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Abstract

In many pattern recognition problems, it is desirable to reduce the number of input features by

extracting important features related to the problems. By focusing on only the problem-relevant

features, the dimension of features can be greatly reduced and thereby can result in a better gen-

eralization performance with less computational complexity. In this paper, we propose a feature

extraction method for handling classification problems. The proposed algorithm is used to search

for a set of linear combinations of the original features, whose mutual information with the output

class can be maximized. The mutual information between the extracted features and the output

class is calculated by using the probability density estimation based on the Parzen window method.

A greedy algorithm using the gradient descent method is used to determine the new features. The

computational load is proportional to the square of the number of samples. The proposed method

was applied to several classification problems, which showed better or comparable performances than

the conventional feature extraction methods.

Keywords

Feature extraction, mutual information, Parzen window, gradient descent, subspace method,

optimization, classification.

I. Introduction

For many pattern recognition problems, it is desirable to reduce the number of input features

through feature extraction because irrelevant or redundant features tend to complicate the learning

process, thereby resulting in a poor performance [1]. Even when the features presented contain

sufficient information on the problem, the result may become erroneous because the dimension of the

feature space could be too large. Reducing the dimensionality of the feature space may improve the

learning process by considering only the most important data representation, possibly with elements

retaining the maximum information on the original data and with better generalization capabilities

[2]. Dimensionality reduction through feature extraction is quite desirable not only in the aspect of

the number of required data, but also in terms of data storage and computational complexity.

Many studies have been done on the feature extraction problems. The principal component anal-

ysis (PCA) [3], the linear discriminant analysis (LDA) [4], and the independent component analysis

(ICA) [5] have been widely used.

Although PCA is one of the most popular and widely used methods for classification problems

such as face recognition problems [6], it can still be improved for classification problems since it is an

unsupervised learning method that does not make use of the output class information. PCA is useful

in reducing the dimension of a feature space to a manageable size to be used for a classifier. Likewise,

ICA, which is another unsupervised learning method, leaves room for improvement in classification

problems. Unlike PCA and ICA, LDA focuses on the classification problems to find the optimal
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linear discriminating functions. Although it is simple and powerful, the application of this method is

limited to cases where the means of the classes are separated well.

Another line of research on feature extraction is using the mutual information directly as a

measure of extracting good features. Although mutual information is a good measure in pattern

recognition problems, researchers have only recently begun to use it due to the computational burden

[7] [8] [9] [10]. Ullman et al. applied this to binary classification problems with binary features [7].

Fisher et al. [8] used the quadratic mutual information, which is related to Renyi’s entropy, in feature

extraction problems.

In feature extraction problems, ICA-FX, which is an extension of the ICA, is another approach

[11] [12] [13]. The algorithm attempts to maximize the mutual information between the input features

and output classes indirectly under the assumption that the sources are independent of the classes.

The performance of this method depends on how the data is distributed to satisfy the assumption.

In this paper, we propose a method of extracting features by using the mutual information based

on Shannon’s entropy. In computing the mutual information, one needs to know the probability

density function, which can be estimated by the Parzen window method [9] [10]. New features can

be generated by linear combinations of input vectors. Among these new feature candidates, we find

the one that maximizes the mutual information with the output. And this process is repeated until

all the necessary features are obtained.

In the following section, the preliminaries are briefly introduced and the feature extraction prob-

lem is formalized. A new feature extraction method is proposed in Section 3. In Section 4, the

proposed algorithm is applied to several classification problems to show its efficacy. Conclusions

follow in Section 5.

II. Preliminaries and Problem Formulation

For clarity, capital letters hereafter represent random variables and small letters are the instances

of the corresponding random variables. Boldfaced letters represent vectors.

A. Entropy and Mutual Information

In solving feature extraction problems, this study attempts to find the inputs that contain as

much information on the outputs as possible. The information theory provides a means of measuring

the information with mutual information [14] [15].

Let p(xxx) and p(yyy) be the probability mass function (or probability density function, pdf ) for

random vector XXX and YYY . Also let p(xxx,yyy) be the joint probability mass function (or joint pdf ) of XXX

and YYY . The mutual information between discrete random vectors XXX and YYY is defined as

I(XXX;YYY ) =
∑

xxx∈X

∑

yyy∈Y

p(xxx,yyy) log
p(xxx,yyy)

p(xxx)p(yyy)
.

where X and Y are alphabets of XXX and YYY , respectively. If the mutual information between the
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two random vectors is large (small), the two vectors are closely (not closely) related. If the mutual

information becomes zero, the two random vectors are independent.

