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Abstract. Regularizing neural networks is an important task to reduce
overfitting. Dropout [1] has been a widely-used regularization trick for
neural networks. In convolutional neural networks (CNNs), dropout is
usually applied to the fully connected layers. Meanwhile, the regular-
ization effect of dropout in the convolutional layers has not been thor-
oughly analyzed in the literature. In this paper, we analyze the effect of
dropout in the convolutional layers, which is indeed proved as a powerful
generalization method. We observed that dropout in CNNs regularizes
the networks by adding noise to the output feature maps of each layer,
yielding robustness to variations of images. Based on this observation, we
propose a stochastic dropout whose drop ratio varies for each iteration.
Furthermore, we propose a new regularization method which is inspired
by behaviors of image filters. Rather than randomly drop the activation,
we selectively drop the activations which have high values across the
feature map or across the channels. Experimental results validate the
regularization performance of selective max-drop and stochastic dropout
is competitive to the dropout or spatial dropout [2].

1 Introduction

Convolutional neural networks (CNNs) have been widely used for many com-
puter vision tasks such as image classification, segmentation, and detection in
recent years, mainly due to their high representation power and superior perfor-
mance. Since deep neural networks are involved with a large number of parame-
ters, regularization is a critical task to reduce overfitting. Other than a weight
decay term, many algorithms have been presented to regularize neural networks.
Dropout [1] is the most commonly used technique for regularization. For CNNs,
stochastic pooling [3] or maxout networks [4] are well known techniques to reg-
ularize convolutional layers. Though dropout has shown its effectiveness in con-
volutional layers in some cases [1,5,6], it is still rarely used with convolutional
layers in practice. Moreover, the effect of dropout in convolutional layers has not
been studied thoroughly. Different from the fully connected layers, convolutional
layers have smaller number of parameters compared to the size of feature maps.
Hence, it is believed that convolutional layers suffer less from overfitting.

In this paper, we analyze the effect of dropout in convolutional layers. We
found that dropout in convolutional layers as well as the fully connected layers
c© Springer International Publishing AG 2017
S.-H. Lai et al. (Eds.): ACCV 2016, Part II, LNCS 10112, pp. 189–204, 2017.
DOI: 10.1007/978-3-319-54184-6 12



190 S. Park and N. Kwak

are effective for regularization. The generalization effect of dropout in convolu-
tional layers is due to the enhanced robustness by adding noise to the inputs
of convolutional layers, not due to the model averaging in the case of fully con-
nected layers. Based on this observation, we propose two variants of dropout
which is suited for convolutional layers of CNNs. Similar to dropout [1], the pro-
posed methods turn off the activations of convolutional layers. While dropout
turns off the activations randomly, the first variant, max-drop, selectively drops
the activation which is the maximum value within each feature map or within
the same spatial position of feature maps. Since the neurons with high acti-
vation values contain key information about the problem at hand, dropping
the maximum activation probabilistically can grant generalization power to the
networks. The other variant, stochastic dropout, varies the dropout probabil-
ity based on the probability distribution which makes the network robust to
inputs with different levels of noise. Experimental results show that the pro-
posed method effectively regularizes convolutional layers and shows competitive
performance against dropout. This result indicates that unlike dropout, only
dropping a small portion of activations in the network can lead to a powerful
generalization performance.

The rest of the papers will be presented as follows. Related works are intro-
duced in Sect. 2, and we analyze the effect of dropout in convolutional layers in
Sect. 3. Based on the analysis, two variants of dropout, max-drop and stochas-
tic dropout, are proposed in Sects. 4 and 5 respectively. Experiments on various
datasets are conducted to compare the generalization performance of proposed
methods with dropout, and the results are illustrated in Sect. 6. Finally, conclu-
sions are made in Sect. 7.

