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We propose a pixel selection method in a face image based on discriminant features for face recognition.
By analyzing the relationship between the pixels in face images and features extracted from them, the
pixels that contain a large amount of discriminative information are selected, while the pixels with less
discriminative information are discarded. The experimental results obtained with various face databases
show that the proposed pixel selection method results in improved recognition performance, especially
in the presence of illumination or facial expression variations. Additionally, the proposed method greatly
reduces the memory size and computational load in the face recognition process.
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1. Introduction

Numerous methods have been developed for face recognition in
the last few decades (Jain et al., 2000; Tan et al., 2006; Zou et al.,
2007). Some of the major difficulties in face recognition are due
to a large number of pixels and heavy demand on computational
resources. Most face recognition algorithms first project a face im-
age into a lower dimensional space by using a dimension reduction
method (Turk and Pentland, 1991; Belhumeur et al., 1997;
Cevikalp et al., 2005; Kim and Choi, 2007; Jiang et al., 2008). In
the methods based on holistic features, useful features for face rec-
ognition are extracted from a full face image. Holistic feature-
based methods implicitly preserve all of the detailed texture and
shape information that are useful for distinguishing faces, and
can capture global aspects of faces. However, since a face image
can change greatly depending on the pose, illumination, facial
expression and partial occlusion, holistic features can be quite sen-
sitive to these variations, which can be considered as noise. More-
over, not all of the pixels in a face image are helpful for extracting
the discriminant features. For example, the pixels, which have
small intensity variation in one class and large intensity variation
in the other classes, contain discriminative information. On the
contrary, the pixels which are not closely related to the class infor-
mation are susceptible to noise in the discriminant analysis.
ll rights reserved.
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Unlike the holistic feature-based methods, some methods ex-
tract features from local images, which can be less sensitive to
these variations, and therefore provide robust features against
these variations. 2D Gabor-like filters were found to be suitable
as local descriptors because of their robustness against translation,
rotation, and scaling (Liu and Wechsler, 2002; Pang et al., 2004;
Kokiopoulou and Frossard, 2006; Yang et al., 2004; Wang et al.,
2011). In several papers, a face image was partitioned into a set
of sub-images, and then local features were extracted from these
sub-images (Gottumukkal and Asari, 2004; Tan and Chen, 2005).
The information obtained from these local features was used with
(Kim et al., 2005; Pentland et al., 1994) or without global features
(Gokberk et al., 2007; Rajagopalan et al., 2007) to improve the
accuracy and robustness in the face recognition process.

In this paper, we propose a pixel selection method based on dis-
criminant features for face recognition. The pixels, whose intensity
varies greatly due to variations such as illumination or facial
expression variations, are likely to interfere in selecting good fea-
tures for face recognition, and these pixels can be regarded as
noise. Thus, we can expect to obtain better discriminant features
by eliminating noisy pixels, which will lead to improve face recog-
nition performance. Recently, we presented a preliminary result on
the pixel selection method in a face image based on discriminant
features for face recognition (Choi et al., 2008). Here, we make fur-
ther improvements to this method, provide a more detailed analy-
sis and extensive discussion, and present additional experimental
results under various conditions.

In the proposed method, we first extract the holistic features
from a full face image. Based on the discriminative power of each
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basis that constitutes the feature space, we select the pixels which
play a more important role in extracting discriminant features,
while discarding noisy pixels. The effect of noise reduction by the
proposed method is demonstrated by using a toy example. Remov-
ing the noisy pixels makes the PSNR (peak signal-to-noise ratio) of
the resultant image higher, which can improve the performance of
the feature extracted by discriminant analysis (We call this image
the ‘reduced image’).

The proposed method is different from other local feature-
based methods that select the salient components (such as the
eyes, nose and mouth) subjectively, because it objectively selects
important pixels in a face image. The reduced image obtained by
the proposed method is significantly smaller in size than the origi-
nal image, resulting in a significant saving in data storage and com-
putational effort. This leads to efficient data transmission and
processing that are especially important in mobile applications
and real-time systems. On the other hand, various input variable
selection methods can be used to select meaningful pixels for face
recognition. Information theoretic measures such as the posterior
marginal probabilities of each face vertex (Ocegueda et al., 2011),
distance discriminant (Liang et al., 2008), Fisher score (Yang
et al., 2010), Laplacian score (He et al., 2006) and subspace based
separability measure (Gunal and Edizkan, 2008) can be used to
evaluate the usefulness of pixels. Unlike these methods, the pro-
posed method is based on the projection vectors obtained by a fea-
ture extraction method (discriminant analysis algorithm). Each
feature extraction method has its own characteristics, and thus
an appropriate method must be used depending on the properties
of the data and the problem to be solved. Since the proposed meth-
od can inherit the benefit of a properly selected feature extraction
method, it can enhance the feature extraction method by eliminat-
ing the pixels that have only a small amount of discriminative
information. Experimental results in Section 3 show that the pro-
posed method gives better recognition rates than other methods.

