
1

Recognition of a driver’s gaze for vehicle headlamp
control

Jae Hyun Oh and Nojun Kwak
Department of Electrical & Computer Engineering, Ajou University

Suwon 443-749, KOREA

Abstract—In this paper, we propose a novel method for gaze
recognition of a driver coping with rotation of driver’s face.
Frontal face images and left half profile images were trained
separately using Viola-Jones algorithm to produce classifiers
that can detect faces. The right half profile can be detected by
mirroring the entire image when neither a frontal face nor a
left half profile was detected. As an initial step, this method was
used to simultaneously detect the driver’s face. Then, we applied
a regressional version of linear discriminant analysis (LDAr)
to the detected facial region to extract important features for
classification. Finally, these features were used to classify the
driver’s gaze into seven directions. In the feature extraction step,
LDAr tries to find features that maximize the ratio of inter-
distances among samples with large differences in the target
value and those with small differences in the target value.
Therefore, the resultant features are more fitted to regression
problems than conventional feature extraction methods. Besides
LDAr, in this paper, a two-dimensional extension of LDAr is
also developed and used as a feature extraction method for gaze
recognition. The experimental results show that the proposed
method achieves a good gaze recognition rate under various
rotation angles of a driver’s head resulting in a reliable headlamp
control performance.

Index Terms—Gaze recognition, headlamp control, Viola-
Jones, dimensionality reduction, LDAr, 2DLDAr.

I. INTRODUCTION

During the last few decades, the field of intelligent vehicles
has been rapidly growing [1]. As one component of ITS (in-
telligent transportation system), intelligent vehicles use many
sensors and algorithms to process the information around the
vehicle. These systems offer a significant enhancement in
safety and operational efficiency to the drivers [2] [3] [4].

In intelligent vehicles, the sensory information may be
used to detect obstacles and pedestrians with the objective
of keeping a safe distance between the vehicle and detected
objects. GPS, laser scanner and vision devices such as infrared
camera have been proposed to sense objects efficiently. For
example, in [2], a system for automatic adaptation of the
longitudinal speed control is proposed using a combination
of different sensor technologies: a GPS unit, RFID readers
and a speed measurement system based on differential hall
effect sensors [2]. A LIDAR and a single camera was used
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to detect pedestrian in [3]. A real-time 3D range scanning
camera based on time-of-flight techniques was developed in
[4]. Among various types of technologies, vision devices and
computer vision algorithms play a critical role in the field
of intelligent vehicle due to their ability to provide diverse
information without much cost. The robust detection and
tracking techniques for intelligent vehicle can be utilized to
provide a visual tracking modality to a traffic advisory system
[3] [4] [5] [6].

Besides detecting and tracking outside objects, monitoring
activities of a driver is also very important to avoid accidents
and to keep safety. The risk of accident increases when the
driver controls devices such as air conditioner and audio be-
cause he/she cannot concentrate on driving in these situations.
In addition, at night time, there may be sites at which a driver
wants to stare but no headlamp light reaches. For these reasons,
the system that can recognize driver’s gaze and automatically
control headlamp is needed.

Over the past years, gaze recognition has been studied by
many researchers and many methods have been proposed [7]
[8]. The position and shape of iris were used to recognize
gaze in [7] and [9]. There are also techniques that use electro-
oculography [10], pupil and eyelid tracking [11], corneal and
pupil reflection relationship [12] and artificial neural networks
[13]. Recently, hybrid methods which combine two or more
of these methods are suggested to overcome the limitations
of a single approach [14]. This line of research includes the
one that combines a geometric method with point tracking
method [15] and PCA (principal component analysis) em-
bedded template matching with optical flow [16]. By these
methods, we can obtain high recognition rate if the original
image is of high resolution and well refined. However, it is
very difficult to determine the gaze of eyes by analyzing the
eye ball rotations from a typical image in a low resolution,
while a low-resolution image is helpful in implementing a
real-time gaze recognition system. In addition, it is difficult
to fit its contour reliably because the iris is partially occluded
by the upper and lower eyelids [8].

In this paper, we deal with the gaze recognition problem for
headlamp control of a vehicle. Although most gaze recognition
systems focus on detecting and tracking the movement of
eyes and irises, they require a lot of computation using high
resolution images. On the other hand, in our study, because the
gaze of a driver and the direction of the head are almost the
same while driving and the operation of a headlamp control
system requires to be smooth and real-time, we do not focus
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on detecting and tracking irises. Instead, we focus on the
detection and recognition of a head position using a relatively
low-resolution face image to implement real-time headlamp
control system. To this end, firstly, we produce classifiers to
detect driver’s face using the well known Viola-Jones (V-J)
algorithm [17]. Then, to recognize the pose of a head, we use
a holistic approach where each pixel of an image is interpreted
as an input variable [18]. Because the number of pixels may be
quite large and the redundant information has a high possibil-
ity of degrading the recognition performance, dimensionality
reduction techniques such as feature extraction are typically
used for holistic approaches. With feature extraction methods,
we can not only handle feature vectors more effectively but
also can solve the curse of dimensionality that occurs when
the input dimension is high [19].

