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Abstract

In this paper, we propose a nonlinear feature extraction method for regression problems to reduce the

dimensionality of the input space. Previously, a feature extraction method LDAr, a regressional version

of the linear discriminant analysis, was proposed. In this paper, LDAr is generalized to a non-linear

discriminant analysis by using the so called kernel trick. The basic idea is to map the input space into

a high-dimensional feature space where the variables are nonlinear transformations of input variables.

Then we try to maximize the ratio of distances of samples with large differences in the target value and

those with small differences in the target value in the feature space. It is well known that the distribution

of face images, under a perceivable variation in translation, rotation, and scaling, is highly nonlinear and

the face alignment problem is a complex regression problem. We have applied the proposed method to

various regression problems including face alignment problems and achieved better performances than

those of conventional linear feature extraction methods.

Index Terms

Regression, feature extraction, dimensionality reduction, discriminant analysis, kernel trick, KDAr.

I. INTRODUCTION

In the statistics, machine learning and pattern recognition societies, regression is one of the

classical problems, which tries to estimate a functional relationship between a set of sampling

points taken from a input space and target values. With classification problems, regression prob-

lems are categorized as the supervised learning where a data set consists of pairs of observations
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which have input objects, called as the input variables, and desired outputs, called as the target

variables. On the other hand, in unsupervised learning only input variables are given to investigate

the intrinsic data structure [1].

In many real world applications of learning process, such as biomedical data analysis and

image processing, the large number of input variables may cause the so called curse of di-

mensionality where overfitting easily appears and the supervised learning may be ill-posed [1].

In addition, irrelevant or redundant input variables tend to complicate the learning process,

thereby resulting in a poor generalization performance [2] [3]. For these reasons, it is desirable to

reduce the number of input variables through dimensionality reduction techniques such as feature

extraction that can improve the overall performance of the learning process [4]. Dimensionality

reduction is quite desirable not only in the aspect of reducing the number of required data, but

also in terms of data storage and computational complexity. It also finds applications in data

visualization in unsupervised learning.

Traditionally, linear feature extraction methods such as principle component analysis (PCA)

[5], independent component analysis (ICA) [6], and linear discriminant analysis (LDA) [7] have

been extensively studied and successfully applied to various problems such as face recognition,

image retrieval and so on [8] [9] [10] [11] [12]. Although PCA is one of the most popular

and widely used methods, which is very useful in reducing the dimension of a feature space

to a manageable size, it can still be improved for supervised learning problems since it is an

unsupervised learning method that does not make use of the target information. Likewise, ICA,

another unsupervised learning method, also leaves much room for improvement to be used for

supervised learning problems.

Unlike PCA and ICA, linear discriminant analysis (LDA) [7] was originally developed for

supervised learning, especially for classification problems, to find the optimal linear discrimi-

nating projections. There are quite a lot of variants of LDA for improving the performance and

coping with the limitation of LDA that it cannot produce more than C − 1 features, where C

is the number of classes [13] [14] [15]. Recently, instead of using only up to the second order

statistics as in LDA and its variants, ICA-FX which is an extension of ICA that utilizes higher

order statistics by maximizing the mutual information between the class and the features has

been proposed for classification problems [16].

Compared to classification problems, relatively little attention has been taken on the feature
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extraction for the regression problems in the machine learning society. On the other hand, in

statistics, several algorithms have been developed as dimensionality reduction techniques for

regression problems among which classical multivariate linear regression (MLR) [17] can be the

basic. Although MLR is the optimal in the sense of least squared error, it has the limitation that it

can only produce one feature. To overcome this limitation, a local linear dimensionality reduction

method based on the nearest neighbor scheme have been proposed [18]. Sliced inverse regression

(SIR) [19] and principal hessian directions (PHD) [20] are also very popular dimensionality

reduction techniques for regression problems in statistics.

