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Abstract: This paper analyzes a linear discriminant subspace technique from an L1 point of view. We propose an efficient
and optimal algorithm that addresses several major issues with prior work based on, not only the L1 based LDA
algorithm but also its L2 counterpart. This includes algorithm implementation, effect of outliers and optimality
of parameters used. The key idea is to use conjugate gradient to optimize the L1 cost function and to find an
learning factor during the update of the weight vector in the subspace. Experimental results on UCI datasets
reveal that the present method is a significant improvement over the previous work. Mathematical treatment
for the proposed algorithm and calculations for learning factor are the main subject of this paper.

1 INTRODUCTION

Dimensionality reduction and object classification
has received considerable attention from the pattern
recognition community in the past decades (Duda
et al., 2012), (Theodoridis and Koutroumbas, 2009).
The goal of dimensionality reduction in classification
is to remove less useful elements from the input vec-
tors. Some of the conventional methods employed
for dimensionality reduction and object classification
are principal component analysis (PCA) (Fukunaga,
1990) (Turk and Pentland, ), independent compo-
nent analysis (ICA) (Bell and sejnowski, 1995) (Cao
et al., 2003) (Kwak and Choi, 2003) (Kwon and Lee,
2004) and linear discriminant analysis (LDA) (Fisher,
1936).

The linear discriminant analysis) of Fisher (Fisher,
1936) is a classical supervised subspace analysis tech-
nique. By minimizing the within-class scatter and
maximizing the between-class scatter, LDA seeks dis-
criminative features. LDA is a classic dimensionality
reduction method that preserves as much of the class
discriminatory information as possible.

Since the conventional LDA discriminates data in
a least square sense (L2 norm), it is prone to prob-
lems common to any methods utilizing L2 optimiza-
tion. It is well known that conventional subspace
analysis techniques based on L2 norm minimization
is more sensitive to the presence of outliers as its
effect is magnified due to a large norm. To allevi-

ate this problem, Koren et., al. (Koren and Carmel,
2008) proposed an optimal weighting approach that
assigns small weights to the outliers. However, an
optimal weighting parameter is difficult to determine.
(Li et al., 2010) proposes a similar rotational invari-
ant L1 approach but in author’s opinion, the method
has complex implementation. Another problem of the
conventional LDA arises from the assumption that the
data distribution is Gaussian. It means that if there are
several separate clusters in a class (i.e., multi modal)
then the data is not uniquely modeled by a Gaussian
distribution. As a result the approaches based on L2
norm will fail (Fukunaga, 1990). To overcome the
difficulty of multi-modal data distribution with LDA,
it can be combined with the unsupervised dimension
reduction algorithms called locality preserving pro-
jection method (LPP) to form a local Fisher discrimi-
nant analysis (LFDA), which effectively combines the
ideas of LDA and LPP (Sugiyama, 2007).

In this paper, an efficient L1 norm based-LDA al-
gorithm (Oh and Kwak, 2013), which is motivated by
the work in (Kwak, 2008), has been improved by us-
ing an iterative algorithm based on a modified opti-
mal conjugate gradient (OCG) to solve an L1 norm
LDA problem (called OCG-LDA hereafter). We also
introduce a learning factor scheme for updating the
weight vector or projection vectors in the OCG algo-
rithm. The OCG algorithm iteratively converges to
an optimal solution similar to iterative recursive least
squares (IRLS) algorithm.



The remainder of this paper is structured as fol-
lows. Section 2 reviews the conventional LDA
method (based on L2 norm). In Section 3, we pro-
pose the L1 LDA based on OCG algorithm includ-
ing its mathematical treatment, theoretical justifica-
tion, proof for suboptimal learning factor and algo-
rithmic description of the complete methodology. Ex-
perimental results are presented in Section 4. Sec-
tion 5 discusses the results and finally Section 6 and
7 summarizes the proposed work and presents some
future exploration respectively.