One of the popular feature extraction methods, LDA (linear
discriminant analysis) was proposed for the classification
problems which have discrete target variables [20] [21]. It
tries to find a set of projections, from the original space to
a lower dimensional space, which maximizes the between-
class scatter while minimizing the within-class scatter [21].
Compared to classification problems, in regression problems,
it is difficult to define between-class scatter and within-class
scatter because target variables are continuous and LDA cannot
be applied directly to regression problems. The simple concept
that the samples with small differences in the target variables
can be considered as belonging to the same class and the ones
with large differences in the target variables can be considered
as belonging to the different classes was applied to extend
LDA to regression problems [22]. The algorithm is known
as LDAr and in this paper, because the direction of gaze
changes continuously, gaze recognition problem is treated as
a regression problem and LDAr is applied to this problem.

In addition to the application of LDAr to the gaze recogni-
tion problem, in this paper, we also extend LDAr to a two
dimensional version (2DLDAr) and applied it to the gaze
recognition problem. The proposed two-dimensional feature
extraction method can also be considered as an extension of
2DLDA [23] to a regressional version which uses the same
concept that was used in extending LDA to LDAr.

After recognizing gaze of a driver by either LDAr or
2DLDAr, we transmit the mapping result of gaze direction
to the headlamp controller using RS232c, which is a standard
interface for relatively low speed serial data communication
between computers and related devices defined by Electronic
Industries Association (EIA). Then the headlamp controller
controls the headlamp in the direction of the driver’s gaze
direction.

The paper is organized as follows. In Section II, we present
a method of gaze recognition with a review on V-J algorithm
and LDAr. In addition to these, we also present a new
feature extraction method 2DLDAr that extends LDAr to a
two dimensional image matrix and show how the proposed
feature extraction method can be applied to recognize gaze
of a driver. The gaze recognition performances of LDAr and
the proposed 2DLDAr are compared with those of other
conventional methods such as SVM [24], LDA, NLDA [25]
and 2DLDA in Section III. Finally, Section IV completes the

paper with a discussion and conclusions.

II. METHODS

A. Overall architecture of the proposed headlamp control
system

In this paper, we propose a method that robustly recognizes
a driver’s gaze to develop a headlamp control system. The
overall architecture of the proposed gaze recognition system is
shown in Fig. 1. A Microsoft LifeCam VX-1000 web camera
was mounted on the front side of a driver to capture the facial
image of the driver. To cope with the illumination change and
night-time operation, the camera was converted to an infrared
camera by attaching photo film in front of the camera. On the
circumference of the camera, a number of IR LEDs were also
attached. The camera generates 30 frames per second.

V-J algorithm was applied to the infrared images to produce
classifiers that can detect faces. In this step, we trained frontal
face and left half profile separately because it is difficult to
consistently detect both the frontal view and the side view of a
face at the same time. This is due to the fact that the Haar-like
features of each view of face are quite different [26]. The right
half profile could be detected by mirroring the entire image
only when neither a frontal face nor a left half profile was
detected.

After detecting face, the pose of the driver’s head was
recognized based on the feature extraction methods LDAr and
2DLDAr. Although the rotation angle of a face is a continuous
value, the exact rotation angle was very difficult to measure.
Therefore, on the deck in front of the driver’s seat, seven
positions with pre-defined angles were marked at which the
driver was asked to stare. In this way, the training and test
data were collected.

Finally, the output of driver’s gaze direction was transmitted
to the control box using RS-232c. In our system, the headlamp
can rotate up to 15◦ in both left and right directions. Therefore,
we set the output of driver’s gaze direction as an integer
number from -15 to 15. We map the output as -15, -10, -
5, 0, +5, +10, and +15 which were used in classifying seven
gaze directions. The dynamic bending headlamp rotates left
and right by swivel Act and LIN (Local Interconnect Network)
1.3 was used to transmit angle data from the control box to
the swivel Act.

In the following subsections, we describe each step of Fig.
1 in more detail.

B. Face Detection

V-J algorithm is a learning algorithm that produce classifiers
that can classify objects based on Adaboost which uses Haar-
like wavelet features. A Haar-like feature is composed of pos-
itive and negative rectangular image regions and a threshold.
The difference between sums of positive and negative regions
is compared with the threshold to weakly classify an image
into two classes (object vs. non-object). In doing so, the so
called integral image enables rapid computation of the sums of
the positive and negative rectangular regions. With Haar-like
features, V-J makes use of Adaboost to create strong binary
classifiers that keep a high detection rate with a low false
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Fig. 1. The overall architecture of the proposed gaze recognition system

Not face Not face Not face Not face

face1 2 3 N

Fig. 2. Cascade of a series of strong classifiers

positive rate. It also achieves very fast detection of an object
by cascading a series of strong classifiers through which most
of the negative samples are rejected very fast at the first few
stages.

In the training procedure, we compute an integral image
which allows a very fast evaluation of Haar-like features
in one pass over the entire image containing driver’s face.
Then, Haar-like features are used by the classifier. For a
20× 20 subwindow, there could be more than 100,000 Haar-
like features each of which corresponds to one weak classifier.
Every Haar-like feature is evaluated using the integral images
of the training images and important Haar-like features are
selected and combined using Adaboost algorithm. In doing so,
Adaboost algorithm selects a small number of critical Haar-
like features and yields an efficient strong classifier.

