
Input Feature Selection by Mutual

Information Based on Parzen Window

Nojun Kwak and Chong-Ho Choi

{triplea|chchoi}@csl.snu.ac.kr

Phone:(+82-2)880-7310, Fax:(+82-2)885-4459

School of Electrical Engineering and Computer Science,

Seoul National University

San 56-1, Shinlim-dong, Kwanak-ku, Seoul 151-742 KOREA

Nojun Kwak is a Ph.D student in the School of Electrical Engineering and Computer Science, Seoul National

Univ., Seoul,Korea.

Chong-Ho Choi is with the School of Electrical Engineering and Computer Science, and the Automation and

Systems Research Institute, Seoul National Univ., Seoul, Korea.

The corresponding author is Nojun Kwak and his e-mail address is underlined.

This work is partly supported by the Brain Neuroinformatics Research Program from Korean government.

June 26, 2002



1

Abstract

Mutual information is a good indicator of relevance between variables, and have been used as

a measure in several feature selection algorithms. However, calculating the mutual information is

difficult, and the performance of a feature selection algorithm depends on the accuracy of the mutual

information. In this paper, we propose a new method of calculating mutual information between input

and class variables based on the Parzen window, and we apply this to a feature selection algorithm

for classification problems.
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I. Introduction

Mutual information is considered as a good indicator of relevance between two random

variables [1]. Recently, efforts to adopt mutual information in feature selection problem

resulted a series of researches [2]-[4]. Because the computation of mutual information be-

tween continuous variables is a very difficult job requiring probability density functions

(pdf ) and involving integration of those functions, mutual information feature selector

(MIFS) [2] and its variants [3] [4] used histograms in approximating the pdf s to avoid

these complexities. Thus, the performance can be degraded as a result of large errors in

estimating the mutual information. In addition, MIFS methods have another limitation

in that these methods do not provide a direct measure to judge whether to add additional

features or not. More direct calculation of mutual information is attempted using the

quadratic mutual information in the feature transformation field [5]-[7], but the relation-

ship between Shannon’s mutual information and the quadratic mutual information is not

clear so far.

In this paper, a new feature selection method with the mutual information maximiza-

tion scheme is proposed for classification problems. In calculating the mutual information

between the input features and the output class, instead of dividing the input space into

several partitions, we use the Parzen window method to estimate the input distribution.

With this method, more accurate mutual information is calculated giving better perfor-

mance than other methods.
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In the following section, the basics of information theory and the Parzen window method

are briefly presented. In Section III, we propose a new feature selection method and in

Section IV, the proposed algorithms are applied to several classification problems to show

their effectiveness. And finally, conclusions follow in Section V.

II. Preliminaries

A. Entropy and Mutual Information

The entropy is a measure of uncertainty of random variables. If a discrete random

variable X has X alphabets and the pdf is p(x) = Pr{X = x}, x ∈ X , the entropy of X

is defined as

H(X) = −
∑

x∈X

p(x) log p(x). (1)

Here the base of log is 2 and the unit of entropy is the bit.

When certain variables are known and others are not, the remaining uncertainty is

measured by the conditional entropy:

H(Y |X) = −
∑

x∈X

∑

y∈Y

p(x, y) log p(y|x). (2)

The information found commonly in two random variables is of importance in our work,

and this is defined as the mutual information between two variables:

I(X;Y ) =
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
. (3)

If the mutual information between two random variables is large (small), it means two

variables are closely (not closely) related. The mutual information and the entropy have

the following relation:

I(X;Y ) = H(Y )−H(Y |X). (4)

For continuous random variables, though the differential entropy and mutual informa-

tion are defined as

H(X) = −

∫

p(x) log p(x)dx

I(X;Y ) =

∫

p(x, y) log
p(x, y)

p(x)p(y)
dxdy, (5)
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it is very difficult to find pdf s (p(x), p(y), p(x, y)) and to perform the integrations. There-

fore we usually divide the continuous input feature space into several discrete partitions

and calculate the entropy and mutual information using the definitions for discrete cases.