2 CONVENTIONAL L2 LDA: A
REVIEW

Linear discriminant analysis is a subspace learn-
ing approach that leads to supervised dimensionality
reduction. It is based on the work of Fisher (Fisher,
1936) and can be considered as an optimal feature
generation process (Theodoridis and Koutroumbas,
2009). It tries to find a transformation that maximizes
the ratio of the between-class scatter matrix SB and
the within-class scatter matrix SW (Fukunaga, 1990)
which are defined as

SB =
C

∑
i=1

Ni(mi−m)(mi−m)T

SW =
C

∑
i=1

Ni

∑
j=1

(xi
j−mi)(xi

j−mi)
T

(1)

where x j
i is the i-th sample of class j, m j is the mean

of class j, C is the number of classes, Ni is the number
of samples in class i and m represents the mean of
all samples. This is formulated to find M projection
vectors {wi}M

i=1 that maximize the Fisher’s criterion
with respect to W = [w1, · · · ,wM], as follows:

WLDA = argmax
W

∣∣W T SBW
∣∣

|W T SWW |
. (2)

Equation (2) is the generalized Rayleigh quotient
(Duda et al., 2012), which, as known from linear al-
gebra, is maximized if W is chosen such that

SBwi = λiSW wi

λ1 ≥ λ2 · · · ≥ λm
(3)

Then the linear projection of {wi}M
i=1 can be ob-

tained. Here λi is the i-th largest eigenvalue of S−1
w SB

and wi ∈ ℜd×m. Viewing LDA as dimension reduc-
tion technique, LDA is performed by mapping each
vector x in d-dimensional space to a vector y in the M
dimensional space (M < d) linearly. The linear pro-
jection is such that the lower dimensional projection is

closer for same class and farther for different classes.
However it is well known that if the Lp (p < 2) norm
is used instead of L2 norm, outliers are suppressed and
the method performs better (Oh and Kwak, 2013). In
our present investigation, we consider p = 1. The de-
tails are presented in next section.

3 PROPOSED PARADIGM:
OCG-LDA

It is well known in the literature that algorithms
based on the L1 norm are less sensitive to outliers
as compared to their L2 counterparts (Claerbout and
Muir, 1973) (J. A. Scales and Lines, 1988).

3.1 L1 norm based LDA

We formulate an L1-norm maximization problem to
design an L1 based LDA. Motivated from the basic
L1 theory, we solve the following L1-norm maximiza-
tion problem (Oh and Kwak, 2013) with the constraint
||w||2=1.

F1(w) =
∑

C
i=1 Ni|wT (mi−m)|

∑
C
i=1 ∑

Ni
j=1 |wT (xi

j−mi)|
(4)

In order to maximize the objective function in (4),
we need to consider its non-convexity owing to the ab-
solute value function involved. The singularity due to
the non-convexity of F1(w) makes it difficult to calcu-
late its gradient vector and direction vector. In order
to circumvent this problem, we use sgn(·) function as
follows,

sgn(i) =


1 if i > 0
0 if i = 0
−1 if i < 0.

(5)

modify equation (4) as,

F1(w) =
∑

C
i=1 Nisgn(wT ai) · (wT ai)

∑
C
i=1 ∑

Ni
j=1 sgn(wT bi

j) · (wT bi
j)
. (6)

Here,

ai = mi−m

bi
j = xi

j−mi.
(7)

3.2 Mathematical treatment

We now take the gradient of (4) with respect to w.

g(w) = ∇wF1(w) =
(A ·B)− (C ·D)

B2 (8)



where A,B,C and D are defined as,

A =
C

∑
i=1

Ni
[
sgn(wT ai) ·ai

]
B =

C

∑
i=1

Ni

∑
j=1

[
sgn(wT bi

j) · (wT bi
j)
]

C =
C

∑
i=1

Ni
[
sgn(wT ai) · (wT ai)

]
D =

C

∑
i=1

Ni

∑
j=1

[
sgn(wT bi

j) ·bi
j
]

The above gradient is well defined when wT bi
j 6= 0

for all i = 1, · · · ,C and j = 1, · · · ,Ni. However, the A
and D terms in (8) are not well defined at the singular
points where wT bi

j = 0 because 00 is hard to define.
To avoid this problem, we add a singularity check step
before computing the gradient vector in later develop-
ment.