Once a test image presented, the score of the image is
computed by Adaboost using the selected Haar-like features.
Finally, the decision of whether the area corresponds to a face
or not is made based on the comparison of the score with the
threshold.

The speed of V-J algorithm is accelerated by using the
concept of cascading as shown in Fig. 2. In the figure, each
node corresponds to a strong classifier which is made up of
a group of weak classifiers combined by Adaboost algorithm.
A positive result (face) from the previous node triggers the
evaluation of a next node which has been adjusted to achieve
high detection rates (e.g. over 99.8%) and low false positive
rates (e.g. under 50%). We can detect most rigid objects such
as faces, cars, bikes and human body by training new detectors
[17] [27] [28] [29].

Although there are methods that detects various faces with

Fig. 3. Output of face detector

different poses simultaneously [30] [31], they are slower than
the sequential detection of frontal and half profile faces.
Therefore, to speed up the face detection process, we ap-
plied different detectors sequentially. More specifically, in our
implementation, we trained frontal face and left half profile
separately because it is difficult to consistently detect both the
frontal view and the side view of a face at the same time. The
right half profile was detected by mirroring the entire image
only when neither a frontal face nor a left half profile was
detected. Fig. 3 shows some results of face detection.

C. Gaze recognition using feature extraction for regression
problems

In many pattern recognition problems, feature extraction
methods are typically used to reduce the dimensionality of the
input space achieving better generalization performance with
lower computational complexity. Even when the dimension of
the input space is not so high, it is still useful to produce better
generalization performance by reducing the effect of irrelevant
or redundant variables [32].

A lot of feature extraction methods have been proposed
among which subspace methods such as PCA [33] [34], ICA
(independent component analysis) [35], and LDA [20] are very
popular. These methods are further categorized into supervised
and unsupervised methods based on whether target information
is utilized or not. PCA and ICA are representative unsuper-
vised methods, while LDA, NLDA (nullspace LDA) [25] and
ICA-FX [36] are supervised ones. Conventional supervised
feature extraction methods such as LDA and NLDA are mostly
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used for classification problems taking class information at-
tached to each training instance into account. On the other
hand, LDAr which is designed for regression problems makes
use of numerical output attached to each training instance.

Although the target value of our data is one of the seven
categories due to technical difficulties of obtaining ground
truth rotation angle and the gaze recognition problem can
be considered as a classification problem with seven classes,
considering that the rotation angle of a face is in continuous
value, gaze recognition problem is more a regression problem
than a classification problem. Therefore, in this paper, feature
extraction methods designed for regression problems are used
for gaze recognition. In the following, LDAr which is a linear
feature extraction method for regression problems is described
in detail and it is extended to a new two-dimensional feature
extraction method for regression problems.

1) LDAr: Fig. 4 shows the flowchart of gaze recognition
by LDAr. Firstly, N grayscale training face images of a size
n × m are vectorized to form a nm × N matix. Because
the dimension of a face image is generally so large that it
cannot be processed easily, PCA is typically performed on
the vectorized data. After PCA, we reduce the dimension to
d(< nm) by applying LDAr.

After extracting d features from an image, we obtain a d×N
matrix from N training images as shown in the figure. When a
new face image is presented, we can estimate the target value
(gaze direction) with a classifier trained by this training matrix.
Various estimation methods such as the nearest neighbor [37],
neural networks or support vector machines [24] can be used
in this step.

LDA finds projective directions by maximizing the ratio of
between-class scatter matrix to within-class scatter matrix. In
[22], this idea was extended to solve regression problems and
a new feature extraction method LDAr for regression problems
was proposed.

Consider a set of input/target pairs {xxxi, yi}ni=1. In this re-
gression setting, we are to find a set of features fi’s (= wiwiwi

Txxx),
which are linear transformations of xxx such that they contain
much information about the target variable y. To achieve this
goal, Fisher’s criterion was modified appropriately to fit in the
regression problems in [22].

The classification problems have discrete target variables,
or classes. Compared to classification problem, in regression
problems, it is difficult to define between-class scatter and
within-class scatter because target variables are continuous. In
[22], the simple concept that the samples with small differ-
ences in the target variables can be considered as belonging
to the same class while the ones with large differences in the

target variables can be considered as belonging to the different
classes was applied. By this idea of soft class, the between-
class scatter matrix and within-class scatter matrix in LDA
were modified as:

Swr =
1

nw

∑
(i,j)∈Awr

f(yi − yj)(xxxi − xxxj)(xxxi − xxxj)
T

Sbr =
1

nb

∑
(i,j)∈Abr

f(yi − yj)(xxxi − xxxj)(xxxi − xxxj)
T .

(1)

where

Abr = {(i, j)| |yi − yj | ≥ τ, i < j}
Awr = {(i, j)| |yi − yj | < τ, i < j}.

(2)

Here, the function f(·) is a weight function which takes on
a positive value and τ is a threshold separating an index
pair (i, j) into Abr and Awr. The parameter nb and nw are
the number of elements of Abr and Awr respectively. The
threshold τ can be represented as a multiple of the standard
deviation of the target variable, i.e. τ = ασy . In [22], various
weight functions were tested with α ∈ {0.1, ..., 1.0} and the
performance did not depend much on the choice of weight
function and α. As such, in this paper, α is set to 0.3 and the
weight function f(x) =

√
||x| − τ | is used as in [22].