The inherent error that exists in this process is of concern in the computation of entropy

and mutual information of continuous variables.

B. The Parzen Window Density Estimate

The Parzen window density estimate can be used to approximate the probability density

p(xxx) of a vector of continuous random variables XXX [8]. (From now on, the boldfaced

letters represent vectors.) It involves the superposition of a normalized window function

centered on a set of random samples. Given a set of n d-dimensional training vectors

D = {x1, x2, · · · , xnx1, x2, · · · , xnx1, x2, · · · , xn}, the pdf estimate of the Parzen window is given by

p̂(xxx) =
1

n

n
∑

i=1

φ(xxx− xxxi, h), (6)

where φ(·) is the window function and h is the window width parameter. Parzen showed

that p̂(xxx) converges to the true density if φ(·) and h are selected properly [8]. The window

function is required to be a finite-valued non-negative density function where

∫

φ(yyy, h)dyyy = 1, (7)

and the width parameter is required to be a function of n such that

lim
n→∞

h(n) = 0, (8)

and

lim
n→∞

nhd(n) =∞. (9)

For window functions, the rectangular and the Gaussian window functions are commonly

used. The Gaussian window function is given by

φ(zzz, h) =
1

(2π)d/2hd|Σ|1/2
exp(−

zzzTΣ−1zzz

2h2
), (10)

where Σ is a covariance matrix of a d-dimensional vector of random variables zzz.
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III. Maximizing mutual information with Parzen window

A. Problem Formulation

The success of a feature selection algorithm depends critically on how much information

about the output class is contained in the selected features. Using Fano’s inequality [1],

the minimal probability of incorrect estimation PE of class C using inputs XXX is lower

bounded by

PE ≥
H(C|XXX)− 1

logN
=
H(C)− I(XXX;C)− 1

logN
. (11)

Because the entropy of class H(C) and the number of classes N is fixed, the lower bound

of PE is minimized when I(XXX;C) becomes the maximum. Thus it is necessary for good

feature selection methods to maximize the mutual information I(XXX;C).

Battiti [2] formalized this concept of selecting the most relevant k features from a set of

n features in the following FRn-k problem and adopted a greedy selection scheme to solve

this problem.

[FRn-k ]: Given an initial set F with n features and an output class C, find the subset

S ⊂ F with k features that minimizesH(C|SSS), i.e., that maximizes the mutual information

I(SSS;C), where SSS is a k-dimensional random vector whose components are the elements of

S.

In this scheme, starting from the empty set of selected features, we add the best available

input feature to the selected feature set one by one until the size of the set reaches k.

The ideal greedy selection algorithm using mutual information (MI) is realized as follows:

1. (Initialization) set F ←− “initial set of n features,” S ←− “empty set.”

2. (Computation of the MI with the output class) ∀fi ∈ F , compute I(fi;C).

3. (Selection of the first feature) find the feature that maximizes I(fi;C), set F ←− F\

{fi} , S ←− {fi}.

4. (Greedy selection) repeat until desired number of features are selected.

(a) (Computation of the joint MI between variables) ∀fi ∈ F , compute I(fi,SSS;C).

(b) (Selection of the next feature) choose the feature fi ∈ F that maximizes I(fi,SSS;C),

and set F ←− F\{fi} , S ←− {fi}.

5. Output the set S containing the selected features.
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To compute the mutual information, we must know the pdf s of input and output vari-

ables, but this is difficult in practice, so the histogram method has been used in estimating

the pdf s. But the histogram method needs extremely large memory space in calculating

mutual information. For example, in selecting k features problem, if the output classes

are composed of Kc classes and we divide the jth input feature space into Pj partitions

to get the histogram, there must be Kc × Π
k
j=1Pj cells to compute I(fi,SSS;C). In this

case, even for a simple problem of selecting 10 important features, Kc × 10
10 memories

are needed if each feature space is divided into 10 partitions. Therefore realization of

the ideal greedy selection algorithm is practically impossible by estimating the pdf s with

histogram. To avoid this practical obstacle, alternative methods [2]–[4] use only joint pdf s

of two variables in calculating mutual informations. Although these methods report good

results on some problems, these are prone to errors because they do not use direct mutual

information. To overcome these problems, we propose a new method for computing the

mutual information in the following subsection.