The rest of this paper is organized as follows. Section 2 explains
how to extract the discriminant features and select the pixels in a
face image based on the extracted features. Section 3 presents the
experimental results, followed by the discussion and conclusions
in Section 4.

2. Pixel selection based on discriminant features

In order to select pixels in a face image which are useful for face
recognition, we first extract discriminant features from full face
images by using a feature extraction method. Pixels are selected
based on these extracted features and the remaining pixels are dis-
carded. This reduced image, consisting of only the selected pixels, is
used in the final face recognition process. The overall architecture of
face recognition based on the proposed method is shown in Fig. 1.

2.1. Relation between the feature space and the input space

Several methods have been proposed to extract discriminant fea-
tures for face recognition (Turk and Pentland, 1991; Belhumeur
et al., 1997; Cevikalp et al., 2005). Even though any good feature
extraction method may be used, we use the discriminant common
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Fig. 1. Pixel selection process.
vector (DCV) (Cevikalp et al., 2005) to extract discriminant features.
This is because DCV, which is a variant of the null space LDA method
(Chen et al., 2000), solves not only the ‘‘small sample size (SSS) prob-
lem’’ (Fukunaga, 1990), but also performs better for high-dimen-
sional data (e.g. image data) compared to other feature extraction
methods. Consider a set of N image samples fx1; x2; . . . ;

xNg; xk 2 Rn, each of which belongs to one of c classes. The i-th
element of xk, xki, i = 1,2, . . . ,n, represents the gray intensity of the
i-th pixel of image xk. The key idea of DCV is to make use of the
observation that the null space of the within-class scatter matrix
(Sw) contains a lot of discriminative information (Cevikalp et al.,
2005). The columns of the projection matrix W obtained by DCV
are the projection vectors {wljl = 1,2, . . . ,n0} and the image sample
xk is represented as a low-dimensional feature vector
yk ¼WT xkð2 Rn0 ;n0 � nÞ.

The projection vector wl with a large eigenvalue kl gives the
direction which is suitable for discriminant analysis. Thus, we esti-
mate the significance of each pixel by measuring its contribution in
constructing the projection vector that constitutes a discriminant
feature space. Since wl and xk have the same dimension, wl can
be represented as a vector in the image space. Let wl 2 Rn be the
projection vector corresponding to the l-th largest eigenvalue ob-
tained by a feature extraction method, e.g. DCV, and let ei 2 Rn

be the i-th unit coordinate vector of the image space. Then, wl

can be expressed by a linear combination of eis as follows:

wl ¼ ½wl1;wl2; . . . ;wln�T ¼ wl1e1 þwl2e2 þ � � � þwlnen: ð1Þ

The magnitude of wli indicates how much the i-th coordinate vector
ei contributes to the projection vector wl. For example, when the
dimension of input space is two (n = 2), the projection vector
w 2 R2 can be represented in a two-dimensional input space. In
Fig. 2, the components w1 and w2 of the projection vector w are
the weights to e1 and e2, respectively. In this figure, since w1 is lar-
ger than w2, the basis e1 plays a more important role than the basis
e2 to construct the projection vector w. If w1 is sufficient larger than
w2 in magnitude, eliminating w2 in representing the vector w will
make only small change in the direction of w, which may be ignor-
able. By extending this to the n-dimensional image space, if we can
approximate yk ¼ ½yk1; . . . ; ykn0 �

T ¼WT xk, (n0 � n, by using fewer
coordinate vectors of image space, the coordinate vector ei should
be selected starting from the coordinate vectors corresponding to
large jwlij to minimize its approximation error. Therefore, if wli is
larger in magnitude than wlj in a projection vector wl, the coordi-
nate vector ei (i.e., the i-th pixel) can be regarded as more important
than ej (i.e., the j-th pixel).

In classification problems, feature extraction methods (such as
Fisherface, DCV, ERLDA, etc.) produce a feature vector yk =
[yk1,yk1, . . . ,ykm]T, which is used as an input to a classifier. For a
given input image data sample (xk) and a projection vector (wl),
each feature, ykl, l = 1, . . . ,m is computed as a linear combination
of pixels xk = [xk1, . . . ,xkn]T and weights wl = [wl1, . . . ,wln]T, i.e.,

ykl ¼ wT
l xk ¼ wl1xk1 þwl2xk2 þ � � � þwlnxkn: ð2Þ

This different weighting for each pixel differentiates the importance
of each pixel, and it can be helpful in classification problems to
Fig. 2. Projection vector w in two-dimensional input space.
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consider only the pixels xkis associated with larger jwlij. Pixels xkis
associated with smaller jwlij do not influence much on the decision
of the classifier, and consequently these pixels are less important
for recognition purpose; rather they might be more susceptible to
noise. Thus, eliminating such pixels based on the magnitudes of
the projection vectors can help to produce better discriminative
features.