With the modified within and between-class scatter matri-
ces, Fisher’s criterion can be modified as:

WLDAr = argmax
W

|WTSbrW |
|WTSwrW |

. (3)

Maximizing the above Fisher’s criterion is equivalent to
solving the following generalized eigenvalue decomposition
problem:

Sbrwwwk = λkSwrwwwk λ1 ≥ λ2 ≥ · · · ≥ λd. (4)

Then, linear projections wk’s can be found.
2) 2DLDAr: In this part, we present a new method of

feature extraction that extends LDAr to a two-dimensional
version.

The 2DLDA (two-dimensional LDA) [23] which directly
extracts features from image matrices without transforming
the input image into one dimensional vector can also be
extended to regressional version of feature extraction method
named 2DLDAr (two-dimensional LDA for regression). Com-
pared with LDA, 2DLDA can preserve the underlying two-
dimensional data structures while LDA ignores the underlying
structure. Furthermore, 2DLDA overcomes the singularity
problem which is the limitation of LDA. In LDA, when
the number of input space is larger than the number of
training samples, a singularity problem occurs and to avoid
this singularity, an intermediate dimensionality reduction stage
using PCA is normally used. On the other hand, 2DLDA does
not suffer from this singularity and it can be directly applied
to image data.

The derivation of 2DLDAr is as follows. Firstly, the
between-class scatter and within-class scatter matrices of
2DLDA are modified using the idea of soft class which is
used in the derivation of LDAr. Now, the between-class scatter
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matrix and within-class scatter matirx in 2DLDAr are defined
as:

Rwr =
1

nw

∑
(i,j)∈Awr

f(yi − yj)(Xi −Xj)(Xi −Xj)
T

Rbr =
1

nb

∑
(i,j)∈Abr

f(yi − yj)(Xi −Xj)(Xi −Xj)
T .

(5)

where Xi ∈ ℜn×m is the i-th image matrix and

Abr = {(i, j)| |yi − yj | ≥ τ, i < j}
Awr = {(i, j)| |yi − yj | < τ, i < j}

(6)

are the sets of index pairs with different soft class labels and
the same labels respectively. Given face images of size n×m,
the between-class scatter matrix and the within-class scatter
matrix are m×m.

With the modified within and between-class scatter matri-
ces, Fisher’s criterion can be modified as:

W2DLDAr = argmax
W

|WTRbrW |
|WTRwrW |

. (7)

The linear projection wk’s can be obtained by solving the
generalized eigenvalue decomposition problem in the same
way as shown in equation 4.

Note that W2DLDAr ∈ ℜn×d where d is the number of
extracted features and for an image matrix X ∈ ℜn×m, the
projection becomes F = WT

2DLDArX ∈ ℜd×m. Therefore,
for an image, the extracted feature is a matrix, not a vector.

Fig. 5 shows the flowchart of gaze recognition by 2DLDAr.
Compared to LDAr, features are directly extracted from N
grayscale image matrices of a size n×m. Then, we obtain N
feature matrices of a size d×m after extracting d features from
image. In classification, the distance between given feature
matrix P and Q is defined as:

d2(P,Q) =
d∑

k=1

||pk − qk||2 (8)

where ||pk − qk|| denotes the Euclidean distance between the
two feature vectors pk and qk.

3) Gaze recognition system: In this paper, we estimate the
rotation angle of a driver’s head using the features extracted
by LDAr and 2DLDAr. The regression process is explained in
Fig. 6. In the figure, there are two paths in both the training
and the testing procedures which correspond to LDAr and
2DLDAr respectively. In the LDAr path, firstly, we normalize
the training data so as to make each pixel have zero mean

Training data

Normalization

PCA

Calculate Sbr , Swr

Eigenvalue Decomposition

Data projection

3-Nearest neighbor

Regression result

Data projection

Normalization

Testing data

TestingTraining

PCA

Calculate Rbr , Rwr

LDAr 2DLDAr LDAr 2DLDAr

Wpca

W

Fig. 6. Flowchart of regression process using LDAr and 2DLDAr

and unit variance. Then, PCA is performed on the vectorized
data to project the higher-dimensional image space onto a
lower dimensional sub-space. The weight Wpca which is
obtained from the training process is used as an intermediate
dimensionality reduction method for both training and test
data. Note that if the original input dimension is not so high,
we can omit the PCA step. After PCA, LDAr is applied.
To obtain the projection matrix WLDAr of LDAr, we first
calculate the between-class scatter matrix Sbr and the within-
class scatter matrix Swr. Then a set of generalized eigenvectors
corresponding to the largest eigenvalues are used to form
the most discriminant set of projection vectors WLDAr for
LDAr. The projection of test data is performed using the set of
projection vectors WLDAr obtained from the training process.
Finally, the projected samples of training data and test data are
obtained and regression is performed on these datasets using
regression methods such as the k-nearest neighbor, multilayer
perceptron (MLP) or support vector machine (SVM) [24].

In 2DLDAr, instead of Swr and Sbr, Rwr and Rbr are calcu-
lated directly from the image matrix without vectorization. In
addition, PCA is not needed because 2DLDAr extracts features
that form the most discriminant set of projection vectors from
image matrices directly. The rest steps of the 2DLDAr process
are the same as those of LDAr as shown in Fig.6.

