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Abstract

In this letter, a model based disturbance attenuator (MBDA) for robot manipulators is proposed

and the stability of the MBDA in robot positioning problems is proved via Liapunov’s direct method.

This method does not require an accurate model of a robot manipulator and takes care of disturbances

or modelling errors so that the plant output remains relatively unaffected by them. The output error

due to the gravity or constant disturbance can be effectively eliminated by this method.
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I. Introduction

To achieve high performance in controlling robots, much research has been conducted

under the assumption that the dynamics of robot systems are exactly known. But this

assumption is not usually satisfied because it is very difficult to obtain an exact robot

model due to its nonlinear dynamic structure and modelling uncertainties. To overcome

these problems, a model based disturbance attenuator for robot manipulators is proposed

and its asymptotic stability is proved in the following. It is a generalization of [1] for robot

manipulators and a preliminary result without the stability analysis was presented in [2].

II. The MBDA Controller and Its Stability

In the absence of friction and disturbances, the dynamics of an n degree of freedom

robot manipulator is given by the Lagrange-Euler vector equation:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (1)

where q, q̇, q̈ ∈ <n are the vectors of generalized position, velocity, and acceleration re-

spectively, of n links, M(q) ∈ <n×n is the inertia matrix which is positive definite and

symmetric, C(q, q̇) ∈ <n×n accounts for the centrifugal and Coriolis terms, g(q) ∈ <n is

the gravity term, and τ ∈ <n is the generalized torque acting on the links.

The equation of motion (1) has the following properties [3].

Property 1 : The matrix N(q, q̇) = ˙M(q)− 2C(q, q̇)is skew symmetric. Thus,

˙M(q) = C(q, q̇) + CT (q, q̇).
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Property 2 : There exists a positive constants kc such that

||C(q, q̇)|| ≤ kc||q̇||, ∀q, q̇ ∈ <n.

Property 3 : There exists a positive constant kg satisfying
∣∣∣∣
∣∣∣∣
∂g(q)

∂q

∣∣∣∣
∣∣∣∣ < kg, ∀q ∈ <n and ||g(x)− g(y)|| ≤ kg||x− y||, ∀x, y ∈ <n.

Figure 1 shows the structure of MBDA, where P is a plant, M is a model for the plant

P. The vectors q, q0, qd ∈ <n are a position vector of the plant, a position vector of the

model, and a desired position vector respectively, τ, τ0 ∈ <n are input torques for plant and

model. In the figure, K, K1, and K2 are feedback gain matrices of appropriate dimensions.

The conventional PD gains are used for K and K1, and only D gains are used for K2. If

K2 = 0, it is the same structure as in [1].

Let qqq , [qT , (q0 − K−1
p1 g(qd))

T ]T , and T , [(τ − g(qd))
T , τT

0 ]T . Then the robot

dynamics of the overall system is

T =


 M(q) 0

0 M0(q0)





 q̈

q̈0


 +


 C(q, q̇) 0

0 C0(q0, q̇0)





 q̇

q̇0


 +


 g(q)− g(qd)

0




=M(q)q̈M(q)q̈M(q)q̈ + C(q, q̇)q̇C(q, q̇)q̇C(q, q̇)q̇ + g(q, qd)g(q, qd)g(q, qd),

(2)

where the subscript “0” is used to represent the terms related to the model. Note that we

omit the gravity term in the model dynamics.

Assuming a constant desired position vector, i.e., q̇d(t) = 0 for t > 0, the feedback

dynamics of the system in Fig. 1 becomes

T =−

 Kp + Kp1 −Kp1

Kp 0





 q̃

q̃m


−


 Kd + Kd1 −Kd1

Kd −Kd2 Kd2





 ˙̃q

˙̃q0


 = −Kpq̃Kpq̃Kpq̃ −Kdq̇Kdq̇Kdq̇. (3)

Here, q̃ , q − qd, q̃0 , q0 − qd, q̃m , q̃0 −K−1
p1 g(qd) and q̃̃q̃q , [q̃T , q̃m

T ]T . The diagonal

matrices Kp (Kp1) and Kd (Kd1) are P and D gains of K (K1), and the diagonal matrix

Kd2 is D gain of K2 in Fig. 1. In the above equations (2) and (3), KpKpKp, KdKdKd, M(q)M(q)M(q), C(q, q̇)C(q, q̇)C(q, q̇),

and g(q, qd)g(q, qd)g(q, qd) are appropriately defined.