We produce n0 projection vectors with 400 images from the
FERET database (Phillips et al., 2000) by using DCV (in the experi-
ments of Section 3, we used full face images consisting of
120 � 100 pixels, i.e., xk 2 R12;000 and set n0 to 199). Fig. 3 shows

the mean of jwlij, wm
i ¼ 1=n0

Pn0

l¼1jwlij
� �

, sorted in descending order

and its one standard deviation. In the figure, note that the one stan-
dard deviation becomes smaller as wm

i decreases. This implies that
when the j-th component of wk (k – l), wkj, is relatively small com-
pared to the other components, the j-th component of the other
projection vector wl (k – l), wlj, is more likely to be small. There-
fore, we can eliminate the coordinates which do not play a major
role in building the feature space without much altering the direc-
tion of the projection vectors with large eigenvalues. By using this
idea, we propose a pixel selection method based on the order of
jwlij for the projection vector wl.

2.2. Pixel selection based on the order vector

In order to effectively select pixels based on the magnitude of
wli, we define an n-dimensional order vector rl = [rl1,rl2, . . . ,rln]T

for each projection vector. The i-th component of rl, rli, represents
the order of wli when the absolute value jwlij is sorted in ascending
order. For example, if jwlij is the k-th largest value among
{wliji = 1,2, . . . ,n}, rli is assigned the value n � k + 1. Then, we make
a mask vector m0

l ¼ m0l1;m
0
l2; . . . ;m0ln

� �T based on the order vector
such as
Fig. 4. Some masks m0ls obtained by (2); (a) 1st projection vector; (b) 2nd
m0li ¼
1 rli > n� ns

0 otherwise

�
ð3Þ

where ns is the total number of pixels to be selected. If m0li ¼ 1, it im-
plies that the i-th pixel is considered to be valuable in the face rec-
ognition process.

Fig. 4 shows some masks m0
ls, which are represented as two-

dimensional binary images, obtained by (3). Here, the white and
black pixels represent the selected and discarded pixels, respec-
tively. As shown in Fig. 4, the mask vectors obtained from the pro-
jection vectors are usually different from each other. These mask
vectors need to be into one mask vector based on the eigenvalue
kl of each projection vector. Fig. 5 shows an example of the eigen-
values {kljl = 1,2, . . . ,n0} plotted against the index l after sorting
them in descending order. As shown in Fig. 5, the eigenvalues de-
crease drastically and most of the sum of the eigenvalues are con-
centrated in the first 20–30 eigenvalues. Therefore, the order
vector rl should be treated differently according to its eigenvalue.
For this purpose, we define a new vector rs which is a sum of
weighted order vectors.

rs ¼
X

l

alrl;al ¼
klP

jkj
: ð4Þ

If a threshold Ts is set as the ns-th largest value of the components of
rs = [rs1,rs2, . . . , rsn]T, then the mask m00 ¼ m001;m

00
2; . . . ;m00n

� �T is
obtained as follows:

m00i ¼
1 rsi P Ts

0 otherwise:

�
ð5Þ

It is noted that m00 has ns non-zero elements. Fig. 6(a) shows the
masks m00 obtained by (5), which are represented as two-dimen-
sional binary images, as the total number of pixels to be selected
(ns) increases from 15% to 50% of the total number of pixels In the
figure, a selected pixel is represented as a white pixel.
projection vector; (c) 3rd projection vector; (d) 4th projection vector.
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2.3. Pixel grouping using a low pass filter

In Fig. 6(a), we see that the selected pixels constitute very com-
plicated boundaries. In some regions, several selected pixels are
disconnected from the other selected pixels, whereas in other re-
gions most of the pixels are connected. However, it is unlikely that
the discriminant power changes abruptly pixel by pixel. Moreover,
since the detailed mask shape can change when different images
are used in making masks or when there is an error in the face
alignment (Kim and Choi, 2007), it is better to group the selected
pixels to deal with such cases.

In order to group the selected pixels, we smooth the boundaries
of the selected pixels of m00 by applying a low pass filter (see
Fig. 6(b)) to the mask of Fig. 6(a), and obtain a filtered mask
mF ¼ mF

1;m
F
2; . . . ;mF

n

� �T . Then, we finally get the mask m from mF

with a threshold Tf as follows:

mi ¼
1 mF

i > T f

0 otherwise:

�
ð6Þ

The value for the threshold Tf is set so that the number (nf) of final
selected pixels is close to ns. Fig. 6(c) shows the final masks m
resulting from the pixel grouping using the low pass filters to make
a mask such as in Fig. 6(c). Here, the regions of the selected pixels
are more densely distributed than regions in Fig. 6(a). This step re-
sulted in a small improvement (0.0–0.8%) in the experiments in Sec-
tion 3 depending on the database used. In order to investigate the
effect of different filter sizes, we performed the pixel grouping pro-
cess with two different filter sizes, 3 � 3 and 5 � 5, and found that
the 5 � 5 filter was better at alleviating the complicated boundaries
in the mask m00. The masked images are obtained by multiplying the
image xk with the mask m pixel by pixel, and the reduced images
x0k 2 Rnf are made by eliminating the pixels having zero value in
the masked images. In pixel grouping, one may consider applying
a low pass filter before the feature extraction step; however, we
found that applying the filter after the feature extraction step pro-
duces better results.