As mentioned before, because the exact rotation angle of
a head was very difficult to measure, we divided driver’s
gaze direction into seven categories as shown in Fig. 7. The
samples of training data corresponding to the seven categories
are shown in Fig. 8.
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Fig. 7. Seven gaze directions

Fig. 8. Training data of gaze directions

III. EXPERIMENTAL RESULTS

In this section, we present the experimental results of the
proposed gaze recognition system. The system was imple-
mented on a Windows7 Home Premium / SP9300 (2.26 GHz)
/ 3 GB DDR3 / Geforce G 105M / 1.99 GB RAM platform
and the size of the recorded image was 640 × 480 pixels
per frame which was captured up to 30 frames per second. A
camera film was attached to a Microsoft LifeCam VX-1000
web camera to make use of the infrared image. The camera
was mounted on the opposite side of a driver to capture face
images of the driver.

A. Face detection

Two face detectors were used in the experiment, each of
which was trained by using either the frontal faces only or
the left half profile images only. The third face detector which
was designed to detect right half profile can be obtained by
applying the left half profile detector on the mirrored face
images.

Each of the two face detectors was trained using a set of
training faces consisting of 1,000 face images (frontal and left
half profile) and 10,000 non-face images scaled and aligned to
a base resolution of 20×20 pixels. The non-face images were
collected by selecting random area from background images
which did not contain faces. The cascade was set to have 22
stages, where every stage is trained to have a high detection
rate (over 99.8%) and low false alarm rate (under 50%). We
chose the number of stages considering two perspectives; final
false alarm rate and processing time. The false alarm rate
of cascade of classifiers is below 0.522(2.3 × 10−7). As the
number of cascade of classifiers increases, the processing time
increases accordingly.

To detect faces consistently regardless of the pose of a
face, we applied the frontal face detector, the left half profile
detector, and the right half profile detector sequentially. The
second and the third detectors were not activated when a face
was detected by the previous detector.

The experimental results of detection rates (correctly de-
tected frames/total number of frames) and false alarm rates
(false alarms/total number of frames) using V-J algorithm
under various poses of face images are reported in Table I.
Once a face is detected by the V-J algorithm, it is regarded
as a correct detection if the location and size of the face is
correctly found, otherwise, it is regarded as a false alarm.
The detection rate is computed by the ratio of the number
of correct detections and the total number of frames in the
dataset. The false alarm rate is computed by the ratio of
the number of false alarms and the total number of frames
in the dataset. In the experiment, we captured the infrared
images of six individuals with various poses. The number of
test images per each individual might be different because of
random selection. In the first three rows, the detection rates
of each of the three detector are reported. The detection rates
of the proposed combined face detector are shown in the last
row. We also report the numbers of correctly detected faces
versus the total numbers of test images in the parentheses.
Likewise, false alarm rates for each detector are also included.
The detection rates were obtained by checking the output of
the detector manually and there are two types of error: the first
one being the case where the detector cannot find face from
the face image (miss) and the second being the case where
the detector finds a face in a wrong position (false alarm).

As can be seen in the table, each single detector has
high recognition rate for the designed pose. However, as the
difference between the designed pose and the pose of the test
image increases, the performance degrades drastically to less
than 10%. This is because the Haar-like features which are
used to detect different poses of a face are quite different.
Even though the false alarm rates of proposed method is
slightly higher than each of the three single detectors, the
classifier applied in sequence has many advantages compared
to simultaneous application of multiple detectors. Compared to
the simultaneous approach, the proposed sequential detectors
obtain high detection rates for each pose with a reduced pro-
cessing time. Furthermore, if we use simultaneous approach,
it can be difficult to determine gaze direction when more than
one detector detect a face at the same time.

In Table I, the detection rates of the proposed method for
pose 1 and 2 are slightly lower than those of the right face
detector. The reason can be attributed to the fact that in the
combined detector, the frontal face detector and the left face
detector are activated before the right face detector and if the
wrong face is detected in these steps, the right face detector
is not activated. If the right face detector was applied to these
wrong detected face images, the correct facial region could
have been located. The same argument can explain a slight
lower detection rate of the proposed method than that of the
left face detector for pose 7.

By using the combined detector, we can obtain detection
rates ranging from 93.69% to 99.98% for each pose with the
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TABLE I
DETECTION AND FALSE ALARM RATES UNDER VARIOUS POSES OF FACE IMAGES (%)

PPPPPPPP
Type of
detectors

Pose
1 2 3 4 5 6 7

Frontal face
detector

Detection rate 0.13 20.42 65.99 99.67 70.05 22.32 0.06
(5/3724) (704/3448) (2652/4019) (4810/4826) (2454/3503) (905/4054) (2/3423)

False alarm
rate

0.24 0.09 0.02 0.08 0.17 0.91 1.29
(9/3724) (3/3448) (1/4019) (4/4826) (6/3503) (37/4054) (44/3423)

Left face
detector

Detection rate 0.05 0.00 1.52 12.64 93.58 99.43 99.15
(2/3724) (0/3448) (61/4019) (610/4826) (3278/3503) (4031/4054) (3394/3423)