2 Related Work

Many efforts have been made for regularizing neural networks. Dropout [1] is
the most popular method for network regularization. It randomly drops the
pre-designed portion of activations at each iteration to regularize the network.
Dropout can be viewed as cooperation of multiple models trained on different
subsets of data. From similar inspiration, DropConnect [7] drops the connec-
tions of the network instead of activations. It showed comparable generalization
performance with dropout.

Dropout works well in practice especially with fully connected layers. How-
ever, when applied to convolutional layers in a deep CNN, the performance of
dropout has been thought to be questionable. It is argued that convolutional
layers does not suffer from overfitting because the number of parameters for the
convolutional layers is small relative to the number of activations. Nevertheless,
dropout in convolutional layer is proven to improve generalization performance
in some extent by adding noise to the activations [1]. Network-in-Network [8]
efficiently integrated dropout in convolutional layer by using 1× 1 convolutional
layer followed by dropout, which enhances both representation and generaliza-
tion power. On the other hand, spatial dropout [2] has been suggested to consider
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the correlated activations in convolutional layers. The method drops the entire
feature maps rather than individual activations. Since spatially close activations
in the same feature map are tend to be correlated, the paper argues that dropout
does not suitably applied to volumetric feature map since it assumes indepen-
dence between the activations.

Various pooling methods have been proposed to regularize CNNs. Stochas-
tic pooling [3] determines the elements to pool probabilistically based on the
input activation values. Generalized pooling functions [9] learn parameters to
combine average and max pooling. Strided convolution [5] can also be viewed
as generalization of pooling operations. Wu and Gu [10] proposed probabilis-
tic weighted pooling which combines dropout in convolutional layers and max
pooling together.

Adding noise in the training step or to the activation function also helps
enhancing generalization power. Neelakantan et al. [11] found that adding noise
to the gradient during backpropagation helps deep networks converge faster and
prevent overfitting. Audhkhasi et al. [12] and Gulcehre et al. [13] showed that
adding carefully chosen noise to the activation can speed up training procedure.
Maxout networks [4] regularize networks by propagating only maximum activa-
tions. Huang et al. [14] proposed the regularization techniques which combine
maxout and dropout. Opposed to the maxout networks, our method prohibits
maximum activations from forward and backward propagation.

Among the numerous regularization methods, dropout is still used in most
neural networks due to its simplicity and reasonable performance. Though
Srivastava et al. [1] empirically proved the effectiveness of dropout in the convo-
lutional layers, dropout is not preferable to apply every layer in a deep convo-
lutional neural network since the scale of backpropagated error drops whenever
it passes the layer with dropout, which slows down the learning speed in the
lower convolutional layers. Therefore, dropout has been applied only to the fully
connected networks in most cases.

3 Effectiveness of Dropout in Convolutional Layer

We first investigate the effect of dropout in convolutional layers of CNNs.
Dropout is interpreted as bagging of different models which is trained on dif-
ferent subsets of data. On the other hand, it is believed that the regularization
effect of dropout in convolutional layers is mainly obtained from the robustness
to noisy inputs. To analyze the characteristics of dropout that actually help
generalizing convolutional layers, we scrutinized the distribution of activations
in a CNN trained on the CIFAR-10 dataset [15] with and without dropout in
convolutional layers. The network model used in this section consists of 10 con-
volutional layers and 4 pooling layers. All convolutional layers have kernels of
3×3 size, and inputs to the convolutional layers are padded by 1 pixels for both
sides. All pooling layers use 2 × 2 max pooling with stride of 2 except the last
layer for which we used 4×4 mean pooling. Dropout after pool4 with probability
of 0.5 is applied regardless of using dropout in convolutional layers or not. The
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number of filters is doubled after each pooling layer, which is a similar approach
to the VGGnet [16]. Rectified linear unit (ReLU) is used as a activation function
in all layers. Detailed configuration is illustrated in Fig. 1(a). While the CNN
that does not use dropout achieved 83.16% accuracy, when dropout is applied
to the output of every convolutional layer except the last conv4 3 layer with
ratio of 0.1, the network achieved 87.78% accuracy. We analyzed the reason of
accuracy improvement by looking into the behavior of the activated neurons in
the convolutional layers.