The masks in Fig. 6(c) show that the selected pixels are distrib-
uted mainly around the eyes and nose. This is relatively consistent
with the results in psychophysical reports that state that the eye-
brows, eyes, nose, and mouth are the most useful components in
facial identification (Sinha et al., 2006; Ocegueda et al., 2011).
However, as seen in Fig. 6(c), some pixels in the other region also
contribute to facial identification. We will show later that the rec-
ognition performance can be improved by using the pixels selected
in this way ðInf

ReÞ rather than the pixels selected intuitively (ILocal).
The effect of the mask m on the distribution of wli, l = 1, 2, can be

seen in Fig. 7. Figs. 7(a) and (b) show the histograms of the values
of w1i and w2i before and after applying the mask m. Note that w1is
and w2is are the i-th components of the projection vectors corre-
sponding to the largest two eigenvalues produced by the feature
extraction method in SubSection 2.1. The horizontal axis repre-
sents the values of wli with the bin size of 0.001 and the vertical
axis represents the number of wli in a bin. When comparing Figs.
7(a) and (b), it can be seen that a great portion of smaller weights
jwlij are eliminated while the larger weights jwlij, which are re-
garded as important, are mostly kept after the pixel selection
process.

The procedure of the proposed pixel selection method can be
summarized as follows:

� Step 1: From face images, obtain projection vectors wl

(l = 1, . . . ,n0), which constitute a feature space by using a feature
extraction method.
� Step 2: Make an order vector rl (l = 1, . . . ,n0) representing the

relative magnitude of each component for the projection vector
wl, obtained at step 1. Based on the eigenvalues of the projec-
tion vectors, merge n0 order vectors into a single order vector
rs by using (4).
� Step 3: After obtaining a mask m00 by using (5), produce the final

mask m through the pixel grouping process.
� Step 4: Obtain the reduced image consisting of the selected pix-

els by multiplying a face image with the final mask m pixel by
pixel.

2.4. Toy example

To show the effectiveness of the proposed method, a toy exam-
ple is presented. Let us consider a set of 20 images ð2 R10�10Þ as
shown in Fig. 8. Each image belongs to one of four classes, and
its class can be identified by the position of the white pixels. The
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Fig. 7. Distribution of w1i and w2i; (a) before applying the mask; (b) after applying the mask.
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Fig. 8. A toy example. The images from four classes (the upper images: without
noise, the lower images: with Gaussian random noise).
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number of white pixels is 6, 6, 4 and 4 depending on the class (the
images in the upper row of Fig. 8). Then, we added Gaussian ran-
dom noise with standard deviation of 5 to each image so that the
peak signal to noise ratio (PSNR) of an image is 10–13 dB for the
Table 1
Number of white pixels selected for various values of ns.

ns 20 30 40 50

No. of white pixels 13 17 18 20
PSNRa 19.1 17.3 15.9 14
Pixel indexb (9,3) (9,8) (10,8) –

(6,8) (10,8) (10,9) –
(6,9) (10,9) – –
(7,9) – – –
(9,8) – – –
(10,8) – – –
(10,9) – – –

a Average PSNR of the images which consist of ns pixels.
b Locations of white pixels that are eliminated in the selection process.
images in the lower row of Fig. 8. In the figure, each pixel located
on the j-th row and the i-th column from the upper left corner is
denoted by the index (i, j). It is obvious that the pixels (total 20 pix-
els) corresponding to the white pixels have the most discrimina-
tive information because their variances in the same classes are
zero, while those in the different classes are very large. We applied
the proposed pixel selection method to this image set and ob-
served which pixels were selected as ns was increased from 20 to
100 (see Table 1).

For the images in the upper row of Fig. 8 (without noise), when
selecting 20 pixels (20%) out of total 100 pixels by the proposed
method, i.e., ns = 20, only the 20 white pixels, which have discrim-
inant information, were selected. However, in the experiments for
the images in the lower row of Fig. 8 (with Gaussian random
noise), 7 noisy pixels were selected along with 13 white pixels (Ta-
ble 1). Selecting noisy pixels prior to the white pixels is due to the
random noise added to images, which makes the projection vectors
deviate from the optimal solution in the discriminant analysis. For
the experiments with various values of ns, the indices of missing
60 70 80 90 100

20 20 20 20 20
.8 13.8 13.3 12.6 12.2 11.6

– – – – –
– – – – –
– – – – –
– – – – –
– – – – –
– – – – –
– – – – –
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white pixels are shown in Table 1. Note that for ns = 50 all the
white pixels were selected by the proposed method. This means
that the proposed method effectively preserves discriminant pixels
while removing the pixels that have less discriminative power.