3.3 Theoretical treatment: Why
Conjugate Gradient ?

The specific objective of the present work is to im-
prove upon the existing approach of (Oh and Kwak,
2013). In order to do that, we first replace the steepest
descent algorithm with a much better conjugate gra-
dient approach. To have a better intuitiveness for the
learning factor, we update the weight vector as fol-
lows:

w(t +1)← w(t)+ z1 · v(t) (9)
where v(t) is the direction vector and z1 is the learning
factor, as discussed in the next subsection.

The reason as to why steepest descent is slow is
due to its straight line search strategy. Since the steep-
est descent works on the gradient direction and goes
along a straight line search, it does not stop till the
descent line is parallel to the contour line of the cost
function surface. This poses a serious problem and
eventually leads to slow minimization. What if we
want to stop and change the gradient direction before
it becomes parallel? In steepest descent it is difficult
to make such a stop and therefore it will follow a zig-
zag pattern (Haykin, 2009). In general, overshoot-
ing and undershooting are inherent problems with the
steepest descent approach. One way to overcome this
is to use an learning factor so as to update the weight
vector with gradient information in a more intelligent
way. However what if instead of a line search we
do a plane search? This leads to the conjugate gra-
dient (CG) method where an arbitrary combination of
two vectors forms a hyperplane. The CG algorithm
(Chong and Stanislaw, 2013) solves the equation in

exactly n steps where n is the number of unknowns.
However for non L2 functions,(non -quadratic func-
tions)a plane search is hard to deal with.

The conjugate gradient algorithm is related to
Krylov subspace (Olavi, 1993) iteration methods.
Our motivation for using CG comes from its easy
modification for non quadratic problems. From the
Hestense-Stiefel formula (to overcome line search
problem) and Polak Ribiere formula, we conclude
that major techniques exist to go around the two ma-
jor problems of line search and calculation of Hessian
matrix (Chong and Stanislaw, 2013).

Having a strong reason to use CG algorithm, we
now present a brief description of the learning factor,
weight updation scheme and proposed algorithm in
the subsequent section.

3.4 Deriving the learning factor

Let Fnew
1 be the estimated new value of F1. Applying

Taylor series on F1, we get

Fnew
1 = Fold

1 +gn ·∆w (10)

where gradient g= dF1/dw. Now we have ∆w= z1 ·v.
Substituting the value of ∆w in (10) we get,

Fnew
1 = Fold

1 + z1 · ||v||T g (11)

On simplifying, we get,

Fnew
1 −Fold

1 = z1 · ||v||T g (12)

If the desired value of Fnew
1 = (1+z) · Fold

1 . Here z is
the desired fractional increment set to an initial value
as 0.01.

Fnew
1 −Fold

1 = z ·Fold
1 (13)

Therefore we have

z1 =
z ·Fold

1
||v||T g

(14)

3.5 Deriving the weight updation
scheme

We now elaborate the weight updation scheme
1. Initialization

Set Fold
1 = ε (small number). Choose z so as to

fractionally increase the value of −F1 by 1 % in
each iteration and let z = 0.01.

2. Weight updates
For each iteration,

• Calculate the gradient from (8) and z1 as in sec-
tion 3.4. Update the weight vector as in (9)

• Using (4), calculate the value of cost function
−F1.



If −F1 > Fold
1

Fold
1 =−F1

Save weight vector
Increment z as z← 1.1∗ z

Save weight as w←wold (Forward step)
Else

Decrement z as z← 0.5 · z
Decrement z1 as z1← 0.5 · z1
Read old weight vector wold
Save weight as w←wold (Back step)
Update the weight vector as in (9)
Break

Endif

end iteration

The iterations in the above pesudocode are per-
formed quite a number of time until we get an op-
timal value of weight. We now propose the formal
algorithm that incorporates the above expressions.

3.6 Proposed Algorithm

Since every update of the weight vector leads to
the maximization of F1(w), setting an initial w(0) is
highly important. In our investigation, we choose
the initial vector w(0) to be the solution of the con-
ventional L2-LDA. Alternatively other techniques can
also be tried like re-run the OCG algorithm several
times with different initial w(0) and choosing the best
one. We now present the proposed OCG-LDA algo-
rithm as follows:

1. Initialization
Set t = 0 and w(0) s.t. ||w(0)||2 = 1, v(−1) = 0,
XDen = 1. Here v is the direction vector.

2. Singularity check
If w(t)T bi

j = 0 for some i and j, w(t)← w(t)+δ

||w(t)+δ||2
.