name filter size channels

conv1 1 3 × 3 64
conv1 2 3 × 3 64
pool1 max 2 × 2 / 2

conv2 1 3 × 3 128
conv2 2 3 × 3 128
pool2 max 2 × 2 / 2

conv3 1 3 × 3 256
conv3 2 3 × 3 256
conv3 3 3 × 3 256
pool3 max 2 × 2 / 2

conv4 1 3 × 3 512
conv4 2 3 × 3 512
conv4 3 3 × 3 512
pool4 mean 4 × 4

fc-softmax 512 × 10
(a)
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Fig. 1. (a) Structure of CNN used in the experiments. (b) Number of neurons that
never activated in each layer.

First, we investigated that every neuron in CNNs are working effectively,
which means that the filters in CNNs do not learn redundant or useless infor-
mation. One of the difficulties for training deep CNNs is that there exist dead
neurons in the convolutional layer that are never activated. Using variants of
ReLU activation functions such as leaky ReLU [17] or parametric ReLU [18] is
one of the solutions to avoid dead neurons. We verify that dropout is also useful
for avoiding dead neurons while the network still uses ReLU activation function.
We counted the number of neurons that are not activated at the test time for
each layer. The portions of never activated neurons with and without dropout
are shown in Fig. 1(b). Large number of dead neurons are observed in most lay-
ers when dropout is not applied. On the other hand, when dropout is applied to
the convolutional layers, almost all neurons are activated. Therefore, we verify
that dropout in convolutional layers helps filters to learn informative features of
images, which improves representation power of the network and classification
performance as a consequence.

Next, as discussed in [1], we compared the sparsity of the activations. It is
verified from [1] that in the fully connected layer, the activations are sparser when
dropout is used. To confirm that this statement also holds for the convolutional
layers in both lower and higher layers, we calculated the mean activation of
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Fig. 2. Histogram of mean activation of (a) conv1 1 layer without dropout. (b) conv1 1
layer with dropout. (c) conv4 2 layer without dropout. (d) conv4 2 layer with dropout.

all neurons in each layer. The mean activation of lower convolutional layers,
conv1 1 (Fig. 2(a) and (b)), and that of higher convolutional layers, conv4 2
(Fig. 2(c) and (d)) are shown. In the lower convolutional layers, the histogram
is almost flat when dropout is not used while it is bell shape when dropout
is applied. This indicates that some neurons are activated frequently or have
larger activation values, and others are activated less frequently or have small
activation values when dropout is not applied. Meanwhile, with dropout, every
neuron has similar mean activation value, which means that every neuron is
similarly activated. Since lower layers in CNN usually captures common features,
it is preferable behavior that neurons have similar mean activation values. In
the higher convolutional layer, we could verify the sparsity of activations with
dropout. A high peak near zero value is observed, which implies that the mean
activation of most neurons are concentrated at small values when dropout is
applied.

Based on these observations, we conclude that dropout in convolutional layers
helps filters to learn informative features. However, when dropout is applied to
every convolutional layers in deep CNNs, training process can be slow since
activation signals are dropped exponentially as dropout is applied repeatedly.
If higher drop probability such as 0.5 is applied in convolutional layers, CNNs
perform poor or cannot be trained at all. In the next sections, we propose two
variants of dropout to deal with this problem while maintaining the competitive
generalization power with dropout.
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4 Max-Drop Layer