From these equations, the following closed loop dynamic equation of the MBDA system

in Fig. 1 is obtained:

M(q)q̈M(q)q̈M(q)q̈ + C(q, q̇)q̇C(q, q̇)q̇C(q, q̇)q̇ + g(q, qd)g(q, qd)g(q, qd) = −Kpq̃Kpq̃Kpq̃ −Kdq̇Kdq̇Kdq̇. (4)
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To carry out the stability analysis, we consider the following candidate Liapunov func-

tion:

V =
1

2
(q̃̃q̃qTKq̃Kq̃Kq̃ + q̇̇q̇qTMq̇Mq̇Mq̇) +

1

γ
q̃̃q̃qTMq̇Mq̇Mq̇ =

1

2
xxxT


 KKK 1

γ
MMM

1
γ
MMM MMM


xxx , xxxTLLLxxx, (5)

where KKK is a symmetric positive definite constant matrix and γ is a positive constant and

xxx , [q̃̃q̃qT , q̇̇q̇qT ]T .

Using the following inequality

2||uT Av|| ≤ a1u
T Au + 1

a1
vT Av, a1 > 0 (6)

which holds for any positive definite matrix A ∈ <n×n and for any vector u, v ∈ <n, V can

be shown to be a valid Liapunov function such that it becomes positive definite

V ≥ 1

2
q̃̃q̃qT (KKK − a1

γ
MMM)q̃̃q̃q +

1

2
(1− 1

a1γ
)q̇̇q̇qTMq̇Mq̇Mq̇ ≥ 0.

if for an arbitrary positive constant a1, the following condition holds

a1γ > 1, KKK − a1

γ
MMM > 0. (7)

Theorem: Let Kp = Kp1, Kd = Kd1 + Kd2 and

KKK =


 2Kp + 1

γ
(Kd + Kd1) −Kp + 1

γ
Kd1)

−Kp + 1
γ
Kd1

1
γ
Kd2


 .

Also let Ω , {xxx : ||xxx|| < b
√

λ/λ}, where λ and λ are the minimum and maximum

eigenvalues of LLL respectively.

For a constant input qd, the system in Fig.1 is asymptotically stable at the origin xxx0 = 000

and Ω is a region of asymptotic stability, if the following conditions are satisfied.

Kd + Kd1 − 1

γ
M − kcb

γ
In − a3kg

2
In > 0

Kd2 − 1

γ
M0 − kc0b

γ
In − a2E > 0

2Kp − kgIn − γ

a2

E − γkg

2a3

In > 0

(8)

Here a2, a3 and b are arbitrary positive constants, In is an n × n identity matrix, and

the elements of matrix E is given as Eij =




| −Kpij + 1

γ
Kd1ij| if i = j

0 if i 6= j.
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The constant kc0 is chosen to meet the Property 2 for model dynamics such that

||C0(q0, q̇0)|| ≤ kc0||q̇0||.
Proof: Differentiating (5), V̇ becomes

V̇ =
1

2
(2q̇̇q̇qT (Mq̈Mq̈Mq̈ + Kq̃Kq̃Kq̃) + q̇̇q̇qTṀ q̇Ṁ q̇Ṁ q̇) +

1

γ
(q̇̇q̇qTMq̇Mq̇Mq̇ + q̃̃q̃qTṀ q̇Ṁ q̇Ṁ q̇ + q̃̃q̃qTMq̈Mq̈Mq̈)

=q̇̇q̇qT (KKK −KpKpKp − 1

γ
KdKdKd

T )q̃̃q̃q − q̇̇q̇qT (KdKdKd − 1

γ
MMM)q̇̇q̇q − q̇̇q̇qTg(q, qd)g(q, qd)g(q, qd)− 1

γ
(q̃̃q̃qTKpq̃Kpq̃Kpq̃ − q̃̃q̃qTCCCT q̇̇q̇q + q̃̃q̃qTg(q, qd)g(q, qd)g(q, qd))

=2q̇0
T (−Kp +

1

γ
Kd1)q̃ − q̇T (Kd + Kd1 − 1

γ
M)q̇ +

1

γ
q̃T CT q̇ − q̇0

T (Kd2 − 1

γ
M0)q̇0

+
1

γ
q̃m

T CT
0 q̇0 − 2

γ
q̃T Kpq̃ − q̇T{g(q)− g(qd)} − 1

γ
q̃T{g(q)− g(qd)}.