In our previous work, a couple of feature extraction algorithms have been introduced for

regression problems [21] [22]. The first one is the extension of ICA-FX to regression problems

[21] which produced relatively good performance. However, because ICA based methods are ba-

sically iterative methods, the speed of convergence may become a problem for ICA-FX. Another

limitation is that it has a good chance of overfitting because it utilizes higher order statistics which

requires a lot of training samples in achieving reliable estimation of the distributions. Our second

feature extraction method for regression problems is LDAr [22] which is a generalization of LDA

to regression problems. Although LDA is widely used for classification problems, it cannot be

directly applied for regression problems and LDAr was proposed for regression problems which

tries to maximize the ratio of distances of samples with large differences in target value and those

with small differences in target value. Because LDAr involves in singular value decomposition,

it is relatively faster than iterative methods such as ICA-FX.

Although the aforementioned linear subspace methods finds a compact representation of the

original data when the data form a linear subspace, the distribution of some data such as

face images, under a perceivable variation in viewpoint, illumination or facial expression, is

highly nonlinear and complex. It is therefore reasonable that linear subspace methods for feature

extraction fail to provide reliable and robust solutions to those with nonlinear variations. A

number of nonlinear methods have been developed to tackle these shortcomings of the linear

subspace methods and the two most attracting and popular methods are manifold learning

techniques [23] [24] [25] [26] [27] [28] and kernel-based approaches [29] [30] [31] [32] [33]

[34].

In the manifold learning techniques, the data are assumed to lie on or near a low dimensional

manifold. Finding this inherent low-dimensional nonlinear embedding hidden in the original data
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space is the motivation of the manifold learning. In doing so, they view the local neighborhood

of nonlinear manifold as linear manifold whose intrinsic spatial geometric structure is preserved

by minimizing the local scatter, thus they can well preserve the adjacency similarity structure

among data points [35].

Unlike manifold learning, the basic idea of kernel-based techniques is to implicitly map the

observed data into potentially much higher dimensional feature space by using a kernel trick and

to find a linear subspace of the feature space [29]. A good introduction of kernel trick can be

found in [36] and [29]. In [30], the kernel PCA (KPCA) which is an application of kernel trick

to PCA was introduced showing good performance. In [31] and [32], kernel fisher discriminant

(KFD) and generalized discriminant analysis (GDA) were presented. Both KFD and GDA can

be viewed as an extension of LDA to feature space using the kernel trick and it was shown that

KFD is equivalent to applying LDA after KPCA [37].

In this paper, we extend the recently proposed LDAr [22] to nonlinear feature space using the

kernel trick and show the superiority of the proposed algorithm. Because it is a generalization

of linear discriminant analysis for regression problems in the feature space by using the kernel

trick, we refer the algorithm as the kernel discriminant analysis for regression (KDAr).

This paper is organized as follows. In the next section, we will briefly review LDA and

LDAr. In Section III, the algorithm KDAr is derived by extending LDAr using the kernel trick.

Discussion on the properties of KDAr as well as the relationship of KDAr with Laplacian

eigenmap [25] is made in Section IV. Experimental results are provided in Section V followed

by conclusions in Section VI.

II. REVIEW OF LDAR

In classification problems, we are given a data set consisting of n input and target pairs

{(xxxi, yi)}ni=1, where xxxi ∈ Rd is the i-th input vector, and yi ∈ {1, · · · , C} denotes the corre-

sponding class label. Here, C is the number of classes. On the other hand, in the regression

problems, the difference is that the target variables are continuous such that yyyi ∈ Rt, where t is

the dimension of the target vector which is typically 1 1.

1From now on, we will assume t = 1 and instead of the vector form yyy, the scalar form y will be used without notification.
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A. LDA

In LDA, the optimal projection vector vvv ∈ Rd is searched for to maximize the following

Fisher’s criterion J(vvv), which is defined as the ratio of the between-covariance matrix Sb =

1
n

∑C
c=1 nc(x̄xxc − x̄xx)(x̄xxc − x̄xx)T and the within-covariance matrix Sw = 1

n

∑C
c=1

∑
i∈{j|yj=c}(xxxi −

x̄xxc)(xxxi − x̄xxc)
T :

J(vvv) =
vvvTSbvvv

vvvTSwvvv
. (1)

Here, x̄xx = 1
n

∑n
i=1xxxi is the total mean of the samples, nc is the number of samples belonging

to the class c, x̄xxc = 1
nc

∑
i∈{j|yj=c}xxxi is the mean of the samples belonging to the class c. By

successively finding m such vvv, we can constitute the projection matrix V ∈ Rd×m whose k-th

column is the k-th projection vector denoted as vvvk. Here, m denotes the number of projection

vectors to be found.