In this section, we will explain a new regularization method named as max-drop.
Based on the information from Sect. 3, we note that neurons with high activation
contain important information in the network. Max-drop layer selectively drops
only the maximum activations. While dropout is motivated by model averaging,
max-drop layers originate from different inspiration from CNNs. Different images
of the same class often do not share the same features due to the occlusion,
viewpoint changes, illumination variation, and so on. For instance, human face
images may contain one eye or two eyes depending on the viewpoint. Therefore,
a feature which plays an important role in an image may not appear in different
images of the same class. Max-drop aims to simulate these cases by dropping
high activations deterministically, rather than randomly select activations to
drop off. In the lower layer of convolutional layers, this procedure of dropping the
maximum activations simulates the case that important features are not present
due to occlusion or other types of variations. In the higher layer, each feature map
learns more abstracted and class-specific information [19]. Therefore, turning off
high activations helps other neurons to learn the class-specific characteristics. It
is intuitively uncertain that dropped high activations on the higher convolutional
layers give generalization power, but we empirically prove that max-drop layers
effectively regularize higher convolutional layers similar to dropout.

Select the feature map
with probability poff

Find maximum and
drop the value to 0

Select spatial location
with probability poff

find maximum across the channel
and drop the value to 0

)b()a(

Fig. 3. Illustration of max-drop layer. Two different ways to find maximum value is
proposed in this paper: (a) feature-wise max-drop finds maximum value within each
feature map and drops the maximum values with probability poff . (b) Channel-wise
max-drop finds maximum value across each channel in the same spatial position and
drops the maximum values with probability poff .

In the max-drop layer, maximum element is found in the activations of con-
volutional layers and the maximum activation is dropped to zero with the prob-
ability of poff . Max-drop can be applied to both outputs of convolutional layers
or pooling layers as in the case of dropout. We propose two different strate-
gies to find maximum value which is illustrated in Fig. 3. The first strategy is
to find maximum within each feature map, which will be called as feature-wise
max-drop. This scheme turns off the most informative feature within the feature
map and drop the value to 0 with the probability poff . The portion of dropped
activations with respect to the entire activations of the convolutional layer is
calculated as
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pf =
1

nw × nf
poff , (1)

where nw, nh is the width and height of the feature map respectively. For
instance, if convolutional layer outputs 4 × 4 size feature map, then the maxi-
mum probability of drop will be 0.0625, which is smaller than the typical dropout
ratio.

Another strategy is to find maximum across the channels in the same position
of feature map, which is denoted as channel-wise max-drop. This scheme prevents
the highest activation to be propagated to the next layer on a certain spatial
position of the feature map. The actual drop probability for the channel-wise
max-drop is

pc =
1
nc

poff , (2)

where nc is the number of channels in the convolutional layer outputs. With the
same drop rate, channel-wise max-drop will drop smaller number of activations
than the feature-wise max-drop in higher layers where the size of feature map is
much smaller than the number of channels, and vice versa in the lower layers.

Dropping small number of neurons has an advantage over conventional
dropout. Max-drop does not suffer from slow training since gradients are propa-
gated through all activations except the maximum activations that are selected
to turn off. Empirically, when max-drop is applied to every convolutional layer,
test error decreases faster in the early stage of training than the case when
dropout is applied. Moreover, with the same learning rate, the network with
max-drop can be trained when high poff (larger than 0.5) is used while the
network with dropout usually failed to be trained when the drop probability
exceeds 0.2.

5 Stochastic Dropout

If we interpret the effect of dropout as gaining robustness by putting in noisy
inputs, giving different degrees of noise might be helpful. Also, it is hard to
determine an appropriate drop rate for the convolutional layers in most cases.
If dropout ratio is determined differently for every iteration, we believe that
CNN can be learned to handle different amount of information. Based on this
idea, we propose a stochastic dropout in which dropout ratio is determined from
probability distribution. In stochastic dropout, probability of dropping neurons
is drawn from the uniform distribution or normal distribution, i.e.,

poff ∼ N(μ, σ) or poff ∼ U(a, b) (3)