The other two basic quantities of information theory is the entropy and conditional entropy, which

are defined as follows:

Entropy: H(XXX) = −
∑

xxx∈X

p(xxx) log p(xxx)

Conditional Entropy: H(YYY |XXX) = −
∑

xxx∈X

∑

yyy∈Y

p(xxx,yyy) log p(yyy|xxx).
(1)

Among the relationships between the mutual information and entropy, the following relationship

will be used later:

I(XXX;YYY ) = H(XXX)−H(XXX|YYY ). (2)

For most classifying systems, the output class, C, is represented by a discrete random variable,

while the input features are generally continuous. The differential entropy and mutual information

for continuous random variables are defined as follows,

H(XXX) = −
∫

p(xxx) log p(xxx)dxxx

I(XXX,YYY ) =

∫

p(xxx,yyy) log
p(xxx,yyy)

p(xxx)p(yyy)
dxxxdyyy,

but it is very difficult to determine the pdf s (p(xxx), p(yyy), p(xxx,yyy)) and perform the integrations. There-

fore, the continuous input feature space is divided into several discrete partitions and the entropy

and mutual information are calculated using the definitions for the discrete random variables. The

inherent error that exists in the quantization process poses as a problem in computing the entropy

and mutual information of continuous variables. To avoid this, the Parzen window method presented

in the following subsection can be used to estimate the pdf s of continuous random variables.

B. Density Estimation by the Parzen Window

A density estimation by the Parzen window can be used to approximate the probability density

p(xxx) of a vector of continuous random variables, XXX [16]. It involves the superposition of a normalized

window function centered on a set of samples. Given a data set of n N -dimensional training vectors

D = {xxx1,xxx2, · · · ,xxxn}, the pdf estimate by the Parzen window method is given by the following

equation:

p̂(xxx) =
1

n

n
∑

i=1

φ(xxx− xxxi, h),

where φ(·) is the window function and h is the window width parameter.

For window functions, the rectangular and the Gaussian window functions are commonly used.

The Gaussian window function is given by

φ(zzz, h) =
1

(2π)N/2hN |Σ|1/2
exp(−zzzT Σ−1zzz

2h2
), (3)
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where Σ is a covariance matrix of an N -dimensional random vector ZZZ.

Parzen reported that p̂(xxx) will converge to the true density if φ(·) and h are selected properly [16].

For non-smooth classes of densities, kernel methods such as the Parzen window density estimator are

known to have convergence problems. In this paper, we assume that the probability densities of

features are smooth, and do not deal with the non-smooth classes of densities.

C. Feature extraction: Problem formulation

The success of a feature extraction algorithm for classification problems is determined by the

probability of misclassification. When pdf s are known, the Bayes classifier gives the minimum classi-

fication error known as the Bayes error. The Bayes error is upper and lower bounded by the mutual

information as follows [15] [17]:

(Bayes error bounds) Let FFF and C be random variables that represent the input features and output

class, respectively. In addition, let Nc be the number of classes. If the output class, c, is to be

estimated using the input features, fff , the probability of error, PE , is bounded as follows:

H(C|FFF )− 1

log Nc
=

H(C)− I(FFF ;C)− 1

log Nc
≤ PE ≤

H(C|FFF )

2
=

H(C)− I(FFF ;C)

2
. (4)

In addition to this, the following inequality is used to formalize the purpose of the feature ex-

traction problems.

(Data processing inequality [15]) Let XXX and C be random variables, which represent the input fea-

tures and output class, respectively. For any deterministic function T (·) of xxx, mutual information

between FFF , T (XXX) and the output class, C, is upper-bounded by mutual information between XXX

and C:

I(FFF ;C) = I(T (XXX);C) ≤ I(XXX;C)

where the equality holds if the transformation is invertible.

Suppose that there are N zero mean original input features, XXX = [X1, · · · ,XN ]T ∈ ℜN , and

an output class, C. The purpose of the feature extraction is to extract M(< N) new features,

FFF = [F1, · · · , FM ]T , from XXX containing as much information on the class as possible.

Furthermore, suppose the situation where only linear combinations of the original features are

considered as the candidates for the new features. In this case, finding the i-th new feature Fi is

equivalent to searching for the optimal weight vector, www∗
i ∈ ℜN , i = 1, · · · ,M , where Fi and www∗

i have

the following relationship:

Fi = www∗T
i XXX. (5)

Since the entropy of class, H(C), and the number of classes, Nc, are fixed in (4), the upper

and lower bounds of PE are minimized when I(FFF ;C) becomes a maximum. It is, thus, necessary

for good feature extraction methods to extract the features that maximize the mutual information

with the output class. The data processing inequality shows that no transformation T (·) can increase
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the mutual information between the input features and the output class. Consequently, the goal of a

feature extraction is to extract M(< N) features, FFF , from XXX, so that the mutual information between

the newly extracted features FFF and the output class C, I(FFF ;C), approaches I(XXX;C).