False alarm
rate

0.21 0.00 0.00 0.06 0.14 0.39 0.32
(8/3724) (0/3448) (0/4019) (3/4826) (5/3503) (16/4054) (11/3423)

Right face
detector

Detection rate 94.12 99.51 97.19 24.37 2.88 0.15 1.75
(3505/3724) (3431/3448) (3906/4019) (1176/4826) (101/3503) (6/4054) (60/3423)

False alarm
rate

0.16 0.20 0.02 0.10 0.09 0.05 0.26
(6/3724) (7/3448) (1/4019) (5/4826) (3/3503) (2/4054) (9/3423)

Proposed
method
(combined)

Detection rate 93.69 99.42 99.98 99.88 99.31 98.47 97.78
(3489/3724) (3428/3448) (4018/4019) (4820/4826) (3479/3503) (3992/4054) (3347/3423)

False alarm
rate

0.43 0.23 0.02 0.12 0.26 1.06 1.46
(16/3724) (8/3448) (1/4019) (6/4826) (9/3503) (43/4054) (50/3423)

TABLE II
THE PERFORMANCE OF GAZE RECOGNITION USING 3-NEAREST

NEIGHBOR FOR 2800 IMAGES(5-FOLD CROSS-VALIDATION)

Total images : 400 × 7 directions = 2800, 5-fold cross-validationhhhhhhhhhhMethods
No. of features 1 2 3 4 5 6

NLDA

Recognition
rate(%)

19.04 27.54 35.00 48.82 58.71 69.36
(2.72) (4.09) (5.69) (5.40) (5.47) (3.88)

Test rms error 2.69 2.13 1.98 1.73 1.47 1.29
(0.12) (0.51) (0.43) (0.44) (0.35) (0.27)

LDA

Recognition
rate(%)

52.11 77.32 88.18 92.89 95.89 96.82
(1.26) (2.36) (1.12) (2.10) (0.84) (1.11)

Test rms error 0.94 0.56 0.36 0.29 0.23 0.21
(0.05) (0.05) (0.03) (0.06) (0.05) (0.05)

2DLDA

Recognition
rate(%)

53.57 76.57 86.07 91.96 94.39 95.68
(1.80) (2.69) (1.45) (1.61) (1.78) (1.23)

Test rms error 0.89 0.54 0.40 0.31 0.27 0.26
(0.02) (0.03) (0.03) (0.04) (0.05) (0.05)

LDAr

Recognition
rate(%)

61.50 86.61 94.14 96.46 97.64 98.36
(2.66) (1.09) (1.59) (1.71) (0.87) (0.56)

Test rms error 0.64 0.36 0.25 0.19 0.16 0.15
(0.02) (0.02) (0.04) (0.05) (0.04) (0.04)

2DLDAr

Recognition
rate(%)

57.96 81.18 90.32 96.07 97.64 98.39
(1.36) (1.83) (2.41) (1.08) (0.51) (0.59)

Test rms error 0.81 0.49 0.33 0.22 0.18 0.16
(0.01) (0.03) (0.05) (0.04) (0.03) (0.04)

processing time of each frame being 43.49 msec on average
(23 frames per second) on a 2.26 GHz CPU, 1.99 GB RAM.

B. Gaze recognition using LDAr and 2DLDAr

Once the driver’s facial region was detected, we classified
the gaze into seven directions as shown in Fig. 7. In this step,
we used LDAr and 2DLDAr to extract important features and
compared the correct classification rates of the methods with
those of the conventional LDA, NLDA [25] and 2DLDA in
Table II and III. In both tables standard deviations are denoted
in the parentheses. The recognition rate is computed by the
ratio of the number of frames which estimates gaze direction
correctly to that of total frames in the dataset. For classi-
fication, we used the k-nearest neighbor (k-NN) algorithm
using Euclidean norm. In 2DLDAr, the distance between given
feature matrix is defined using Euclidean norm as shown in
(8). We varied the number of k in k-NN classifier and observed
that k = 3 achieves comparatively good performance. As such,
3-NN classifier is used throughout the paper.

TABLE III
THE PERFORMANCE OF GAZE RECOGNITION USING 3-NEAREST

NEIGHBOR FOR 1400 IMAGES(5-FOLD CROSS-VALIDATION)

Total images : 200 × 7 directions = 1400, 5-fold cross-validationhhhhhhhhhhMethods
No. of features 1 2 3 4 5 6

NLDA

Recognition
rate(%)

15.86 24.64 32.07 40.21 50.43 58.29
(3.17) (2.85) (2.81) (4.97) (7.18) (9.99)

Test rms error 2.61 2.50 2.31 2.01 1.83 1.62
(0.28) (0.30) (0.26) (0.20) (0.18) (0.30)

LDA

Recognition
rate(%)

51.29 78.93 86.71 90.79 95.14 95.43
(4.33) (4.16) (1.59) (3.49) (3.80) (3.14)

Test rms error 0.96 0.51 0.40 0.33 0.23 0.23
(0.09) (0.09) (0.05) (0.05) (0.15) (0.14)

2DLDA

Recognition
rate(%)

51.00 77.64 85.50 90.00 93.21 93.57
(2.22) (2.64) (2.43) (3.22) (1.80) (1.71)

