 78.54 78.20 77.41 77.46 77.71 75.85

±5.40 ±5.71 ±4.82 ±3.98 ±4.59 ±3.36 ±4.35 ±4.04 ±4.56 ±3.98 ±3.02

Tomato
71.80 74.88 74.15 84.54 85.66 86.20 86.78 86.15 85.32 84.44 84.15

±8.09 ±6.76 ±7.20 ±3.50 ±3.62 ±3.24 ±3.52 ±3.44 ±4.24 ±4.15 ±4.05

except for m = 12, m = 16, and m = 18. Note that T -values for m = 2 and

m = 4 are 4.315 and 4.419, which are large enough for HA to be accepted with

99.9% of confidence because T99.9% is 3.610 when DOF is 18. This means that

the proposed method can extract better features to distinguish vehicle images from

non-vehicle images than BDA as well as SBDA and L1-BDA.

4.4. ETH-80 database

The ETH-80 database [34] contains the images of eighty objects. Each object

belongs to one of eight categories, i.e., apple, car, cow, cup, dog, horse, pear, and

tomato. Each category contains ten different objects and each object in a category

includes 41 images taken from different viewpoints so a total of 3280 images are

contained in the database. Since there are eight categories in the database and each

category can be considered as a target class for a one-class classification problem,

we formulated eight one-class classification problems using the database. In each

problem, the training set consisted of images that corresponded to five randomly
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Table 7: Hit rates of each category in ETH-80 database using 10-fold cross validation (m = 10)

Category BDA SBDA L1-BDA
BDAGM (p)

-0.25 -0.5 -0.75 -1 -1.25 -1.5 -1.75 -2

Apple
23.37 57.22 45.80 58.54 58.78 59.02 59.37 60.54 60.78 61.71 62.05

±2.05 ±7.45 ±3.65 ±5.74 ±6.10 ±5.59 ±5.58 ±4.68 ±4.34 ±4.36 ±4.33

Car
57.17 61.37 59.90 61.46 62.00 62.24 62.54 62.88 62.83 62.83 62.78

±5.42 ±7.46 ±5.84 ±6.79 ±7.52 ±7.15 ±7.29 ±7.32 ±7.18 ±7.32 ±7.47

Cow
43.51 49.85 47.22 51.90 53.27 54.73 55.02 55.76 55.80 56.15 56.15

±6.61 ±6.77 ±6.35 ±6.10 ±6.46 ±6.94 ±6.91 ±6.80 ±7.29 ±7.20 ±7.40

Cup
62.20 65.37 64.39 65.71 65.56 65.61 65.51 65.66 65.80 65.90 65.66

±11.44 ±10.27 ±10.69 ±10.24 ±10.28 ±10.14 ±10.33 ±10.44 ±10.32 ±10.34 ±10.30

Dog
42.29 47.12 46.10 47.46 47.76 48.29 47.90 47.95 47.66 47.22 47.46

±6.06 ±9.46 ±7.84 ±9.98 ±10.65 ±10.91 ±11.63 ±11.91 ±11.89 ±11.83 ±11.47

Horse
34.05 51.12 45.61 52.68 52.88 53.76 54.24 54.54 54.78 55.07 54.54

±4.10 ±4.97 ±4.86 ±5.03 ±4.54 ±5.11 ±4.97 ±5.03 ±5.14 ±4.97 ±5.37

Pear
68.39 80.54 64.83 82.24 83.22 82.98 83.46 83.56 83.32 83.41 83.46

±5.83 ±2.99 ±3.59 ±3.64 ±3.29 ±3.21 ±3.51 ±3.61 ±3.81 ±3.34 ±3.55

Tomato
74.98 86.49 80.20 86.68 86.39 86.68 86.78 86.78 86.93 87.02 87.32

±5.05 ±2.74 ±3.43 ±2.46 ±2.44 ±2.44 ±2.47 ±2.37 ±2.20 ±2.07 ±2.53

Table 8: Welch’s t-test for the results in Tables 6 and 7

m Category Apple Car Cow Cup Dog Horse Pear Tomato

2

T -value 9.524 2.031 3.895 0.574 1.170 2.492 7.460 4.938

DOF 17 18 17 18 17 17 16 14

T95% 1.740 1.734 1.740 1.734 1.740 1.740 1.746 1.761

T90% 1.333 1.330 1.333 1.330 1.333 1.333 1.337 1.345

Accepted (95%) HA HA HA HN HA HA HA HA

Accepted (90%) HA HA HA HN HA HA HA HA

10

T -value 1.773 0.457 2.016 0.115 0.256 1.777 2.037 0.704

DOF 14 18 18 18 18 18 17 18

T95% 1.761 1.734 1.735 1.734 1.734 1.734 1.740 1.734

T90% 1.345 1.330 1.330 1.330 1.330 1.330 1.333 1.330

Accepted (95%) HA HA HA HN HN HA HA HN

Accepted (90%) HA HA HA HN HN HA HA HN
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selected objects from each category, and the images of the non-selected objects in