In order to obtain mutual information in a more direct way, the pdf s of input and output variables

must be known, but this is difficult in practice. The histogram method has been used in estimating

the pdf s. However, the histogram method requires extremely large memory space for calculating

the mutual information. For example, in extracting M features, if the output classes are composed

of Nc classes and the jth input feature space is divided into Pj partitions to obtain the histogram,

there must be Nc × ΠM
j=1Pj cells to compute I(FFF ;C). Therefore calculation of mutual information

is difficult by estimating the pdf s with a histogram. In order to overcome these problems, Parzen

window was used to estimate the mutual information between two continuous variables in [8] [9] [10].

The detailed process of this mutual information calculation follows in the next subsection.

D. Calculation of Mutual Information using Parzen Window

Rewriting (2), the mutual information between the input features, FFF , and the class, C, can be

represented as follows:

I(FFF ;C) = H(C)−H(C|FFF ). (6)

In this equation, the class is a discrete variable, and H(C) can be easily calculated in the same way

as in (1). However, the conditional entropy

H(C|FFF ) = −
∫

FFF

p(fff)

Nc
∑

c=1

p(c|fff) log p(c|fff)dfff, (7)

is difficult to obtain because it is not easy to estimate p(c|fff).

An estimate of the conditional pdf p̂(fff |c) of each class can be obtained using the Parzen window

method as

p̂(fff |c) =
1

nc

∑

i∈Ic

φ(fff − fff i, h), (8)

where c = 1, · · · , Nc, nc is the number of the training samples belonging to class c, and Ic is the set

of indices of the training samples belonging to class c.

According to the Bayesian rule, the conditional probability p(c|fff) can be written as

p(c|fff) =
p(c|fff)

∑Nc

k=1 p(k|fff)
=

p(c)p(fff |c)
∑Nc

k=1 p(k)p(fff |k)
. (9)

Using (8), the estimate of the conditional probability becomes

p̂(c|fff) =

∑

i∈Ic φ(fff − fff i, hc)
∑Nc

k=1

∑

i∈Ik φ(fff − fff i, hk)
, (10)

where hc and hk are window width parameters corresponding to class c and class k respectively.
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Using the Gaussian window function (3) for φ with the same window width parameter, h, and

the same covariance matrix, ΣFFF , for each class, (10) becomes

p̂(c|fff) =

∑

i∈Ic exp(− (fff−fffi)
T Σ−1

FFF
(fff−fffi)

2h2 )
∑Nc

k=1

∑

i∈Ik exp(− (fff−fffi)T Σ−1

FFF
(fff−fffi)

2h2 )
. (11)

Using the same covariance matrix for each class is justified because for multiclass classification prob-

lems, there may not be enough samples, and the error for the estimate of the class specific covariance

matrix can be large.

Replacing the integration with a summation of the sample points and assuming that each sample

has equal probability in (7), it becomes

Ĥ(C|FFF ) = −
n

∑

j=1

1

n

Nc
∑

c=1

p̂(c|fff j) log p̂(c|fff j), (12)

where fff j is the jth sample of the n training samples. With (6) and (11), the estimate of the mutual

information is obtained as follows:

Î(FFF ;C) = −
Nc
∑

c=1

p̂(c) log p̂(c) +
n

∑

j=1

1

n

Nc
∑

c=1

p̂(c|fff j) log p̂(c|fff j).

The computational complexity is proportional to the square of the number of the samples, n2,

and the dimension of the input feature space, N , regardless of the number of the classes. Unlike the

calculation of the mutual information using discrete quantization, this method has no problem with

memory allocation. If the sample size is too large, either the clustering method [18] or the sample

selection method [19] may be used to reduce the memory and to expedite the calculation.

With this estimation, a new method of feature extraction is proposed in the following section.

III. Feature extraction by maximizing mutual information

In this section, a new feature extraction algorithm, PWFX, that directly maximizes the mutual

information between the input features and the output class is presented.

A. PWFX

In this paper, only linear combinations of the original features, XXX, are considered as candidates

for the new features and the optimal weight vectors, www∗
i ∈ ℜN ’s, i = 1, · · · ,M , are searched for.

As stated in Section 2, the goal is to extract the features with the maximum mutual information

on the class, but it is very difficult to search for the optimal solution among all the sets of linear

transformations in (5). In order to alleviate this problem, new features are extracted one by one until

the number of extracted features reaches M . The procedure of PWFX, which is based on the greedy

algorithm, can be described as follows:

Step 1. (Initialization) Set F ←− “empty set.”
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Step 2. (Preprocessing) Preprocess the data.

Step 3. (Greedy extraction) Repeat the following until the desired number, M , of the features

are extracted.