B. Calculation of Mutual Information with Parzen Window

In classification problems, the class has discrete values while the input features are usu-

ally continuous variables. In this case, rewriting the relation of (4), the mutual information

between the input features XXX and the class C can be represented as follows:

I(XXX;C) = H(C)−H(C|XXX).

In this equation, because the class is a discrete variable, the entropy of the class variable

H(C) can be easily calculated as in (1). But the conditional entropy

H(C|XXX) = −

∫

XXX

p(xxx)
N

∑

c=1

p(c|xxx) log p(c|xxx)dxxx, (12)

where N is the number of classes, is hard to get because it is not easy to estimate p(c|xxx).

Now, we present a new method to estimate the conditional entropy and the mutual infor-

mation by the Parzen window method. By the Bayesian rule, the conditional probability

p(c|xxx) can be written as

p(c|xxx) =
p(xxx|c)p(c)

p(xxx)
. (13)
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If the class has N values, say 1, 2, · · · , N , we get the estimate of the conditional pdf p̂(xxx|c)

of each class using the Parzen window method as

p̂(xxx|c) =
1

nc

∑

i∈Ic

φ(xxx− xxxi, h), (14)

where c = 1, · · · , N ; nc is the number of the training examples belonging to class c; and Ic

is the set of indices of the training examples belonging to class c. Because the summation

of the conditional probability equals one, i.e.,

N
∑

k=1

p(k|xxx) = 1,

the conditional probability p(c|xxx) is

p(c|xxx) =
p(c|xxx)

∑N
k=1 p(k|xxx)

=
p(c)p(xxx|c)

∑N
k=1 p(k)p(xxx|k)

.

The second equality is by the Bayesian rule (13). Using (14), the estimate of the conditional

probability becomes

p̂(c|xxx) =

∑

i∈Ic
φ(xxx− xxxi, hc)

∑N
k=1

∑

i∈Ik
φ(xxx− xxxi, hk)

, (15)

where hc and hk are class specific window width parameters. Here we used p̂(k) = nk/n

instead of true density p(k). If we use the Gaussian window function (10) with the same

window width parameter and the same covariance matrix for each class 1, (15) becomes

p̂(c|xxx) =

∑

i∈Ic
exp(− (xxx−xxxi)

TΣ−1(xxx−xxxi)
2h2 )

∑N
k=1

∑

i∈Ik
exp(− (xxx−xxxi)TΣ−1(xxx−xxxi)

2h2 )
. (16)

Now in the calculation of the conditional entropy (12) with n training samples, if we

replace the integration with a summation of the sample points and suppose each sample

has the same probability, we get

Ĥ(C|XXX) = −
n

∑

j=1

1

n

N
∑

c=1

p̂(c|xxxj) log p̂(c|xxxj), (17)

1For multiclass classification problems, there may not be enough samples such that the error for the estimate of

class specific covariance matrix can be large. Thus, we use the same covariance matrix for each class throughout

this paper.
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where xxxj is the jth sample of the training data. With (16) and (17), we get the estimate

of the mutual information.

The computational complexity for (17) is propotional to n2×d. When there is a compu-

tational problem because of large n, we may use the clustering method [9] or the sample

selection method [10] to speed up the calculation. The methods based on histograms

require computational complexity and memory proportional to qd, where q represents

number of quantization levels. Note that the proposed method does not require excessive

memory, unlike the histogram based methods.

With this estimation, the FRn-k problem can be solved by the greedy selection algorithm

represented in the previous subsection. Note that the dimension of a input feature vector

xxx starts from one at the beginning and increases one by one as a new feature is added to

selected feature set S.