Here, δ is a random vector with a small magni-
tude.

3. Gradient calculation
Compute equation (8) to obtain the gradient vec-
tor g.

4. Gradient energy
Compute gradient energy XNum = ||g(w)||22.

5. Coefficients for direction vector
Compute B1= XNum

XDen
.

6. Direction vector
Compute v(t) = g(w)+B1 · v(t−1)

7. learning factor and weight updation
Calculate F1(w) in (4) and compute zopt . Update
weight vector as w(t+1)←w(t)+zopt ·v(t). (See
Section 3.5 for details)

8. Update for next iteration
Replace XDen with the value of XNum.
Set t← t +1.

9. Convergence check
If ‖w(t)−w(t−1)‖ ≥ ε, then go to Step 2.
Else w∗ = w(t) and stop iteration.

Figure 1 explains the learning factor z1and weight
updation calculation. We take the forward step by in-
crementing z1 until the value of −F1 is lower than the
previous iteration. In case the value of −F1 is greater
for the current iteration, we take a back step to decre-
ment z1 by half and thereby backtrack to reading the
old weight vector. It should be noted here that the
learning factor z obtained by using the above proce-
dure is optimal in a sense that its better estimate than
a heuristic approach. In Figure 1 (1), (2) are forward
step and (3), (4) are back step.

Figure 1: Calculating learning factor z1

4 EXPERIMENT AND RESULTS

We now apply OCG-LDA to different datasets
from UCI machine learning repositories and compare
their performance with other algorithms. We have
compared the proposed methodology with two sub-
space learning method (L2-LDA, SD-LDA) and two
L1 based least square methods. The L2-LDA we used,
is solved by eigenvalue decomposition. The IRLS
(Ji,2006) and L1 regularized least square (L1-RLS)
(Boyd,2007) have been chosen primarily for there less
time complexity. Table 1 shows the numbers of vari-
ables, classes, and instances of each data set which is
used in this paper.

In Table 2, we present the classification perfor-
mances for OCG-LDA and it’s comparison with other



Table 1: UCI data set

Data Set No of variables No of instances
Australian 14 690

Heart Disease 13 297
Bupa 6 345
Pima 8 768
Sonar 60 208

Balance 4 625
Waveform 21 4999

Table 2: Classification (%) for UCI data set

Dataset ↓ L2 LDA SD- LDA L1 IRLS L1 RLS OCG-LDA

Australian 76.6790 81.8834 80.0032 81.3002 82.0324
Heart
Disease

75.7580 80.8506 79.2130 75.7721 81.3059

Bupa 54.2182 65.8655 62.0581 62.8991 67.8591
Pima 65.8751 71.0919 72.6371 67.8161 72.4526
Sonar 65.3810 76.8333 78.4051 72.0712 78.1261
Balance 88.9683 90.0794 87.1943 87.5292 92.0957
Waveform 52.9113 56.0905 51.3703 51.7708 58.8654

iterative algorithms. We also make the observation
that using a direction vector information rather than
the gradient vector leads to a faster performance. Not
only that, varying learning factor rather than a fixed
value leads to a better results than L1 LDA with steep-
est descent.

5 DISCUSSION

The result obtained in previous section, generates
an interesting set of findings. We observe from Table
2 that OCG-LDA is comparable in classification
rate to other learning algorithms. Except the sonar
dataset, the classification rate for OCG-LDA is better
either marginally or considerably than other subspace
or least square algorithms. The average time (in sec)
is also comparable to most of the other L1 based algo-
rithms. Lower time complexity of L1 algorithms is a
clear advantage over its L2 counterpart. The average
number of iterations also bolster our argument about
the clear advantage of using OCG-LDA over other L1
based algorithms and clearly the L2 based SD-LDA
algorithm.