We investigated the PSNR in an image after the pixel selection.
As can be seen in Table 1, the average PSNR of the reduced image,
which consists of ns pixels, increases as ns decreases. Therefore, by
choosing ns properly, we can obtain a reduced image which in-
cludes all the informative pixels and has a higher PSNR for extract-
ing better discriminant features.

In order to compare before and after applying the proposed pixel
selection method, we plot the original image samples (for the lower
images in Fig. 8) and the reduced image samples for ns = 55 in the
subspace consisted of two principal axes. As shown in Fig. 9(a),
the original image samples belonging to the same class are widely
scattered, and one sample of class 2 and one sample of class 4 are
located at nearly the same place. By removing noisy pixels, the sam-
ples of the same class are clustered more closely and there is no
overlap between samples belonging to different classes (Fig. 9(b)).

3. Experimental results

In this section, we present the experimental results obtained
with the FERET, CMU-PIE (Sim et al., 2003), Yale B (Georghiades
and Belhumeur, 2001), and AR (Martnez and Benevente, 1998) dat-
abases. Table 2 shows the characteristics of each database. In order
to represent the degree of variation of each database, we selected
an image taken under normal condition (no illumination, expres-
sion variation) for each subject as a reference image, and computed
the PSNR of the other images of the subject. As shown in Table 2,
the PSNR of the FERET database is higher than the other databases;
thus, the images in the FERET database have relatively small vari-
ation. The center of each eye was manually detected and the eyes
were rotated to be aligned horizontally as in (Choi et al., 2011).
Each face image was cropped and rescaled so that the center of
each eye is placed at a fixed point in an image of 120 (pixels) �
100 (pixels). Then, the histogram equalization procedure (Kim
et al., 2005) was applied to the downscaled image. Fig. 10 shows
Table 2
Characteristics of each database.

Database FERET CMU-PIE Yale B AR

No. of subjects 992 65 10 126
No. of images per subject 2 21 45 20
Illumination variation None Large Large Small
Expression variation Small None None Large
Occlusion None None None Partial
Degree of variation (avr. PSNR) 16.9 12.6 12.4 12.1
some examples of the cropped and rescaled face images obtained
from the FERET, CMU-PIE, Yale B, and AR databases.

Fig. 11 shows the masks obtained from each database. As shown
in Fig. 11, since each database has different characteristics (e.g.,
different variations), the mask shape may change slightly depend-
ing on the database used in making the mask. The reason is that it
reflects not only general human facial information, but also specific
characteristics of a database. Therefore, better recognition perfor-
mance can be expected if the images used to make a mask and test
images belong to the same database. However, since a test image
can come from any database, it is important to prepare a mask that
can be applied to a test image with unknown characteristics. The
mask should not be biased to particular variation, and also repre-
sent the regions that are generally important in facial recognition
and can effectively be applied to any face image not involved in
the process of making the mask. Thus, we make a mask with the
FERET database, which does not include large facial variation, that
reflects general facial information well, and has a large number of
subjects. Among the images of the 992 subjects whose images
were in both ‘fa’ and ‘fb’ images of the FERET database, we use
two images for each of 200 subjects, one each from the ‘fa’ and
‘fb’ images, to make a mask m. We applied the same mask to not
only the images from the FERET database but also to the images
from other databases.

In order to know how many pixels should be selected for face rec-
ognition, we checked the recognition rates for the FERET, CMU-PIE
and Yale B databases by increasing the number of selected pixels
ns from 10% (1200 pixels) to 100% (12,000 pixels) of the total num-
ber of pixels. The features for recognition were extracted by using
DCV and the one nearest neighbor rule was used with the l2 norm
as a classifier. As can be seen in Fig. 12, the recognition rate does
not always increase as the number of selected pixels increases.
The best recognition rates are obtained at approximately 50–70%
of the total number of pixels depending on database, and we can
say that there are 30–50% redundant pixels in a face image. These
may function as noise in extracting discriminant features, resulting
in degradation of recognition performance. From these results, we
set the number of selected pixels (nf) to 6033 for all the experiments,
which is approximately 50% of the full face image.

We evaluated the recognition performance depending on the
type of variations; under small environmental variation, large illu-
mination variation, and various kinds of variations. For each data-
base, we compare the recognition rates of the reduced images Inf

Re

with several other images, which are the local images ILocal, the full
face images IF. The local images were produced to include only the
salient facial components, which were the eyes, nose and mouth,
commonly used in other local feature-based methods (Kim et al.,
2005; Pentland et al., 1994; Brunelli and Poggio, 1993). The regions



Fig. 10. Examples from various databases. The parts inside the white lines are local images corresponding to the eyes, nose and mouth; (a) FERET database; (b) CMU-PIE
database; (c) Yale B database; (d) AR database.