C. Properties of the Proposed Method

In the proposed mutual information estimation, the selection of the window function

and the window width parameter is very important. As mentioned in Section II, the

rectangular window and the Gaussian window is normally used for the Parzen window

function. In our simulation, we used the Gaussian window rather than the rectangular

window because it does not contain any discontinuity. For the window width parameter

h, we used k/log n as in [11], where k is a positive constant and n is the number of the

samples. This choice of h satisfies the conditions (8) and (9).

To see the properties of the proposed algorithm, let us consider the typical four points

XOR problem. Let xxx = (x1, x2) be a continuous input feature vector and the samples

for xxx are given (0,0), (0,1), (1,0), (1,1). The term c is the discrete output class which

takes a value in {−1, 1}. In the Parzen window method, each sample point influences the

conditional probability throughout the entire feature space. The influence φ(xxx − xxxi, h)

of a sample point xxxi is drawn according to the polarity of its corresponding class. We

call it a class specific influence field, which is similar to an electric field produced by a

charged particle. The influence fields generated by given four sample points in the XOR

problem are shown in Fig. 1. In the figure, the slope and the range of the influence field is

determined by the window width parameter h. The smaller h is, the sharper the slope and
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the narrower the range of influence becomes. Figure 1 was drawn with h = 1
2log n

where n

is the number of sample points which is four in this case. With this h, the higher (lower)

estimate for the conditional probability of class c being −1 or 1 for each sample point

is 0.90 (0.10) by (16). With (17), the conditional entropy estimate Ĥ(c|x1, x2) becomes

0.465, and the entropy H(c) is 1 by (1). Thus, the estimate of the mutual information

between two input features and the output class Î(c;x1, x2) (= H(c) − Ĥ(c|x1, x2)) is

0.535. The significance of Î(c;x1, x2) being greater than zero will become clear later.

In Fig. 2, we provide the conditional probability of class 1 calculated by (16) on the

input feature space. Note that we can get a Baye’s classifier if we classify a given input

to class 1 when p(c = 1|xxx) > 0.5 and to class −1 when p(c = 1|xxx) < 0.5. This classifier

system is a type of Parzen classifier [9], [12], [10], [13]. Since the classifier system is not

our concern, we do not go further with this issue.

In the process of the greedy selection scheme, the mutual informations I(x1; c), I(x2; c)

between the variables x1, x2 and the class c is zero, while the estimate of the mutual

information Î(c;x1, x2) between the output class and both input features is far greater

than zero. Thus, we know that using both features gives more information about the

output class than using only one of the variables in the greedy selection scheme with

the Parzen window. But, in the conventional feature selection methods such as MIFS

[2] and MIFS-U [3], we do not get this knowledge because these methods do not use

the mutual information of multiple variables. Instead, to avoid using too many memory

cells in calculating mutual information with the histogram method, they make use of

some measure on redundancy between variables which can be obtained by calculating the

mutual information between two input features. These methods report good performances

in several problems, but they are prone to errors in highly nonlinear problems like XOR

problem and have to resort to some other methods like Taguchi method [4].

One more advantage of the proposed method is that it provides a measure that indicates

whether to use additional features or not. Though it is quite difficult to estimate how

much the performance will increase with one more feature by the increase of the mutual

information, we can at least get a lower bound of error probability by the Fano’s inequality

and can compare the increments of mutual information or the error probability which will
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aid the decision whether to add more features or not.

IV. Experimental Results

In this section, we applied greedy selection algorithm with Parzen window to some of

the classification problems and show the effectiveness of the proposed method.

In all the following experiments, we set h = 1
log n

where n is the sample size of a particular

data set as in [11]. Because the off diagonal terms in the covariance matrix can be prone

to large errors and need great computational efforts, we used only diagonal terms in the

covariance matrix for simplicity if not otherwise stated.

In addition, to expedite the computation, we restricted the influence range of a sample

point to 2σ · h for each dimension, i.e., made the influence to zero in the outer domain of

2σ ·h from the sample point, where σ is a standard deviation of the corresponding feature.