The optimization problem in (1) is equivalent to the following generalized eigenvalue decom-

position (GED) problem,

Sbvvvk = λkSwvvvk λ1 ≥ λ2 ≥ · · · ≥ λm (2)

where λk, k ∈ {1, · · · ,m} is the k-th largest eigenvalue and vvvk is the corresponding eigenvector.

B. LDAr

In LDAr, LDA is extended to regression problems [22]. Unlike classification problems which

have discrete classes, in regression problems it is difficult to define between-class scatter and

within-class scatter matrices because target variable yi is continuous. This problem is resolved by

introducing the notion of soft class, which is summarized as ‘the samples with small differences

in the target values can be considered as belonging to the same class and the ones with large

differences should be considered as belonging to the different classes’. In contrast, the class

information in classification problems can be viewed as the hard class. The followings are the

modified within-class and between-class scatter matrices for LDAr:

Swr =
1

nw

∑
(i,j)∈Aw

f(yi, yj)(xxxi − xxxj)(xxxi − xxxj)
T (3)

Sbr =
1

nb

∑
(i,j)∈Ab

f(yi, yj)(xxxi − xxxj)(xxxi − xxxj)
T . (4)
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Here, Aw and Ab are the membership sets of close- and far- sample pairs respectively which

are defined by the radius ϵ as

Aw = {(i, j) : |yi − yj| ≤ ϵ, i, j ∈ {1, · · · , n}, i ̸= j}

Ab = {(i, j) : |yi − yj| > ϵ, i, j ∈ {1, · · · , n}, i ̸= j},
(5)

where, the variables nw and nb are the size of the set Aw and Ab respectively, i.e., nw = |Aw|

and nb = |Ab|, where | · | denotes the cardinality of a set. The function f(·, ·) is a non-negative

weight function.

Using this modified scatter matrices, the Fisher’s criterion can be rewritten for regression

problems as

J(vvv) =
vvvTSbrvvv

vvvTSwrvvv
. (6)

As stated earlier, maximizing the above Fisher’s criterion is equivalent to solving the GED

problem:

Sbrvvvk = λkSwrvvvk λ1 ≥ λ2 ≥ · · · ≥ λm, (7)

which is again equivalent to the following eigenvalue decomposition (ED) problem:

S−1
wrSbrvvvk = λkvvvk λ1 ≥ λ2 ≥ · · · ≥ λm, (8)

where vvv1 is the most important component, vvv2 is the second and so on.

Note that the threshold parameter ϵ plays an important role in setting the boundary. If ϵ is

small, nw becomes small while nb becomes large and vise versa. In the limit, if ϵ = 0, LDAr

becomes identical to LDA with n classes which utilizes a hard boundary. The threshold ϵ can

be represented as a multiple of the standard deviation σy of target variable y such that ϵ = ασy.

In [22], α ∈ [0.1, 1.0] was recommended.

Three versions of weight function f(·, ·) were used in [22], i.e., f(a, b) = 1, f(a, b) =

||a− b| − ϵ|, and f(a, b) =
√

||a− b| − ϵ| respectively.

III. KERNEL DISCRIMINANT ANALYSIS FOR REGRESSION PROBLEMS (KDAR)

The idea of KDAr is to extend LDAr to a nonlinear version by using the so called kernel

trick [29]. Assume that we have training data consisting of n input and target pairs {(xxxi, yi)}ni=1,
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where xi ∈ Rd and yi ∈ R. Also assume a nonlinear mapping ϕ(·) that maps a point in a

d-dimensional input space into a f -dimensional feature space, i.e.,

ϕ : Rd → Rf . (9)

Here, the dimension of the feature space f can either be finite or infinite. Suppose for the

moment, that the mapping is centered, i.e.,
∑n

i=1 ϕ(xxxi) = 0. This assumption will be removed

in Section III.C.