Test rms error 0.98 0.53 0.42 0.37 0.33 0.31
(0.06) (0.02) (0.06) (0.06) (0.06) (0.06)

LDAr

Recognition
rate(%)

58.21 85.00 90.50 94.14 96.07 96.57
(2.15) (2.21) (2.57) (1.49) (1.34) (1.09)

Test rms error 0.73 0.40 0.34 0.29 0.26 0.27
(0.01) (0.04) (0.04) (0.05) (0.05) (0.03)

2DLDAr

Recognition
rate(%)

54.14 80.21 87.29 93.64 95.86 96.64
(2.15) (3.85) (4.22) (1.30) (1.35) (1.20)

Test rms error 0.88 0.51 0.41 0.31 0.28 0.28
(0.03) (0.05) (0.08) (0.04) (0.06) (0.04)

The training and test data consist of six individuals and
the number of images per each individual might be differ-
ent for both the training and test data because of random
selection. Various numbers of features ranging from 1 to 6
were extracted. For LDAr and 2DLDAr, we set target variable
as integer value ranging from 1 to 7. The target variable
i ∈ {1, · · · , 7} corresponds to the Direction i in Fig. 7.

The correct detect rate of gaze recognition using 5-fold
cross-validation is shown in Table II. Totally 2800 images
were collected for 5-fold cross-valididation which consists of
400 images per each gaze direction. The training data and
testing data is randomly selected from 2800 images with same
number of images per each gaze direction. The experimental
results with 1400 images which contain 200 images per each
direction are also shown in the table III.

The LDAr gave recognition rates of 61.50% to 98.36%
and 58.21% to 96.57% and 2DLDAr gave recognition rates
of 57.96% to 98.39% and 54.14% to 96.64% for different
numbers of features. The best recognition rates were obtained
by LDAr and 2DLDAr when 6 features were used for both
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TABLE IV
THE PERFORMANCE OF GAZE RECOGNITION USING MLP(5-FOLD

CROSS-VALIDATION)

Data (total 1,400) Training (80%) Validation (10%) Test (10%)
Measure RMSE R RMSE R RMSE R

No. of features 2
LDA 0.39 0.9810 0.37 0.9832 0.40 0.9792

2DLDA 0.45 0.9748 0.46 0.9729 0.46 0.9723
LDAr 0.24 0.9926 0.22 0.9940 0.23 0.9934

2DLDAr 0.28 0.9900 0.28 0.9902 0.28 0.9905
No. of features 3

LDA 0.32 0.9873 0.33 0.9863 0.34 0.9855
2DLDA 0.35 0.9847 0.35 0.9842 0.37 0.9829
LDAr 0.16 0.9966 0.17 0.9962 0.17 0.9965

2DLDAr 0.20 0.9950 0.19 0.9954 0.21 0.9948
No. of features 4

LDA 0.30 0.9887 0.30 0.9888 0.29 0.9899
2DLDA 0.35 0.9851 0.33 0.9861 0.36 0.9837
LDAr 0.15 0.9973 0.14 0.9974 0.16 0.9967

2DLDAr 0.14 0.9974 0.16 0.9968 0.16 0.9967
No. of features 5

LDA 0.27 0.9909 0.28 0.9907 0.36 0.9875
2DLDA 0.34 0.9859 0.35 0.9848 0.33 0.9848
LDAr 0.16 0.9969 0.17 0.9967 0.14 0.9974

2DLDAr 0.13 0.9979 0.14 0.9974 0.14 0.9975
No. of features 6

LDA 0.27 0.9908 0.25 0.9923 0.27 0.9907
2DLDA 0.32 0.9867 0.31 0.9882 0.32 0.9871
LDAr 0.09 0.9989 0.09 0.9990 0.11 0.9986

2DLDAr 0.10 0.9987 0.12 0.9983 0.11 0.9986

experiments. With 3NN classifier, the best recognition rates
were 98.39% and 96.64% respectively. The recognition rate
and test rms (root mean squared) error of LDAr and 2DLDAr
is superior to NLDA, LDA and 2DLDA for any number
of features. In conclusion, the performance of regressional
versions of feature extraction are better than the conventional
feature extraction methods.

For comparison, SVM [24] was also applied to the original
400 dimensional input space. Before applying SVM, each of
the 400 input variables was normalized to have zero mean
and unit variance. The SVM-KM toolbox for Matlab [38]
was used. Both the polynomial and the Gaussian kernels were
used with various kernel parameters (the degree of polynomial
for polynomial kernel and σ for Gaussian kernel). The best
performance of SVM using 5-fold cross-validation for 2800
images was 98.93% with the polynomial kernel (degree =
2) and 98.93% with Gaussian kernel (σ=1.0). Similarly, for
the 1400 images case, the best classification rate was 97.93%
with the polynomial kernel (degree=2) and 97.29% with
Gaussian kernel (σ=1.0). Although these values are slightly
better than those of LDAr and 2DLDAr in Table II and
III, the performance of SVM was very sensitive to kernel
parameters. Compared to the proposed method of combined
feature extraction (LDAr or 2DLDAr) and simple classifier
(3-NN), the method of applying SVM directly to the original
input variables has a disadvantage that finding appropriate
parameters for SVM is difficult and time consuming.