This can greatly reduce the computational effort, especially when there are already enough

selected features. For convenience, we will refer to the proposed method as PWFS (Parzen

window feature selector) from now on.

A. Sonar dataset [14]

This dataset was constructed to discriminate between the sonar returns bounced off a

metal cylinder and those bounced off a rock, and it was used in [2] and [4] to test the

performances of their feature selection methods. It consists of 208 patterns including 104

training and testing patterns each. It has 60 input features and two output classes: metal

and rock. As in [2], we normalized the input features to have the values in [0,1] and allotted

one node per each output class for the classification. We divided each input feature space

into ten partitions to calculate the entropies and mutual information. We do not know

which features are important a priori, so we selected 3 ∼ 12 features (top 5% ∼ 20%)

among the 60 features, and trained the neural network with the set of training patterns

using these input features. Multilayer perceptrons (MLP) with one hidden layer were

used and the hidden layer had three nodes as in [2]. The conventional back-propagation

(BP) learning algorithm was used with the momentum of 0.0 and learning rate of 0.2. We

trained the network for 300 epochs in all cases as Battiti did [2].

For comparison, we used two types of PWFS for this dataset; first one only uses diagonal
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terms in the covariance matrix (Type I), and the other uses full covariance matrix (Type

II). We present the selection order and the mutual information estimate Î(SSS;C) for PWFS

in Fig. 3. In the figure, the left bars show the results of Type I and the right bars show

those of Type II. Here, C and SSS are as defined in Section III-A. In the figure, the number

on top of each bar represents the index of selected feature. We can see the estimate of

the mutual information is saturated after 10 (9) features were selected with Type I (Type

II); thus, we used 10 (9) features and did not use more features in PWFS. Note that the

selected features of Type I and Type II give nearly the same Î(SSS;C) and are the same

when the number of selected features is small.

In Table I, we compare the performance of PWFS with those of the conventional MIFS

and MIFS-U. In addition, we also report the result of stepwise regression [15]. The results

of MIFS, MIFS-U and stepwise regression are from [4]. In the table, all the resulting

classification rates are the average values of 10 experiments and the corresponding standard

deviations are shown in the parentheses.

From the table, we can see that PWFS produced better performances than the others

and the performances of Type I and Type II do not differ much.

B. Vehicle dataset [16]

The purpose of the dataset is to classify a given silhouette as one of four types of vehicle,

“Opel,” “Saab,” “bus,” and “van,” using a set of features extracted from the silhouette.

The vehicle may be viewed from one of many different angles. There are 18 numeric

features that were extracted from the silhouettes. Total number of examples are 946,

which includes 240 Opel, 240 Saab, 240 bus, and 226 van. Among these we used 200 data

as a training set and the other 646 data as a test set.

We compared PWFS with MIFS and MIFS-U. The stepwise regression cannot be used,

because this is a classification problem with more than two classes. The classification was

performed using MLP with the standard BP algorithm. Three hidden nodes were used

with learning rate of 0.2 and zero momentum. We trained the MLP for 300 iterations, 10

times for each experiment. Table II is the classification rates of various numbers of selected

features. The numbers in the parentheses are the standard deviations of 10 experiments.

The result show that PWFS is better than the other algorithms for vehicle dataset.
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C. Other UCI datasets

We tested PWFS for various datasets in the UC-Irvine repository [14] and compared

the performances with those of MIFS and MIFS-U. Table III is the brief information of

the datasets used in this paper. For these datasets, we have selected several features, and

the results are shown in Tables IV ∼ VII. As classifier systems, we used the decision tree

classifier C4.5 [16] for “letter” and “breast cancer” datasets and the nearest neighborhood

classifier with neighborhood size of three for “waveform” and “glass” datasets. In the

experiments, we used 75% as the training set and the other 25% as the test set for “letter”

data, 50% as the training set and the other 50% as the test set for “breast cancer”, 30%

as the training set and 70% as the test set for “waveform”. Since the number of instances

is relatively small in “glass” dataset, we used the 10-fold cross-validation for this dataset.