where N(μ, σ) is the normal distribution with mean μ and standard deviation
σ, and U(a, b) is the uniform distribution whose range is [a, b]. For our imple-
mentation, if μ = 0 for normal distribution, we used the absolute value of drawn
probability as poff . When μ is non-zero, we set poff = 0 if negative number is
drawn.
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We implemented max-drop and stochastic dropout using Caffe frame-
work [20]. Like the dropout implementation, the activations scale up by inverse of
drop probability when max-drop or stochastic dropout is applied.1 Note that the
scale factor is almost 1 for max-drop since the actual drop probability is near 0.
We also found that the performance is almost the same for max-drop regardless
of scale factor multiplication. GPU implementation of max-drop showed similar
computation time for one iteration of backpropagation with dropout.

6 Experimental Results

We examined the regularization performance of various algorithms using
MNIST [21], CIFAR-10, CIFAR-100 [15], and the street view house num-
bers (SVHN) [22] dataset. Max-drop and stochastic dropout are compared to
dropout [1] and spatial dropout [2] to validate the generalization performance
of the proposed methods against the conventional algorithms. To verify the reg-
ularization effect on the recently proposed very deep neural networks, we also
conducted an experiment with ResNet [23] on CIFAR-10 dataset.

The baseline model structure of the CNN is the same as the model described
in Fig. 1(a) except the MNIST dataset in Sect. 6.1 and ResNet [23] experiment
in Sect. 6.2. For the MNIST dataset, the number of channels for the network is
reduced from 64, 128, 256, 512 to 64, 96, 128, 256. Also, pool3 layer has 3 × 3
kernels with a stride of 2, and pool4 has 3 × 3 kernels to deal with the 28 × 28
input size. For ResNet experiment, we used the same 32-layer model suggested
in [23] except that the number of feature maps in every convolutional layer is
doubled. Mean substraction is the only preprocessing for the whole experiments.

For fair comparison, we searched the best parameter (e.g. drop probability)
for each method. To ease the parameter tuning process, we applied the regular-
ization algorithms for every convolutional layer with the same parameters. For
all models in the experiments, dropout with probability of 0.5 is applied after
pool4 and before the softmax. Dropout, spatial dropout, max-drop, or stochastic
dropout is applied after every convolution layers except the last conv4 3 layer.
When batch normalization [24] is applied, dropout after pool4 is removed and
the regularization methods are applied after conv4 3. Since drop probability of
max-drop has large values, we searched the parameter for max-drop with the
interval of 0.1, ranging from 0.1 to 0.9, and we used the interval of 0.05 for
dropout and spatial dropout, ranging from 0.05 to 0.5. We reported the selected
parameter together with the regularization method.

6.1 MNIST Dataset

As a sanity check, we experimented the proposed max-drop and stochastic
dropout on the MNIST dataset. MNIST has 60,000 training images and 10,000

1 Caffe implementation of dropout scales up the activations at training time instead
of scaling down them at test time unlike the original dropout paper [1].
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test images with 28 × 28 size. We trained CNNs for 60 epochs with the initial
learning rate of 0.01 and the batch size of 128. The learning rate is decreased by
0.1 for every 20 epochs. Since MNIST classification is an easy task, and the per-
formance is highly saturated, we conducted training 5 times for each model. We
reported the average classification error for each method with the standard devi-
ation as well as the classification of the ensemble classification error by averaging
the predictions of 5 models. The results are shown in Table 1.

Table 1. Classification error on MNIST

Method Classification error (%)

Average of 5 models Ensemble of 5 models

Baseline (without dropout) 0.604 ± 0.0829 0.57

Dropout (p = 0.2) 0.430 ± 0.0212 0.38

Spatial dropout (p = 0.1) 0.504 ± 0.0493 0.42

Feature-wise max-drop (p = 0.2) 0.488 ± 0.0657 0.42

Channel-wise max-drop (p = 0.5) 0.502 ± 0.0148 0.40

Stochastic dropout (N(0.2, 0.05)) 0.410± 0.0122 0.38

Stochastic dropout (U(0.1, 0.3)) 0.448 ± 0.0363 0.42

It is shown that all regularization methods significantly improve the perfor-
mance of the baseline. Dropout has higher improvement on classification accu-
racy than max-drop. For average performance, stochastic dropout also showed
the best performance.