Table IV shows the performance of gaze recognition using
multilayer perceptron (MLP). The 5-fold cross-validation is
used to evaluate the performance. Two layer MLP was used
and the number of hidden neurons was set to four. We trained

TABLE V
ONE TAILED WELCH’S t-TEST

Compare LDA and LDAr
No. of features 1 2 3 4 5 6

T -value 7.134 7.991 8.175 2.948 3.236 2.770
d.o.f. 6 6 4 8 8 6
T99% 3.413 3.413 3.747 2.896 2.896 3.413
T95% 1.943 1.943 2.132 1.860 1.860 1.943

Accepted (99%) HA1 HA1 HA1 HA1 HA1 HO1

Accepted (95%) HA1 HA1 HA1 HA1 HA1 HA1

Compare 2DLDA and 2DLDAr
No. of features 1 2 3 4 5 6

T -value 4.351 3.168 3.379 4.740 3.925 4.442
d.o.f. 7 7 7 7 5 6
T99% 2.998 2.998 2.998 2.998 3.365 3.413
T95% 1.895 1.895 1.895 1.895 2.015 1.943

Accepted (99%) HA2 HA2 HA2 HA2 HA2 HA2

Accepted (95%) HA2 HA2 HA2 HA2 HA2 HA2

MLP using Levenberg-Marquardt algorithm and evaluated
performance using root mean squared error (RMSE) and
regression (R) value. The RMSE is the square root of the
average squared difference between the output and the target
values. A lower RMSE values are better and zero RMSE
means there is no error. The R values measure the correlation
between the output and the target values. R value of 1 means a
close linear relationship, while 0 means a random or no linear
relationship. As can be seen in Table IV, RMSE values of
LDAr and 2DLDAr are much smaller than those of LDA and
2DLDA regardless of the number of extracted features. In the
same manner, regardless of the number of extracted features,
R values of LDAr and 2DLDAr are greater than those of LDA
and 2DLDA. From this, we can see that LDAr and 2DLDAr
improves the performance of gaze recognition regardless of
the number of features.

We also performed one tailed Welch’s t-test [39] to show
the statistical significance of our methods as shown in Table
V. The null (HO) and the alternative (HA) hypotheses are as
follows:

• HO1: For a fixed number of features, the performance of
LDA and LDAr are the same.

• HA1: For a fixed number of features, LDAr outperforms
LDA.

• HO2: For a fixed number of features, the performance of
2DLDA and 2DLDAr are the same.

• HA2: For a fixed number of features, 2DLDAr outper-
forms 2DLDA.

We calculate the T -value, degree of freedom (d.o.f.) and
the corresponding target T -values using the recognition rates
in Table II. As shown in Table V, the null hypothesis was
rejected, thus the alternative hypothesis was accepted for all
the number of features when the confidence level was 95%. If
the confidence level was 99%, the null hypothesis was rejected
for all the number of features except for the case of 6 extracted
features. From this, we can conclude that the regressional
version of feature extraction method outperforms other feature
extraction methods.

The time complexity of the proposed gaze recognition
system is around 1.32 msec/frame on average on a 2.26 GHz
CPU, 1.99 GB RAM. The total frame rate of the system which
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include face detection and gaze recognition is on average
around 44.91 msec/frame (43.59 msec to detect face using
V-J and 1.32 msec to recognize the direction of face) which
is enough for real time demands on a 2.26 GHz CPU, 1.99
GB RAM.

IV. CONCLUSIONS

This paper addresses a method for gaze recognition of a
driver coping with rotation of a driver’s face. Because the
gaze of a driver and the direction of the head are almost the
same while driving and the operation of a headlamp control
system requires to be smooth and real-time, unlike other gaze
recognition researches, we focus on the detection of a head
and the recognition of the pose of the head using a relatively
low-resolution face image.

As a result, our gaze recognition system is mainly divided
into two parts: face detection and gaze recognition systems.
As a face detection method, we used V-J algorithm to produce
classifiers that can detect faces. In doing so, three different face
detectors designed to detect frontal face, left profile and the
right profile respectively were sequentially used. Compared
to the simultaneous application of different detectors, the
sequential use of the different face detectors can speed up
the detection process without much degrading the detection
rate.

After detecting face, to extract good features from the
original input variables, we used LDAr, a regressional version
of linear discriminant analysis, which tries to maximize the
ratio of inter-distances among samples with large differences
in target value and those with small differences in the target
value. In addition, we also proposed a new two-dimensional
feature extraction method 2DLDAr which extends 2DLDA
to a regressional version and applied it to gaze recognition
problem. The gaze recognition performances of LDAr and
2DLDAr exceed those of the conventional LDA, NLDA and
2DLDA.

Based on various application areas of the gaze recognition
such as intelligent vehicles, medical and integrated human
computer interface, the resultant systems are quite different in
their assumptions and the direct comparison with other gaze
recognition methods was out of our ability. Although we could
not compare the performance of the proposed method with
those of other researches, the performance of the proposed
gaze recognition system was good enough to be applied to
the headlamp control of a vehicle.

As a future work, we would like to use tracking methods to
efficiently cope with false alarm. The proposed approach can
also be applied to similar problems such as airbag ignition
problem.
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