In most experiments, we can see that PWFS exhibits better performances than MIFS and

MIFS-U.

V. Conclusions

In this paper, we have proposed a method for calculating mutual information between

continuous input features and discrete output class and applied this to a greedy input

feature selection algorithm for classification problems. Although the mutual information

is a very good indicator of the relevance between variables, the reasons why it is not

widely used is its computational difficulties, especially for continuous multiple variables.

The proposed method make use of the Parzen window in getting the conditional density

in a feature space. With this method, we can compute the mutual information between

output class and multiple input features without requiring a large amount of memory.

The computational complexity of the proposed method is proportional to the square of

the given sample size. This might be a limiting factor for huge data sets, but with a simple

modification that confines each influence field in a finite area, we can greatly reduce the

computational efforts. Furthermore, it is expected that a clustering or sample selection

method can be used to overcome this limitation.

We applied the method for several classification problems and obtained better perfor-

mances than those of the conventional methods such as MIFS, MIFS-U, and the stepwise
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regression.
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TABLE I

Classification Rates with Different Numbers of Features for Sonar Dataset (%) (The

numbers in the parentheses are the standard deviations of 10 experiments)

Number of PWFS PWFS MIFS MIFS-U Stepwise

features (Type I) (Type II) regression

3 70.23 (1.2) 70.23 (1.2) 51.71 (2.1) 65.23 (1.6) 68.19 (1.1)

6 79.80 (0.8) 77.82 (0.6) 74.81 (1.4) 77.03 (0.4) 76.12 (0.3)

9 80.01 (0.9) 80.44 (1.1) 76.45 (2.4) 78.98 (0.7) –

10 81.42 (1.4) – 77.12 (3.1) 78.94 (0.8) –

12 – – 78.12 (1.8) 81.51 (0.4) –

All (60) 87.92 (0.2)

TABLE II

Classification Rates with Different Numbers of Features for Vehicle Dataset (%) (The

numbers in the parentheses are the standard deviations of 10 experiments)

Number of PWFS MIFS MIFS-U

features

2 58.77 (0.5) 40.23 (0.6) 57.53 (2.5)

4 62.50 (0.5) 57.32 (0.7) 59.97 (2.2)

6 68.89 (1.3) 65.50 (1.7) 63.94 (1.1)

8 71.59 (1.5) 70.04 (1.2) 70.35 (2.5)

10 73.20 (0.8) 71.57 (1.5) 72.70 (1.9)

All (18) 76.45 (1.0)

TABLE III

Brief Information of the Datasets Used

Name # features # instances # classes

Letter 16 20,000 26

Breast Cancer 9 699 2

Waveform 21 1,000 3

Glass 9 214 6
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TABLE IV

Classification Rates for Letter Dataset

Number of features PWFS MIFS MIFS-U

2 36.36 35.44 35.44

4 67.58 62.46 68.56

6 82.86 81.00 80.50

8 84.72 84.94 83.18

All (16) 87.68

TABLE V

Classification Rates for Breast Cancer Dataset

Number of features PWFS MIFS MIFS-U

1 92.28 92.28 92.28

2 95.71 93.42 95.71

3 96.00 93.42 95.00

4 96.57 93.71 94.28

All (9) 96.28

TABLE VI

Classification Rates for Waveform Dataset

Number of features PWFS MIFS MIFS-U

2 67.71 65.85 58.85

4 75.42 67.57 73.85

6 75.42 67.14 71.57

8 78.85 66.28 77.24

10 79.10 67.71 79.57

All (21) 76.57

TABLE VII

Classification Rates for Glass Dataset

Number of features PWFS MIFS MIFS-U

1 48.13 48.13 48.13

2 62.61 57.94 57.94

3 68.22 64.95 65.42

4 71.49 66.35 66.35

All (9) 70.56

June 26, 2002