(a) (Searching for the weights of the maximal mutual information) Search for the weight vector

www ∈ ℜN that maximizes I(FFF ∗
i−1,www

TXXX;C) and denote it as www∗
i .

(b) (Extraction of the next feature) Set Fi = www∗T
i XXX and F ←− F ∪ {Fi}.

Step 4. Output the set F containing the extracted features.

Here, FFF ∗
k ∈ ℜk is the vector whose components are the elements of F when |F|= k. Note that

FFF = FFF ∗
M in this notation.

Henceforth, for convenience, FFF k will be used to denote the k dimensional vector whose first

(k − 1) components are those of FFF ∗
k−1 and the last component is wwwTXXX. In addition, the matrices

W ∗
k = [www∗

1, · · · ,www∗
k] and Wk = [www∗

1, · · · ,www∗
k−1,www] shall denote the set of weights such that FFF k = WT

k XXX

and FFF ∗
k = W ∗T

k XXX, respectively.

Because H(C) remains constant throughout the calculation, in order to extract the i-th feature,

maximizing I(FFF ∗
i−1,www

TXXX;C) = I(FFF i;C) is equivalent to minimizing H(C|FFF i) with respect to www, and

the problem will now be to find

www∗
i = arg min

www
H(C|FFF i) = arg min

www
H(C|WT

i XXX). (13)

After computing H(C|WT
i XXX) with (12), the gradient based algorithms such as gradient descent

method can be used to find the solution. The detailed process for Steps 2 and 3 is described in the

following subsections.

Regarding how to determine the number of extracted feature M , one can use the mutual infor-

mation as a criterion. For example, in Step 3, if the mutual information I(FFF ∗
k;C) does not increase a

lot for the addition of a new feature Fk, feature extraction can be stopped and M can be determined

to be k − 1.

B. Decorrelation of data with PCA

In order to alleviate the computational complexity in applying the Parzen window method, PCA

is utilized in Step 2 as follows:

Step 2. (Sphering by PCA) Transform the original features XXX into YYY = WT
pcaXXX to have a zero

mean and an N ′ ×N ′ identity covariance matrix; ΣYYY = IN ′ .

Since a matrix inversion is used in the calculation of H(C|FFF i), it would be better to have the

covariance matrix, ΣFFF i
, to take a special form. To this end, the N dimensional feature vector, XXX, is

first transformed into an N ′(≤ N) dimensional vector YYY = WT
pcaXXX using PCA. Note that the rank

N ′ of Wpca can be equal to N if ΣXXX is nonsingular. Also note that for a dataset with a large number

of original features, this step serves as a filtering step which reduces the dimensionality from N to

N ′.
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After performing PCA, the covariance matrix of YYY becomes an N ′ dimensional identity matrix;

ΣYYY = IN ′ . If YYY is used instead of XXX, the problem in (13) then becomes finding successive vvv∗i ∈ ℜN ′

,

i = 1, · · · ,M , such that

vvv∗
i = arg min

vvv
H(C|FFF i) = arg min

vvv
H(C|V T

i YYY ),

where Vi , [vvv∗
1, · · · , vvv∗

i−1, vvv].

The search space of www is restricted to an N ′ dimensional subspace such that www = Wpcavvv, and the

i-th extracted feature Fi becomes

Fi = vvv∗T
i YYY = vvv∗T

i WT
pcaXXX.

Henceforth, the covariance matrix of FFF i becomes

ΣFFF i
, E{FFF iFFF

T
i } = V T

i ΣY Vi = V T
i Vi.

In order to simplify the process of taking the inverse of ΣFFF i
, vvv ∈ ℜN ′

, the last column of Vi, is

restricted to the orthogonal direction to all the other (i− 1) columns of Vi. In addition, because the

scaling of vvv does not change the values of p̂(c|V T
i yyy) and Ĥ(C|V T

i YYY ) in (11) and (12), vvv are always

normalized such that vvvTvvv = 1. Subsequently, the covariance matrix of FFF i becomes an i dimensional

identity matrix Ii. This orthonormalization of the weight matrix alleviates the computational effort

greatly by avoiding the process of matrix inversion in the calculation of the conditional entropy (12)

and its derivative.

C. Feature extraction using Parzen window

In this part, Step 3 of the greedy extraction algorithm described in Section 3.1 is elaborated.

After preprocessing by PCA described in the previous subsection, features with maximum mutual

information with the class is added one by one in Step 3. In this process, the mutual information

is calculated in the same way as in Section 2 by using the density estimation by the Parzen window

method. Step 3 is carried out as follows:

Step 3. (Greedy extraction) For i = 1, · · · ,M , repeat the following.

(a1) (Randomize weight) Generate an N ′ dimensional random weight vvv.