each category were used for test. Thus, the number of images in the training and

test sets for each problem was 1640, and each set comprised 205 positive samples

and 1435 negative samples. As in the previous experiments, after applying BDA,

SBDA, L1-BDA and BDAGM to the same training set, test samples were projected

to the feature spaces to compute the hit rates. This procedure was repeated ten

times using the randomly separated training and test sets. The pixel intensity values

of an image were used as the input variables in the previous experiments, whereas

the derivative-of-Gaussian filters were applied to generate the input variables in

this experiment as in [35]. Each image was convolved with the first derivatives

with respect to the x-and y-axes of three Gaussian filters with σ = {1, 2, 4}, and

the responses of the six filters were represented as a histogram with 32 bins so that

each element in the histogram was used as an input variable.

Tables 6 and 7 show the average hit rates for the 205 nearest test samples in

the eight problems where m = 2 and m = 10, respectively. The tables show that

the samples corresponding to tomato were better distinguished than the samples in

the other seven categories, and the samples obtained from the pear images were

also classified well. Although it was difficult to distinguish images of cows, dogs,

or horses from the other categories, BDAGM provided higher hit rates than BDA,

SBDA, and L1BDA both for m = 2 and m = 10. Note that BDAGM with a

suitable value of p yielded better discriminative features than BDA, SBDA, and L1-

BDA, especially when m = 2. For the apple-classification problem, the average

hit rate of BDAGM with p = −1.5 was 42.54%, 17.66%, and 30.74% higher

than those of BDA, SBDA and L1-BDA, respectively. The performance of the

tomato-classification problem was improved from 75% to 86.78% when using the

BDAGM with p = −1 instead of BDA, or its variants. When m = 10, BDAGM

still produced a better performance than BDA, SBDA, and L1-BDA although the
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differences were not significant for some problems. Note that, on average, the

minimum performances of BDAGM are higher than those of BDA, SBDA, L1-

BDA for most values of m.

As in the previous experiments, the statistical significance of the results in Ta-

bles 6 and 7 was also checked by performing the Welch’s t-test. Table 8 shows the

computed values for the test and the accepted hypotheses. In the case of m = 2,

HA was accepted with 95% of confidence for all the problems except the cup-

classification problem. It is notable that, for m = 2, the T -values associated with

apple-, cow-, pear-, and tomato-classification problems are 9.524, 3.895, 7.460,

and 4.938. The corresponding alternative hypotheses were accepted with 99.9% of

confidence. Also, in the case of m = 10, HA was accepted with 95% of confidence

for the apple-, car-, cow-, horse-, and pear-classification problems.

5. Conclusions

This study proposed a novel method to extract discriminative features for one-

class classification problems. BDA was developed for one-class classification

problems and was considered to be an alternative to LDA in these problems. But,

it is sensitive to outliers in negative samples. This drawback arises when maximiz-

ing the arithmetic mean of the squared Euclidean distances during the second step

of BDA. It is better to place negative samples from the mean of positive samples

in the feature space as far away as possible, especially for the negative samples

located close to the mean. However, this can not be possible by maximizing the

arithmetic mean of the squared distances between negative samples and the mean

of positive samples. Thus, we have proposed to use the generalized mean instead

of the arithmetic mean in the objective function. SBDA and L1-BDA, which were

proposed to address the same problem with BDA, prevent the outliers from being
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over-weighted by using other distance schemes instead of the Euclidean distance.

On the other hand, different from SBDA and L1-BDA, our proposed method em-

ployed an extended concept of the arithmetic mean that can assign different weights

to different numbers. However, incorporating the generalized mean makes the

objective function become non-convex. Gradient-based iterative methods can be

applied to such a problem, but they generally require a long time to find a local

optimum of the optimization problem. To develop an efficient method in finding a

solution, we exploited the fact that the generalized mean of positive numbers can

be represented as a non-negative linear combination of the numbers, and we have

finally proposed a novel iterative method based on the fact. We conducted four

experiments to demonstrate the usefulness of the proposed method and the results

have shown that BDAGM can effectively alleviate the negative effects of outlier to

yield better discriminative features for one-class classification problems than BDA,

and its state-of-the-art variants SBDA and L1BDA, especially when the number of

extracted features is small.
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