In the following subsection, the modified Fisher’s criterion which was used in LDAr is

extended to a high dimensional feature space.

A. Fisher’s criterion

By replacing xxx in (3) with ϕ(xxx), we obtain a new within covariance matrix in the feature

space as follows:

SΦ
wr =

1

nw

∑
(i,j)∈Awr

f(yi, yj)[ϕ(xxxi)− ϕ(xxxj)][ϕ(xxxi)− ϕ(xxxj)]
T

=
1

nw

n∑
i=1

n∑
j=1

[ϕ(xxxi)− ϕ(xxxj)]wij[ϕ(xxxi)
T − ϕ(xxxj)

T ]

=
2

nw

[
n∑

i=1

n∑
j=1

ϕ(xxxi)wijϕ(xxxi)
T −

n∑
i=1

n∑
j=1

ϕ(xxxi)wijϕ(xxxj)
T ]

=
2

nw

[
n∑

i=1

ϕ(xxxi)(
n∑

j=1

wij)ϕ(xxxi)
T −

n∑
i=1

n∑
j=1

ϕ(xxxi)wijϕ(xxxj)
T ]

=
2

nw

ϕ(X)(Dw −Ww)ϕ(X)T

=
2

nw

ϕ(X)Lwϕ(X)T ,

(10)

where X = [xxx1, · · · ,xxxn] ∈ Rd×n is an input matrix, ϕ(X) = [ϕ(xxx1), · · · , ϕ(xxxn)] ∈ Rf×n is a

feature matrix, Ww = [wij] ∈ Rn×n is a symmetric matrix whose (i, j) element is

wij =

f(yi, yj), if (i, j) ∈ Awr

0, otherwise,

Dw = diag(dw1 , · · · , dwn ) is a diagonal matrix with its i-th diagonal element being dwi =
∑n

j=1 wij ,

and Lw , Dw −Ww is a Laplacian matrix whose row and column sums equal zero.
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Likewise, a new between class covariance matrix in the feature space becomes:

SΦ
br =

2

nb

ϕ(X)(Db −Wb)ϕ(X)T =
2

nb

ϕ(X)Lbϕ(X)T , (11)

where Wb = [bij] ∈ Rn×n is a symmetric matrix whose (i, j) element is

bij =

f(yi, yj), if (i, j) ∈ Abr

0, otherwise,

Db = diag(db1, · · · , dbn) is a diagonal matrix with its i-th diagonal element being dbi =
∑n

j=1 bij ,

and Lb , Db −Wb.

The matrices Ww and Wb can be regarded as edge matrices that represent the local similarity

and the local disimilarity of the samples, respectively 2.

By replacing Swr and Sbr in (6) with SΦ
wr and SΦ

br respectively, we obtain the Fisher’s criterion

in the feature space as follows:

J(vvv) =
vvvTSΦ

brvvv

vvvTSΦ
wrvvv

. (12)

Here, vvv ∈ Rf is a projection vector in the feature space.

However, direct calculation of vvv by solving the corresponding GED problem of (12) is difficult

because the dimension of vvv is not known and furthermore it could be infinite. To resolve this

problem, an alternative way of using the kernel trick to obtain a projection of a sample in the

feature space is derived in the next subsection.

B. Projection in the feature space

We know that the projection vector vvv is a linear combination of the training samples in the

feature space. i.e.,

vvv =
n∑

i=1

αiϕ(xxxi) = ϕ(X)ααα (13)

for some ααα = [α1, · · · , αn]
T ∈ Rn.

Considering that the projection of a sample xxx in the feature space is obtained by the inner

product of the projection vector vvv and the sample ϕ(xxx), the projection of the entire training data

is obtained by

vvvTϕ(X) = αααTϕ(X)Tϕ(X) = αααTK, (14)

2Note that Ww can be treated the same way as the edge matrix for the Laplacian-eigenmap [25] except that the element wij

is determined by the target value.
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where K , ϕ(X)Tϕ(X) is a centerized kernel matrix whose (i, j) element is k(xxxi,xxxj) =

ϕ(xxxi)
Tϕ(xxxj). Then it is easy to show that the numerator and denominator of (12) are

vvvTSΦ
brvvv =

2

nb

αααTK(Db −Wb)Kααα

vvvTSΦ
wrvvv =

2

nw

αααTK(Dw −Ww)Kααα,

(15)

respectively, because K is symmetric.