(a2) (Orthonormalization) Orthonormalize the weight vvv by the Gram-Schmidt method;

vvv ←− vvv −
i−1
∑

j=1

(vvvTvvv∗j/||vvv∗
j ||2)vvv∗

j

vvv ←− vvv/||vvv||.

(14)

(a3) (Weight update) Update weight by the gradient descent method;

i. (Gradient calculation) Calculate ∇vvvH(C|V T
i YYY ).
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ii. (Weight update) Reserve the old weight and update the weight with the learning rate µ.

vvvold ←− vvv

∆vvv ←− −µ∇vvvH(C|V T
i YYY )

vvv ←− vvv + ∆vvv.

iii. (Orthonormalization) Orthonormalize the weight vvv to make ΣFFF i
= E{FFF iFFF

T
i } = Ii, using

procedure (14).

iv. (Convergence check) If ||vvv − vvvold|| < ǫ or the number of iterations reaches MAX ITER, go

to Step (b). Otherwise, go to Step 3(a3)-i.

(b) (Extraction of the next feature) Set vvv∗
i = vvv, Fi = vvv∗T

i YYY and www∗
i = Wpcavvv

∗
i . F ←− F ∪ {Fi}.

In Step 3(a3)-ii, we use the gradient descent method, but we may use other optimization methods

such as conjugate gradient or Levenberg-Marquardt. The objective function may be highly nonlinear

and the solution may converge to a local minimum. To alleviate this problem, the learning rate µ can

be set to higher values in earlier iterations and then scaled down as the number of iterations increases.

In addition, in Step 3(a1), the conditional entropy H(C|V T
i YYY ) can be calculated for various initial

weight vvv’s and we can select the best vvv that results in the minimum value of H(C|V T
i YYY ).

D. Calculation of the gradient

Before discussing the calculation of the gradient in Step 3(a3)-i in detail, let us consider how to

choose the window width parameter, h, for different number of extracted features. In the calculation

of the conditional probability (11), (fff − fff i)
T Σ−1

FFF (fff − fff i) increases in proportion to the number of

extracted features when ΣFFF = I. To make sure that φ(fff − fififi, h) does not change too much for a

given sample point fff = fjfjfj when the dimension of fff increases, the denominator 2h2 of the exponential

should also be increased. Thus we set ℏk = ℏ1

√
k where ℏk denotes h when the dimension of FFF is k.

This worked well for the experiments reported in Section 4.

All that remains is the calculation of the gradient∇vvvH(C|V T
i YYY ) ∈ ℜN ′

in Step 3(a3)-i. Replacing

FFF with V T
i YYY , (12) becomes

Ĥ(C|V T
i YYY ) = −

n
∑

j=1

1

n

Nc
∑

c=1

p̂(c|V T
i yyyj) log p̂(c|V T

i yyyj),

where yyyj represents the j-th sample of the original data transformed by PCA.

The last column of Vi can be obtained by differentiating this with respect to vvv,

∇vvvĤ(C|V T
i YYY )

= −
n

∑

j=1

1

n

Nc
∑

c=1

{∇vvv p̂(c|V T
i yyyj) log p̂(c|V T

i yyyj) +∇vvv p̂(c|V T
i yyyj)}

= −
n

∑

j=1

1

n

Nc
∑

c=1

∇vvv p̂(c|V T
i yyyj){1 + log p̂(c|V T

i yyyj)}.

(15)
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TABLE I

Classification problems

Dataset No. of

classes

No. of

features

No. of

samples

Performance test

Linearly inseparable 2 4 1000 train/test (500/500)

UCI
sonar 2 60 208 13-fold cross validation

wine 3 13 178 train/test (90/88)

face
Yale 15 21 × 30 165 leave-one-out

AT&T 40 23 × 28 400 leave-one-out

Rewriting (11) leads to

p̂(c|V T
i yyy) =

∑

l∈Ic ϕ(V T
i ỹyyl)

∑Nc

k=1

∑

l∈Ik ϕ(V T
i ỹyyl)

,

where, ϕ(zzz) , exp(−zzzT Σ−1zzz
2h2 ) and ỹyyl , yyy − yyyl.

By differentiating this w.r.t. vvv, the following is obtained:

∇vvv p̂(c|V T
i yyy) =

∑

l∈Ic ∇vvvϕ(V T
i ỹyyl)

∑Nc

k=1

∑

l∈Ik ϕ(V T
i ỹyyl)

− [
∑

l∈Ic ϕ(V T
i ỹyyl)][

∑Nc

k=1

∑

l∈Ik ∇vvvϕ(V T
i ỹyyl)]

[
∑Nc

k=1

∑

l∈Ik ϕ(V T
i ỹyyl)]

2
.