To understand the importance of the findings we
see that the weight vector in the updating scheme
(17) depends on the input feature vector. Now since
we have optimal weight updating and conjugate
gradient scheme for optimizing the weight vectors,
the number of input feature vector clearly affects
the overall optimization scheme. This explains poor

Table 3: Average time (s) and average number of iterations

Dataset ↓ L2 LDA SD- LDA L1 IRLS L1 RLS OCG-LDA

Australian 0.5507 1.6717 0.7164 0.7670 0.6121

(-) (100) (3) (4) (3)

Heart 0.1240 0.1268 0.1324 0.1244 0.1242

Disease (-) (15) (5) (3) (4)

Bupa 0.1575 0.4132 0.3472 0.3120 0.2742

(-) (47) (9) (3) (5)

Pima 0.6621 1.1014 0.8274 0.9524 0.7825

(-) (58) (4) (3) (4)

Sonar 0.0783 0.5850 0.4765 0.5101 0.4956

(-) (100) (10) (4) (5)

Balance 0.4493 1.0717 0.7582 0.6823 0.6248

(-) (71) (2) (1) (1)

Waveform 26.503 4.3259 2.4462 1.3170 1.5295

(-) (11) (2) (5) (2)

performance of OCG-LDA for sonar dataset. As the
cost function minimization involves absolute value
and not a square error, the time taken by L1 based
approach is considerably lower than it’s L2 method
(L2-LDA). An important implication of using an
learning factor and a second order optimizing scheme
is that the average time and the average number of
iterations are considerably better or comparable to
other L1 and L2 based algorithms. Updating the
weight vector in L1 subspace and guiding it with
a learning factor serves two-fold purpose. Firstly,
the problem of overshooting or zigzagging of the
weight vector is eliminated as is typical in any
gradient based iterative approach. Secondly, the
use of direction vector facilitates in a much faster
and efficient algorithm. What’s interesting to note
here is that the combination of efficient scheme for
obtaining learning factor and optimization using
CG algorithms leads to an algorithm that is much
better than SD-LDA. Not only that, OCG-LDA is
comparable to other complicated algorithms based on
L1 regularization or iterative lease square scheme.

In order to relate the finding to those of similar
studies, our motivation came from improving the SD-
LDA by developing a better and efficient subspace al-
gorithm. The results in Table 2 and 3 clearly implies
that we have achieved our goal. The questions raised
in (Oh and Kwak, 2013) about the use of an optimal
weight updation scheme, in (Duda et al., 2012) about
overcoming the effect of outliers and comparison to
the regularized least square and iterative least square
algorithms serves as motivation for our study. An-
other aspect was to see the Gaussian distribution ef-



fect on data that is prominent in L-2 norms.

6 CONCLUSION

The proposed OCG-LDA algorithm uses a conju-
gate gradient optimization scheme to improve the ex-
isting SD-LDA subspace algorithm. The conjugate
gradient is chosen due to its advantages over first de-
gree optimization scheme like steepest descent and
easy implementation. We test the OCG-LDA algo-
rithm for various UCI datasets to demonstrate its clas-
sification performance, average time and average iter-
ations. OCG-LDA clearly outperforms the L-2 LDA
and SD-LDA but has comparable performance with
the L-1 version of least square algorithms. However
the proposed methodology is simple and easy to im-
plement and is a good alternative to other algorithms
in building a robust model for classification. As from
No Free Lunch theorem, no single classification algo-
rithm can outperform any other algorithm when per-
formance is analyzed over many classification dataset.
In conclusion, OCG-LDA can be used as a basic clas-
sifier unit in a multi stage classification scheme.

7 FUTURE WORK

The OCG-LDA methodology is an evident ad-
vancement in the L1 family of LDA subspace algo-
rithms. As a part of future direction, a multiple op-
timal learning factor scheme based on the Gaussian
Newton approximation (Malalur and Manry, 2010)
can be investigated. Recently, the author (Cai et al.,
2011) have proposed an efficient partial Hessian cal-
culation that does not involves inversion and is suc-
cessfully applied on Radial basis function neural net-
works. Therefore a study can be conducted to foray
into the second order algorithms using regularization
parameter.
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