Let SK
B = K(Db −Wb)K and SK

W = K(Dw −Ww)K. Then, the modified Fisher’s criterion

(12) becomes a function of ααα as follows:

J(ααα) =
αααTSK

Bααα

αααTSK
Wααα

. (16)

The optimal ααα’s can be obtained by solving the following GED problem:

SK
Bαααk = λkS

K
Wαααk λ1 ≥ λ2 ≥ · · · ≥ λm. (17)

After the computation of αααk, k = 1, · · · ,m, an m-dimensional nonlinear feature vectors Z ∈

Rm×n of the training data is obtained by the inner product of the matrix A , [ααα1, · · · ,αααm] ∈

Rn×m and the kernel matrix K, i.e., Z = ATK.

Now let us consider how an arbitrary sample in the input space is mapped to the feature space.

When a new sample xxx ∈ Rd is presented, it is firstly mapped to the feature space by ϕ(xxx) and

then projected in the feature space by the projection vector vvv: i.e.,

xxx → ϕ(xxx) → vvvTϕ(xxx). (18)

Since vvv = ϕ(X)ααα, it becomes

vvvTϕ(xxx) = αααTϕ(X)Tϕ(xxx) = αααT [k(xxx,xxx1), · · · , k(xxx,xxxn)]
T = αααTk(xxx) (19)

where k(xxx) = [k(xxx,xxx1), · · · , k(xxx,xxxn)]
T ∈ Rn. Aggregating m such projections, a nonlinear

feature vector zzz ∈ Rm is obtained by zzz = ATk(xxx).

Note that in the computation of ααα’s, the exact form of the nonlinear mapping ϕ(·) is not

needed. Instead, ϕ(·) always appears in the form of a kernel function k(·, ·) which is defined

as the inner product of ϕ(·) to itself. Therefore, we only need to define an appropriate kernel

function k(·, ·) to obtain ααα and consequently the projection of a sample in the feature space

vvvTϕ(xxx)(= αααTk(xxx)). Note also that once the kernel function k(·, ·) is defined, the exact form of

the mapping ϕ(·) can not be derived from it in most cases.
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C. Centerization

Until now, we have assumed that the nonlinear mapping is centered, i.e.,
∑n

i=1 ϕ(xxxi) = 0.

However, for an arbitrary kernel function k(·, ·), it is not guaranteed that the samples in the

feature spaces ϕ(X) have zero mean. Therefore, the centerization process which is described

below is essential in KDAr.

To distinguish from the centerized version of the mapping ϕ(·), we denote the uncenterized

mapping as φ(·). Likewise, the uncenterized kernel is denoted as κ(·, ·) in contrast to the

centerized kernel k(·, ·). Furthermore, it is assumed that κ(xxx,yyy) = φ(xxx)Tφ(yyy).

Because the projection vvv in the feature space should be performed on the centered data,

φ(X) is shifted to ϕ(X) by subtracting its mean φ̄ = 1
n

∑n
i=1 φ(xxxi) =

1
n
φ(X)eeen. i.e., ϕ(X) =

φ(X)− φ̄eeeTn = φ(X)(In − 1
n
eeeneee

T
n ), where eeen = [1, · · · , 1]T ∈ Rn.

If we define 111n , 1
n
eeeneee

T
n , i.e, all the elements of 111n being 1

n
, then

ϕ(X) = φ(X)(In − 111n). (20)

Consider that the kernel functions and the nonlinear mappings have the relationship κ(x, y) =

φ(x)Tφ(y) and k(x, y) = ϕ(x)Tϕ(y), respectively. Then, the kernel matrices K = [k(xxxi,xxxj)]

and K = [κ(xxxi,xxxj)] have their relationship as follows:

K = ϕ(X)Tϕ(X)

= [φ(X)T (In − 111n)]
T [φ(X)T (In − 111n)]

= (In − 111n)K(In − 111n).