We also analyzed the effect of regularization methods with small amount of
training data. We randomly select 20% of the training images from the MNIST
dataset and trained with the small dataset. The performance is illustrated in
Table 2, which shows similar tendency to Table 1.

Table 2. Classification error on MNIST with 20% of training data.

Method Classification error (%)

Average of 5 models Ensemble of 5 models

Baseline 1.126 ± 0.0802 0.92

Dropout (p = 0.2) 0.808 ± 0.0740 0.76

Spatial dropout (p = 0.1) 0.872 ± 0.0335 0.78

Feature-wise max-drop (p = 0.4) 0.882 ± 0.0676 0.83

Channel-wise max-drop (p = 0.5) 0.888 ± 0.0638 0.79

Stochastic dropout (N(0.2, 0.05)) 0.810 ± 0.0534 0.80

Stochastic dropout (U(0.1, 0.3)) 0.802± 0.0444 0.75
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In general, regularization methods reduced the classification error by 20 ∼
30%. Also, standard deviation has smaller values when regularization methods
are applied, which means that regularization in convolutional layers provides sta-
ble results. Dropout shows superior performance to max-drop in MNIST dataset.
Though stochastic dropout works slightly better than dropout with fixed proba-
bility, it seems that giving different levels of noise does not take much advantage
against dropout. Spatial dropout showed inferior performance, which indicates
that independence between feature map does not play an important role in reg-
ularization of convolutional layers.

6.2 CIFAR-10 and CIFAR-100 Dataset

CIFAR-10 and CIFAR-100 datasets are image classification dataset which consist
of 10 and 100 classes respectively. Each dataset has 50,000 training images and
10,000 test images with 32 × 32 size. For the CIFAR datasets, we reported the
classification error of a single model for each method. To ensure convergence of
models, we trained CNNs for 250 epochs with the initial learning rate of 0.02
and the batch size of 128. The learning rate is decreased by 0.5 for every 25
epochs.

The classification accuracy is illustrated in Table 3. In CIFAR-10, channel-
wise max-drop showed better result than dropout. Note that despite the high
drop probability, the actual drop probability of channel-wise max-drop is very
small, about 0.01 for the first convolutional layer and about 0.001 for the last
convolutional layer. The result verifies that dropping only high activations results
in similar regularization effect to random drop. Also, unlike MNIST experiment,
stochastic dropout of normal distribution with zero mean showed best perfor-
mance. One possible interpretation is that giving different levels of noise to the
input of the convolutional layers makes the layers robust to intra-class variations,
thus obtaining enhanced generalization power.

Table 3. Classification error on CIFAR-10 dataset.

Method Classification error (%)

Baseline 16.84%

Dropout (p = 0.1) 12.22%

Spatial dropout (p = 0.05) 13.78%

Feature-wise max-drop (p = 0.2) 12.55%

Channel-wise max-drop (p = 0.7) 12.00%

Stochastic dropout (N(0.0, 0.2)) 11.79%

Stochastic dropout (U(0.0, 0.4)) 12.86%

Next, we compared the progress of training for baseline, dropout, and
channel-wise max-drop models. The losses on the training set and the test set,
and the accuracies on the test set is illustrated in Fig. 4. The training losses are
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plotted in log-scale (Fig. 4(a)). It is shown that the training loss of dropout and
max-drop fluctuates heavily compared to the baseline model since each layer in
those models takes noisy inputs. Dropout has larger variations than max-drop
since the number of dropped activations is larger. These fluctuations does not
affect the test loss or accuracy, as shown in Fig. 4(b). It is interesting that the
test loss of max-drop is even higher than the baseline model while maintain-
ing similar accuracy with dropout. Since max-drop drops the highest activation
which contains important information, the model is learned to classify an image
with less informative feature. This will increase the uncertainty of the prediction,
which leads to high softmax loss values.
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Fig. 4. (a) Training error of baseline, dropout (p = 0.1), and channel-wise max-drop
(p = 0.7). (b) Test error and test set accuracy of the models.