Fig. 11. Masks obtained from (a) FERET database; (b) CMU-PIE database; (c) Yale B database; (d) AR database.
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Fig. 12. Recognition performance for various ns.
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including the eyes, nose and mouth were cropped from the face
images with reference to the midpoint between the eyes (Fig. 10).

In addition, the proposed method is evaluated with several in-
put variable selection methods, which are the Uniform Sampling
(US) (Gonzales and Woods, 2002), FSDD (Liang et al., 2008), SFS,
SCS (Gunal and Edizkan, 2008), Laplacian score (LaS) (He et al.,
2006) and Semi-Fisher score (SeFS) (Yang et al., 2010). The image
IUS produced by US was obtained by down sampling the original
image uniformly, and the number of pixels was set to nearly the
same as nf. The image resizing was implemented by the bilinear
interpolation, which is widely used in image processing (Gonzales
and Woods, 2002). The images ISFS, ISCS and IFSDD, all of which con-
sisted of 6000 pixels, were obtained by using SFS, SCS, FSDD, LaS
and SeFS, respectively.

In evaluating the face recognition performance, the one nearest
neighbor rule was used with the l2 norm as a classifier, and the
features for the recognition were extracted by using the Fisherface
(PCA + LDA), DCV, and Eigenvalue regularized LDA (ERLDA) meth-
ods (Jiang et al., 2008). Even though other feature extraction meth-
ods may be used, we limit the experiments to these three popular
feature extraction methods.

Each database was partitioned into training and testing sets to
evaluate recognition performance. For all the databases, training
images are randomly selected and the other images not used as
training images were tested for each round of experiments. Ten
rounds of tests were conducted and the average recognition rate
and its standard deviation were computed.

3.1. FERET database: under small environmental variation

For the experiments of face recognition under small environ-
mental variation, we used the FERET database. The FERET database
contains frontal images of 992 subjects from both ‘fa’ and ‘fb’. With
the exception of 200 subjects that were used to make the mask,
792 subjects were used to evaluate the recognition rates. Both
‘fa’ and ‘fb’ images are regular frontal images that do not have illu-
mination variation and there is only a slight expression variation
between them. Among 792 subjects, two images (‘fa’ and ‘fb’) of
100 subjects were randomly selected for training, and the remain-
ing images of 692 subjects were used to test the recognition
performance.

In Table 3, the recognition performance, which was evaluated
by using various feature extraction methods (Fisherface, DCV and
ERLDA), was compared for several types of images: full face image
(IF), local images (ILocal) and the images produced by using other in-
put variable selection methods (I6000

SFS , I6000
US , I6000

SCS , I6000
FSDD, I6000

LaS ; I 6000
SeFS ).



Table 3
Recognition rates for FERET database (%).

Image type FEa

Fisher DCV ERLDA
45-dim. 69-dim. 69-dim.

IF (Full face image) 93.0 (±0.9) 96.2 (±0.8) 95.8 (±1.0)
ILocal (Local image) 88.6 (±1.4) 92.5 (±1.0) 91.9 (±0.8)

I6000
SFS (SFS) 93.3 (±0.7) 96.0 (±0.7) 95.7 (±0.8)

I6000
US (US) 93.4 (±0.9) 96.5 (±0.7) 96.1 (±0.8)

I6000
SCS (SCS) 93.0 (±1.1) 96.2 (±0.6) 95.6 (±0.8)

I6000
FSDD (FSDD) 94.1 (±1.7) 96.4 (±0.4) 96.1 (±0.6)

I6000
LaS (LaS) 92.0 (±1.4) 95.0 (±0.6) 94.7 (±0.5)

I6000
SeFS (SeFS) 93.9 (±0.6) 96.4 (±0.4) 96.2 (±0.4)

I6033
Re (Proposed method) 94.1 (±0.6) 96.7 (±0.4) 96.4 (±0.5)

a Feature extraction method.
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The number in the parentheses represents the standard deviation
for each case. The best recognition rates for Fisherface, DCV and
ERLDA were obtained when the numbers of features were 45, 69
and 69, respectively.