Since the new feature candidates are orthogonal to the previously extracted features in Step

3(a3)-iii, ΣFFF i
= Ii. Replacing Σ in ϕ(·) with the identity matrix, and differentiating it w.r.t. vvv,

∇vvvϕ(V T
i ỹyyl) ∈ ℜN ′

can be obtained as follows:

∇vvvϕ(V T
i ỹyyl) = ∇vvv exp(− ỹyyT

l ViV
T
i ỹyyl

2h2
)

= − 1

h2
exp(− ỹyyT

l ViV
T
i ỹyyl

2h2
)(ỹyylvvv

T ỹyyl).

Finally, the calculation of (15) is completed and the PWFX algorithm can be implemented.

As in PWFS, the computational complexity of PWFX is proportional to the square of the number

of samples, n2, and the dimension of the input feature space, N , in addition, it is also proportional

to the number of iterations.

IV. Experimental Results

In this section, PWFX was applied to several classification problems shown in Table I and the

classification performance was compared with those of other methods which are either popular or

give good performance.

In the proposed feature extraction algorithm, deciding the window width parameter, h, is very

important. Not knowing the optimal value for the width parameter, we tried PWFX for several
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values of ℏ1 and found out that ℏ1 = 0.1 ∼ 0.5 was generally acceptable. We set ℏ1 = 0.3 for all

the experiments below. In addition, in order to expedite the computation, the influence range of a

sample point was restricted to 2σ · h for each dimension, i.e., the influence was set to zero in the

outer domain of 2σ · h from the sample point. Here σ is the standard deviation of the corresponding

feature and is always equal to 1 in the simulation. This reduces the computational effort greatly.

In all the experiments, the learning rate, µ, was set to 0.1 and the convergence parameter, ǫ, in

Step 3(c)-iv was set to 10−3 and MAX ITER was set to 300.

A. Simple linearly inseparable problem

Suppose there are four independent input features, x1 ∼ x4, uniformly distributed on [-1,1] for a

binary classification, and the output class, c, is determined as follows:

c =











0 if |x1 + 2x2| < 1

1 if |x1 + 2x2| ≥ 1.

Although this problem is linearly inseparable, it can still be classified with one feature if x1 +2x2

is extracted as a new feature.

For this problem, 1,000 samples were randomly generated and LDA, ICA-FX and PWFX were

performed on this dataset. The training and test sets contained 500 samples each. For this dataset,

the normalized weights corresponding to the first features extracted by LDA, ICA-FX and PWFX are

wwwlda = [−0.42, 0.34, 0.83,−0.17]T , wwwicafx = [0.52,−0.41,−0.58, 0.49]T and wwwpwfx = [0.46, 0.88,−0.02, 0.00]T

respectively. We can see that wwwPWFX is very close to the optimal weight www∗ = [1, 2, 0, 0]T .

Table II shows the classification results of the feature extraction algorithms with various numbers

of extracted features. Multi-layer perceptron (MLP) with one hidden layer and three hidden nodes

was used for the classification. The learning rate, momentum, and the number of iterations were set

to 0.1, 0.9, and 100 respectively. In the table, the results are the averages of 10 experiments and

the numbers in the parentheses are the standard deviations. Because there are two classes, the LDA

extracts only one feature for this problem. The classification performances of the LDA and ICA-FX

can be seen to be relatively poor giving almost 50% of error rates for most cases. In contrast, the

PWFX is seen to perform well for this problem.

Since the LDA assumes that the distribution of each class has one peak like a Gaussian distribu-

tion, it does not perform well if the centers of the classes are not separated well. For this problem,

the centers of ‘class 0’ and ‘class 1’ are both approximately at (0,0). Likewise, the ICA-FX cannot

effectively deal with the linearly inseparable problems. On the other hand, the PWFX does not make

any assumption on the class distribution because it makes use of the Parzen window, and thus can

better deal with inseparable problems. Note that the performance of the PWFX does not vary much

as the number of extracted features increases. This suggests that the first feature contains almost
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TABLE II

Classification performance for the inseparable |x1 + 2x2| ≷ 1 problem.

No. of Classification error (%) (MLP)

features LDA ICA-FX PWFX

1 49.44 (0.08) 49.80 (0.21) 3.96 (0.26)

2 – 49.42 (0.38) 2.72 (0.19)

3 – 45.92 (0.81) 3.98 (0.06)

4 – 39.48 (0.90) 4.38 (0.11)

all the information on the class which was expected as the first weight of PWFX is very close to the

optimal weight.

B. Sonar target dataset

The sonar target classification problem is described in [20]. The aspect angle independent dataset

were used in this experiment. The classification performances of the PWFX were compared with those

of the LDA and ICA-FX for various numbers of extracted features.