We also analyzed the activation behavior of max-drop following the analysis
of dropout in Sect. 3. The number of neurons that are never activated at the test
time are counted for each regularization method and reported in Fig. 5. Similar
to dropout, all regularization methods have little number of never activated
neurons for all layers. Thus, it is verified that max-drop helps neurons to learn
discriminative features as in the case of dropout.

The histogram of mean activation in the lower and higher convolutional layers
for max-drop models are shown in Fig. 6. As observed in Fig. 6(a) and (b), the
histogram is bell-shaped in the lower convolutional layer like dropout, which
indicates that max-drop also make neurons evenly activated. Meanwhile, for the
higher convolutional layer, number of neurons that has mean activation near zero
is small unlike either dropout or no regularization case. Max-drop pushes neurons
to have similar mean activations, but it does not prefer sparse activations.

To investigate the usefulness of the regularization methods in the specific
layers, we trained the model by applying dropout and max-drop only to the
lower layers (conv1 1 and conv1 2) and only to the higher layers (conv4 1 and
conv4 2). The classification errors for both cases are shown in Table 4. Regular-
ization methods improves the network in both lower and higher layers, but the
regularization effect is more powerful in the higher layers. We found that high
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Fig. 5. Number of never activated neurons in the models with dropout, max-drop, and
spatial dropout.
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Fig. 6. Histogram of mean activation of (a) conv1 1 layer with feature-wise max-drop.
(b) conv1 1 layer with channel-wise max-drop. (c) conv4 2 layer with feature-wise max-
drop. (d) conv4 2 layer with channel-wise max-drop.

drop ratio is preferable for higher layers, while low drop ratio showed better per-
formance in lower layers. Feature-wise max-drop in higher layers and channel-
wise max-drop in lower layers showed better regularization performance. Spatial
dropout also proved its effectiveness in higher layers.

Table 4. Effect of regularization in lower and higher convolutional layers.

Method conv1 regularization conv4 regularization

Parameter Classification
err. (%)

Parameter Classification
err. (%)

Dropout p = 0.05 15.69 p = 0.3 15.14

Spatial dropout p = 0.05 16.16 p = 0.25 14.48

Feature-wise max-drop p = 0.1 15.93 p = 0.7 15.06

Channel-wise max-drop p = 0.1 15.02 p = 0.4 15.47

Next, we combined the regularization methods with other methods that
improves generalization performance. Batch normalization [24] improves train-
ing speed and the performance of network by normalizing the activations of each
layer in neural networks. We applied the regularization methods after batch nor-
malization is performed. Data augmentation is also a simple way to grant gen-
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eralization power to neural networks. Following the previous works [4,8,25], we
applied data augmentation to training data by padding 4 pixels on all sides of
images and by flipping images horizontally. The classification errors are shown in
Table 5. With batch normalization, dropout showed the best performance. After
activations are normalized, it seems that the importance of maximum value is
decreased, which leads to the poor generalization performance of max-drop com-
pared to dropout or spatial dropout. With data augmentation, spatial dropout
showed the smallest error, but the improvement of all regularization methods
from the baseline is very small. The result indicates that data augmentation
imposes generalization power to the CNNs which make the regularization meth-
ods less effective.

Table 5. Effect of regularization when combined with batch normalization and data
augmentation.