By using the reduce image I6033
Re

� �
, we were always able to im-

prove the recognition rate performance by 0.0–5.5% compared to
the other types of images depending on the feature extraction
method. The improvements gained by using the reduced images
I6033
Re are not too much compared to the other types of images,

which may be explained by the small variation between the gallery
and probe images and low noise (see Table 2) in the FERET
database.
3.2. CMU-PIE and Yale B databases: under illumination variation

We applied the proposed method to the CMU-PIE and Yale B
databases to evaluate its performance under illumination varia-
tion. The CMU-PIE database contains images of 68 subjects with
21 illumination variations. Among them, we selected the images
of only 65 subjects, because the images of the other subjects had
some defects or did not include all types of illumination variations.
In order to confirm the robustness to illumination variation, three
images of each subject were randomly selected from the images
taken under small illumination variation (‘27_06’, ‘27_07’, ‘27_
08’, ‘27_11’, ‘27_20’) to construct a feature space, while the other
eighteen images were tested. Among the test images, one image
under frontal illumination was used as a gallery image and the
other images were used as the probe images. On the other hand,
the Yale B database contains images of 10 subjects in nine poses
and 64 illuminations per pose. We used 45 face images for each
Table 4
Recognition rates for CMU-PIE and Yale B databases (%).

Image type Database

CMU-PIE database

FEa

Fisher 64-dim. DCV 64-dim. ERL

IF (Full face image) 79.0 (±2.0) 89.2 (±0.8) 90.1
ILocal (Local image) 79.7 (±2.4) 88.8 (±1.3) 90.2

I6000
SFS (SFS) 77.3 (±2.4) 89.6 (±1.0) 90.5

I6000
US (US) 78.3 (±2.5) 87.6 (±1.1) 89.2

I6000
SCS (SCS) 76.5 (±2.2) 88.0 (±1.0) 89.3

I6000
FSDD (FSDD) 79.4 (±1.8) 87.9 (±1.5) 87.5

I6000
LaS (LaS) 82.3 (±2.2) 90.8 (±1.5) 90.3

I6000
SeFS (SeFS) 77.7 (±1.6) 86.3 (±1.2) 87.0

I6033
Re (Proposed method) 84.5 (±2.0) 91.9 (±0.9) 92.1

a Feature extraction method.
individual in the frontal pose (YaleB/Pose00), which were further
subdivided into four subsets (subset i, i = 1,2,3,4) depending on
the direction of light as in (Georghiades and Belhumeur, 2001).
The index of the subset increases as the light source moves away
from the front of the subject at the time of picture taking. To eval-
uate the recognition rates, eighteen images in subsets 1 and 2 were
randomly selected for the training set and one image under frontal
illumination was used as a gallery image. The other images not in-
cluded in the training set were used as the probe images.

Table 4 shows the comparative recognition rates of several fea-
ture extraction methods for the various types of images for the
CMU-PIE and Yale B databases. The numbers of features were set
to 64 and 9 for the CMU-PIE and Yale B databases, respectively,
so that each of the methods (Fisherface, DCV and ERLDA) gives
the best recognition rate. For the CMU-PIE database, the reduced
image gives 1.1–8.0% better recognition rates compared to the
other types of images. Also, for the Yale B database, the proposed
method also outperforms compared to other types of images.
Although both databases have severe illumination variation, the
overall recognition rates are higher in the Yale B database than
in the CMU-PIE database. This is because there are more subjects
in the CMU-PIE database than in the Yale B database (Table 2),
which makes the recognition for the CMU-PIE database more
difficult.

These experimental results on the CMU-PIE and Yale B dat-
abases show that the proposed method effectively selects the pix-
els and the resultant reduced images make the recognition
performance more robust under illumination variation.

3.3. AR database: under various conditions

The AR database consists of over 4000 frontal images of 126
subjects. The images were taken in two different sessions fourteen
days apart. Thirteen images were taken under controlled circum-
stances in each session. These images include facial variations such
as illumination, expression and occlusion. In the experiment, we
chose a subset of the database consisting of 64 male subjects and
54 female subjects that had images under all the types of varia-
tions. For each subject, 26 images with illumination variation,
expression and partial occlusion were selected.

Five images of each subject were randomly selected for training,
and the other images were used for testing (‘test 1’). We performed
another test with the occluded images (‘test 2’) to observe the effect
of the proposed pixel selection method for partially occluded faces.
As shown in Table 5, the overall recognition rates are lower than
those in Tables 3 and 4, which is due to various types of variations
in the AR database. The reduced image I6033

Re gives 2.0–5.6% and
Yale B database

FEa

DA 64-dim. Fisher 9-dim. DCV 9-dim. ERLDA 9-dim.

(±1.1) 87.5 (±1.7) 97.4 (±1.1) 95.0 (±1.3)
(±1.2) 87.3 (±1.4) 96.1 (±1.5) 93.6 (±1.3)
(±1.1) 88.0 (±2.2) 96.9 (±1.2) 94.7 (±0.9)

(±1.1) 86.3 (±2.0) 96.7 (±1.6) 93.9 (±1.7)

(±1.1) 85.2 (±2.3) 97.0 (±1.1) 93.9 (±1.3)

(±1.4) 86.7 (±2.0) 97.9 (±0.9) 94.9 (±1.2)

(±1.6) 91.7 (±1.7) 97.8 (±0.9) 97.9 (±1.1)

(±1.1) 83.8 (±2.4) 97.0 (±1.3) 94.0 (±1.7)

(±1.1) 91.1 (±1.8) 99.2 (±0.6) 96.9 (±1.3)



Table 5
Recognition rates for AR database (%).