A thirteen-fold cross validation was used to obtain the performances, and the MLP, C4.5, and

SVM were used as classifier systems. For all the classifiers, input values of the data were normalized

to have zero means and standard deviations of one. In training the MLP, the standard BP algorithm

was used with three hidden nodes, two output nodes, a learning rate of 0.05 and a momentum of

0.95. The neural networks were trained for 1,000 iterations. The C4.5 parameters were set to default

values in [21]. For the SVM, the radial (Gaussian) kernel was used and the other parameters were

set to the default values [22]. Because the performance of the radial kernel SVM depends critically

on the parameter γ, the SVM was conducted with various values of γ ranging from 0.01 to 1, and the

reported classification performance on the test data corresponds to the best γ that showed the best

classification performance on the training data.

Table III shows the experimental results. The results of the LDA, and ICA-FX were obtained

from [13]. For comparison, the performances using all the 60 original features are also reported in

the table. To save the space, this is reported in the last row on the LDA column.

The performance for MLP is an average of the 10 experiments and the numbers in the parentheses

denote its standard deviation. The PWFX can be seen to perform far better than the other methods

regardless of the classifying system and with only 3 or 6 features. These results indicate that most

of the information on the class is contained in the first few features of the PWFX.

To observe the characteristics of the PWFX, the probability density of the first features of LDA,

ICA-FX with M = 1, and PWFX are plotted in Fig. 1. These are estimates of the conditional

densities p(f |c)’s (class-specific density estimates) calculated by the Parzen window method with

h = 0.2. In Figures 1 (a),(b), and (c), if the domain for p(f |c = 0) 6= 0 and the domain for
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TABLE III

Classification performance for Sonar Target data. (The last row of the LDA column

shows the performance using all the 60 original features.)

No. of Classification performance (%) ( C4.5/MLP/SVM )

features LDA ICA-FX PWFX

1 71.2/75.2(0.37)/74.1 87.5/87.3(0.17)/87.1 90.4/91.8(0.14)/90.8

3 – 86.1/88.1(0.37)/89.0 95.7/92.3(0.15)/95.7

6 – 85.6/86.4(0.42)/87.1 95.7/91.1(0.23)/94.2

9 – 83.2/85.0(0.83)/88.8 96.6/89.9(0.30)/92.3

12 – 78.2/83.4(0.49)/86.6 96.6/89.2(0.24)/92.3

60 73.1/76.4(0.89)/82.7 73.1/80.0(0.78)/84.2 96.3/86.7(0.56)/88.2

00 2 4 6-2-4-6 8 10

0.1

0.2

p
(f

|c
)

f

Class 0 (MINE)
Class 1 (ROCK)

(a)LDA

00 5 10-5-10

0.1

0.2

p
(f

|c
)

f

Class 0 (MINE)
Class 1 (ROCK)

(b)ICA-FX

00 1 2 3 4-1-2-3

0.2

0.4

0.6

0.8

p
(f

|c
)

f

Class 0 (MINE)
Class 1 (ROCK)

(c)PWFX

Fig. 1. Probability density estimates for a given feature.
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TABLE IV

Classification performance for Wine data. (The last row of the LDA column shows

the performance using all the 13 original features.)

No. of Classification performance (%) ( C4.5/MLP )

features LDA ICA-FX PWFX

1 56.81/56.81(0.00) 64.77/63.63(0.00) 94.31/93.18(0.00)

2 56.81/96.01(0.97) 63.63/95.11(1.86) 97.72/96.59(0.54)

3 – 78.40/95.45(0.76) 97.72/96.59(0.54)

13 79.15/85.23(2.12) 87.50/94.31(1.42) 97.72/96.59(0.76)

p(f |c = 1) 6= 0 do not overlap, there will be no error in the classification. It can be seen that

the overlapping region of the two classes is the smallest in PWFX and the largest in LDA. Unlike

the other methods, the domain where p(f |c = 1) is greater than p(f |c = 0) is comprised of several

separated regions in the PWFX, i.e., the regions around [-3,-2.5], [-1.8,-1.4], and [0.2,2.2]. The PWFX

searches for a direction that directly maximizes the mutual information, whereas the LDA and ICA-

FX implicitly assume that the centers of each class are well separated. Therefore, it is expected that

the PWFX will perform better than the LDA and ICA-FX for non-separable classification problems.

Addison et al. [23] reported that the error rates of MLP with 47 ∼ 60 features for the sonar

data are 2 ∼ 5%. However, these results cannot be directly compared to those of PWFX because the

experimental settings [23] might be different.