Method With batch normalization With data augmentation

Parameter Classification
err. (%)

Parameter Classification
err. (%)

Baseline - 12.10 - 8.01

Dropout p = 0.1 9.85 p = 0.05 8.54

Spatial dropout p = 0.15 10.69 p = 0.05 7.17

Feature-wise max-drop p = 0.2 10.67 p = 0.2 7.73

Channel-wise max-drop p = 0.2 11.15 p = 0.4 7.49

Recently, deep residual learning [23] enabled training of very deep networks.
To investigate the regularization performance in the very deep CNNs, we trained
32-layer ResNet on CIFAR-10 dataset. We followed the training procedure and
hyper parameters selection from [23] without data augmentation. The result is
illustrated in Table 6. All of the tested methods showed superior performance
over the baseline with a margin of 2 ∼ 4% except spatial dropout. This indicates
that dropout and max-drop is still effective for regularizing very deep networks.

Table 6. Classification error on CIFAR-10 dataset using ResNet-32.

Method Classification error (%)

Baseline 12.84%

Dropout (p = 0.1) 9.14%

Spatial dropout (p = 0.1) 16.33%

Feature-wise max-drop (p = 0.2) 10.72%

Channel-wise max-drop (p = 0.1) 11.15%
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Lastly, we evaluated the regularization methods on CIFAR-100 dataset. The
dataset has much less training samples for each class than CIFAR-10. The clas-
sification errors without data augmentation are shown in Table 7. Regularization
effect is much stronger than CIFAR-10 mainly due to the small amount of train-
ing samples, which reduced the classification error up to 15%. Without batch
normalization, max-drop methods outperforms dropout. When batch normaliza-
tion is used, dropout shows more improvements.

Table 7. Classification errors on CIFAR-100 dataset.

Method W/O batch normalization W/batch normalization

Parameter Classification
err. (%)

Parameter Classification
err. (%)

Baseline - 50.26 - 38.84

Dropout p = 0.3 37.23 p = 0.15 32.46

Spatial dropout p = 0.15 42.07 p = 0.1 35.28

Feature-wise max-drop p = 0.4 36.22 p = 0.2 34.27

Channel-wise max-drop p = 0.7 35.33 p = 0.3 34.71

Table 8. Classification errors on SVHN dataset.

Method W/O batch normalization W/batch normalization

Parameter Classification
err. (%)

Parameter Classification
err. (%)

Baseline - 2.46 - 2.34

Dropout p = 0.25 2.46 p = 0.1 2.02

Spatial dropout p = 0.05 2.58 p = 0.15 2.07

Feature-wise max-drop p = 0.4 2.29 p = 0.2 2.14

Channel-wise max-drop p = 0.4 2.30 p = 0.7 2.28

6.3 SVHN Dataset

SVHN dataset contains much more training samples than the previous datasets.
The dataset consists of over 600,000 training images and 26,032 test images. We
trained CNN for 15 epochs with the initial learning rate of 0.01 and the batch size
of 128 for the experiments on SVHN dataset. The learning rate is decreased by
0.1 for every 5 epochs. Data augmentation is not applied. The classification errors
are reported in Table 8. Huge number of training samples weakens the effect of
regularization. Without batch normalization, max-drop methods showed a small
improvement, while dropout and spatial dropout worsen the performance of the
network. Dropout showed the best performance when batch normalization is
applied.
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7 Conclusion

We have investigated and verified the usefulness of dropout-like methods in con-
volutional layers. Usage of dropout in convolutional layers is justified by looking
into the activation behavior of neurons. Regularization effect in the convolutional
layers is strong when training samples are small and when data augmentation
is not used. Also, newly-proposed max-drop and stochastic dropout methods
showed competitive results to the conventional dropout, which implies that these
methods can substitute dropout in convolutional layers of CNNs. Max-drop layer
can be generalized such as dropping largest k activations or suppress the activa-
tions by multiplying constant value instead of dropping them to zero. We expect
that carefully adjusted parameters may increase the performance.
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