Image type Test

Test 1 Test 2

FEa FEa

Fisher 64-dim. DCV 64-dim. ERLDA 64-dim. Fisher 64-dim. DCV 64-dim. ERLDA 64-dim.

IF (Full face image) 71.8 (±0.9) 70.6 (±0.9) 75.7 (±1.3) 66.2 (±1.8) 65.8 (±1.7) 70.1(±1.8)
ILocal (Local image) 70.0 (±1.2) 68.8 (±0.8) 75.3 (±0.9) 66.9 (±2.5) 66.1 (±2.2) 72.0(±1.9)

I6000
SFS (SFS) 71.7 (±1.3) 70.5 (±1.0) 75.7 (±1.2) 66.6 (±1.6) 65.9 (±1.8) 70.5 (±1.5)

I6000
US (US) 72.5 (±1.2) 72.1 (±0.9) 76.5 (±1.4) 66.8 (±2.3) 67.4 (±2.0) 71.2 (±2.1)

I6000
SCS (SCS) 70.7 (±1.1) 70.0 (±1.4) 74.7 (±1.3) 65.1 (±2.0) 65.7 (±2.1) 69.6 (±1.6)

I6000
FSDD (FSDD) 73.6 (±1.0) 71.5 (±1.5) 77.1 (±1.4) 71.0 (±2.6) 69.6 (±2.1) 74.7(±2.1)

I6000
LaS (LaS) 71.1 (±1.0) 68.9 (±1.6) 74.9 (±1.3) 65.6 (±2.4) 65.5 (±2.1) 70.2 (±1.9)

I6000
SeFS (SeFS) 72.6 (±1.2) 70.6 (±1.3) 76.2 (±1.3) 68.5 (±2.6) 67.1 (±2.3) 72.4(±2.3)

I6033
Re (Proposed method) 75.6 (±1.4) 74.3 (±1.1) 79.2(±1.3) 73.4(±2.0) 73.0(±2.2) 77.7(±2.2)

a Feature extraction method.
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2.4–8.1% better recognition rates for ‘test 1’ and ‘test 2’, respectively,
compared to the other types of images, regardless for the feature
extraction methods.

The effect of the proposed pixel selection is more remarkable
for the AR database than for the other databases. This is because
that the PSNR of the AR database is lower than the other databases
(see Table 2). From these results, we can see that the proposed pix-
el selection method can be well applied for face recognition under
various types of variations.

4. Discussion and conclusion

Ocegueda et al. (2011), Wang et al. (2011) This paper proposes a
pixel selection method for face recognition based on a quantitative
measure using discriminant features unlike other local feature-
based methods that select local regions heuristically. The elements
of projection vectors, which constitute the feature space, can be
used to estimate the discriminative power of each pixel. By analyz-
ing the relationship between the input variables (image pixels) and
projection vectors obtained by discriminant analysis, the pixels
that contain a large amount of discriminative information are se-
lected based on a quantitative measure, while the others are
discarded.

The resultant mask of the proposed pixel selection shows that
important information for face recognition is concentrated around
the eyes, nose and mouth. This is relatively consistent with the
result based on 3D face model or many psychophysical reports
(Sinha et al., 2006; Ocegueda et al., 2011). The mask shape can
change in detail when different images are used in making masks
or when there is an error in face alignment. Therefore, in order to
alleviate the effect of disturbance to some extent, it is better to
group the selected pixels in making a mask as in Section 2.3. This
step resulted in a small improvement (0.0–0.8%) in the experi-
ments in Section 3 depending on the database used.

Through the toy example in Section 2.4, we showed that the
proposed method can increase the PSNR of the reduced image
and also maintain most of the discriminative information. There-
fore, eliminating the pixels with less discriminative information
can be helpful to extract better features than using all the pixels.
In face recognition, the effect of the pixel selection was more pro-
nounced in the CMU-PIE, Yale B and AR databases, which had large
variations of various types, compared to the FERET database. This
indicates that the proposed method effectively eliminates the pix-
els that may degrade the recognition performance due to environ-
mental variations. By comparing the proposed method with
several types of images and input variable selection methods, we
showed that the proposed method performed well for various
types of variations. Moreover, the proposed method can be applied
to any feature extraction method, and is expected to give addi-
tional performance improvement as demonstrated in the
experiments.

The pixel selection method allows significant computational
saving depending on the size of the reduced image. Reducing the
computational complexity and image size have become more
important in recent days when many applications with images
are used in various mobile devices such as laptops or cellular
phones.

The basic concept of the proposed method can be easily ex-
tended as an input variable selection method to other pattern clas-
sification problems, which will be the topic for future work.
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