The second equality is from Properties 1 and (4) and the third equality is obtained using

Kp = Kp1, Kd = Kd1 + Kd2 and the definition of KKK. Using Property 2 and 3, the terms

related to the Corioris and gravity forces are bounded such that

||q̃T CT q̇|| ≤ kc||q̇||2||q̃||, ||q̃m
T CT

0 q̇0|| ≤ kc0||q̇0||2||q̃m||
||q̇T (g(q)− g(qd))|| < kg||q̇||||q − qd|| = kg||q̇||||q̃||
||q̃T (g(q)− g(qd))|| < kg||q̃||||q − qd|| = kg||q̃||2,

(9)

and this leads to

V̇ ≤ 2q̇0
T (−Kp +

1

γ
Kd1)q̃ − q̇T (Kd + Kd1 − 1

γ
M − kc||q̃||

γ
In)q̇

− q̇0
T (Kd2 − 1

γ
M0 − kc0||q̃m||

γ
In)q̇0 − 2

γ
q̃T Kpq̃ + kg||q̇||||q̃||+ 1

γ
kg||q̃||2

≤− q̇T (Kd + Kd1 − 1

γ
M − kc||q̃||

γ
In − a3kg

2
In)q̇ − q̇0

T (Kd2 − 1

γ
M0 − kc0||q̃m||

γ
In − a2E)q̇0

− 1

γ
q̃T (2Kp − kgIn − γ

a2

E − γkg

2a3

In)q̃.

The second inequality is by applying (6) to every non-quadratic terms. Note that if

condition (8) holds, V̇ becomes negative semi-definite for all the points within Γ = {xxx :

||xxx|| < b}.
Because λ||xxx||2 ≤ V ≤ λ||xxx||2, the path of xxx starting on Ω will not leave the region Γ.

The necessary condition for V̇ = 0 is xxxT = [q̃, q̃m, q̇, q̇0] = [0, q̃m, 0, 0]. For this point to be

stable, q̃m must be zero, because from (4) it becomes Mq̈ + Cq̇ + g(q) = −(Kp + Kp1)q̃ −
(Kd + Kd1)q̇ + Kp1q̃0 + Kd1q̇0. Thus the origin xxx0 = 000 is the only point contained in the
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largest invariant set in R = {xxx : xxx ∈ Ω, V̇ = 0}. Finally, using the Theorem VI of [4], the

origin is asymptotically stable and every point in Ω tends to the origin as t →∞. 2

Although the conditions in (8) seem hard to be satisfied, these conditions can be easily

met if Kp, Kd1, and Kd2 can be set sufficiently large. Note that at the equilibrium point,

the position error of the plant is q̃ = 0, but the position error of the model becomes q̃0 =

K−1
p1 g(qd). The gravitational force g(q), which is a disturbance, is completely compensated

by the position error of the model and do not affect the plant output in the steady state,

because the model feedback gain K2 does not contain a proportional component.

In many robot manipulators, not only the Coriolis/centrifugal forces but also the inertia

matrix is not easy to estimate. For this case, we can model a robot with a constant

inertia matrix M0 using only its diagonal components and set C0 = 0. This simplifies the

modelling process greatly without degrading the performance. A simulation result for a

two-link robot with this method was presented in [2].

III. Conclusions

In this letter, a new method for controlling robot manipulators is proposed and its

stability is proved. The proposed method is easy to implement and very robust in regard

to modelling errors and disturbances. It consists of a model in parallel with the plant. In

the presence of disturbances, this method attenuates the disturbance significantly. This

MBDA controller has both the advantage of a PD controller in that it is asymptotically

stable and the advantage of a PID controller which can eliminate steady state errors due

to modelling errors or disturbances.
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Fig. 1. MBDA Controller