C. Wine dataset

The wine data are the results of a chemical analysis of wines grown in the same region in Italy

but were derived from three different cultivars [24]. Each sample is composed of quantities of the 13

constituents. There are 178 samples of which 59, 79, and 48 samples are in Class 1, Class 2, and

Class 3, respectively. Among each class, 30 samples were used as the training data and the remaining

ones were reserved for the test data.

Table IV shows the performance of the LDA, ICA-FX and PWFX methods. C4.5 and the MLP

were used as classifier systems. The default parameters were used for C4.5, and a learning rate of 0.1

and a momentum of 0.9 were used for the MLP. The number of maximum iterations was set to 300

and the number of hidden nodes was set to 3 for the MLP with one hidden layer. For comparison,

the performances using all the 13 original features are also reported in the table. To save the space,

this is reported in the last row on the LDA column.

The performance of the PWFX can be seen to be much better than those of the other methods by

approximately 30% when one feature was extracted. This gap decreases when more than 2 features

were extracted. Also, note that the PWFX worked well on both classifiers, whereas the others did

not.
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(a)Yale

(b)AT&T

Fig. 2. Weights of various methods for the Yale and AT&T datasets (1st row: LDA (Fisherfaces), 2nd

row: ICA-FX, 3rd row: PWFX.)

D. Face recognition problem

In this subsection, the PWFX, LDA and ICA-FX were applied to the face recognition problem

on the Yale [25] and AT&T [26] face databases.

To obtain the original features, XXX, each image was downsampled into a manageable size. Each

downsampled pixel was transformed to have a zero mean and a unit variance. The PCA was then

performed both as a whitening process and for the purpose of further reducing the dimensions of the

feature space. Finally, the PWFX was applied to extract the valuable features for the classification. As

a comparison, the LDA and ICA-FX were also used after the PCA was performed. The performance

was tested using the leave-one-out scheme and the classification was performed using the nearest

neighborhood classifier.

The Yale face database consisted of 165 grayscale images of 15 individuals and the AT&T database

consisted of 400 images, which were ten different images for 40 distinct individuals. The Yale face

images were downsampled into 21 × 30 pixels and the AT&T images were downsampled into 23 × 28
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Fig. 3. Error rates of PWFX for Yale and AT&T Databases.

TABLE V

Error rates of various feature extraction methods.

Method Dim. of No. of Error

Reduced Space Errors Rate (%)

LDA 14 14 8.48

YALE ICA-FX 10 7 4.24

PWFX 5 7.8 4.73 (1.06)

LDA 39 16 4.00

AT&T ICA-FX 10 4 1.00

PWFX 13 7.2 1.80 (0.32)

pixels. For the original features, the largest 30 principal components from the 630 pixels were used

for the Yale, and 40 principal components from 644 pixels were used for the AT&T dataset.

Figures 2 (a) and (b) represent the typical weights of LDA, ICA-FX, and PWFX for the Yale

and AT&T data. From the top, each row shows the first 10 weights of LDA, ICA-FX, and PWFX,

respectively.

Figure 3 shows the error rates of the PWFX averaged on the ten experiments with various

numbers of extracted features. The bars at each data point denote the standard deviations of the

ten experiments. In that figure, the performances of the PWFX for the Yale and AT&T databases

are best when the number of extracted features is 5 and 13, respectively.
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In Table V, the performance of the PWFX is slightly worse than that of the ICA-FX, but is better

than those of the LDA. The results other than those of the PWFX were obtained from [27]. For the

AT&T data, Yang [28] reported the error rates of the kernel Fisherface method with 39 features and

kernel eigenface method with 40 features are 1.25% and 2.0%, respectively. The error rate of the

PWFX is nearly the same, but the number of features used is about one third of those in [28].

V. Conclusions

This paper proposes a new feature extraction method for dealing with classification problems.

The proposed method provides a way of using the mutual information directly in extracting features

for classification problems by overcoming computational limitations.

Although the restriction that the newly extracted feature of the PWFX is orthogonal to the

already extracted features is unnecessary, it greatly simplifies the calculation of the gradient. Once the

gradient was calculated, the gradient descent method was used to maximize the mutual information

and the greedy extraction scheme was used to determine the new features. The proposed algorithm

does not make any assumption with respect to the distribution of features, and this fits well for

complex classification problems where the classes have multiple peaks in the feature space. The

computational complexity of the proposed method is proportional to the square of the sample size

and it is also proportional to the size of the input space. In the bench mark problems, it showed

better or comparable performances than those of other conventional methods such as the LDA and

ICA-FX. This shows that the PWFX can extract good features for classification problems.

But, there still remains several issues to be dealt with in future work. These include the method

of feature extraction based on direct calculation of Bayes error, the resolution of the computational

complexities for the problems in high dimensional input space, and the study of the effect of feature

extraction on the required amount of training data.
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