(21)

Likewise for an arbitrary sample xxx, the centerization can be obtained by

k(xxx) = ϕ(X)Tϕ(xxx)

= (In − 111n)φ(X)T [φ(xxx)− 1

n
φ(X)eeen]

= (In − 111n)[φ(X)Tφ(xxx)− 1

n
φ(X)Tφ(X)eeen]

= (In − 111n)[κ(xxx)−
1

n
Keeen],

(22)

where, κ(xxx) = [κ(xxx,xxx1), · · · , κ(xxx,xxxn)]
T ∈ Rn.
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D. Algorithm: KDAr

Summarizing the previous subsections, the overall KDAr algorithm is as follows:

• Training:

1) Generate an uncentered kernel matrix K ∈ Rn×n from the training samples.

2) Center the kernel matrix by K = K − 111nK −K111n +111nK111n.

3) Generate the edge matrices Ww,Wb and the corresponding diagonal matrices Dw, Db

by using the weight function f(yi, yj). Set Lw = Dw −Ww and Lb = Db −Wb.

4) Set SK
B = KLbK and SK

W = KLwK.

5) Apply GED for (SK
B , SK

W ) to find the eigenvector matrix A = [ααα1, · · · ,αααm] whose

k-th column, αααk, is the eigenvector corresponding to the k-th largest eigenvalue.

6) Obtain a nonlinear feature matrix Z of the training data by Z = ATK.

• Test:

1) For a test sample xxx, generate an uncentered kernel vector κ(xxx) ∈ Rn.

2) Center the kernel vector by k(xxx) = (In − 111n)[κ(xxx)− 1
n
Keeen].

3) Obtain a nonlinear feature vector zzz of the test sample by zzz = ATk(xxx).

In KDAr, the kernel function κ(·, ·) plays an important role and the essential property of the

kernel function is that it should be decomposed into an inner product of a mapping φ(·) to itself,

i.e., κ(xxx,yyy) = φ(xxx)Tφ(yyy). However, it is obvious that not all the functions meet this property.

To be a proper kernel function, a function should meet the so called Mercer’s condition [29] and

the two most popular kernels are the (inhomogeneous) polynomial kernel κ(xxx,yyy) = (xxxTyyy + c)d

and the Gaussian RBF kernel κ(xxx,yyy) = exp(− ||xxx−yyy||2
σ

) [29] in which c, d, and σ are kernel

parameters.

In the training of KDAr, the most time consuming step is Step 5 where the GED problem

should be solved. Because the matrices SK
B and SK

W are Rn×n, the computational complexity of

KDAr is normally O(n3). From this, we can see that the computational complexity of KDAr does

not depend much on the dimension of the input space d. On the other hand, the computational

complexity of linear methods such as LDA and LDAr highly depends on d. In the next section,

more detailed discussion on KDAr is made.
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IV. DISCUSSION ON KDAR

In this section, we investigate the properties of KDAr by solving the solution of (16) in an

alternative way and the relationship between KDAr and Laplacian Eigenmap [25] is made. In

addition, different methods of choosing neighborhood of a sample such as ϵ-neighborhood and

k-nearest neighborhood are discussed.

A. An alternative solution

The solution of the optimization problem (16) can be obtained in an alternative way. Let

βββ , Kααα. Then the optimization problem (16) becomes

J(βββ) =
βββTLbβββ

βββTLwβββ
(23)

and the corresponding GED problem becomes

Lbβββ = λLwβββ. (24)

If we take m eigenvectors B , [βββ1, · · · ,βββm] ∈ Rn×m corresponding to the m largest

eigenvalue of (24), it is easy to show that the nonlinear projection Z of the training data X

is Z = BT . It is important to note that the projection Z is independent of the kernel matrix K.

Whatever the kernel function κ(·, ·) may be, the training samples are mapped to fixed positions

in the feature space. Furthermore, the projection does not depend on the input space either,

which only depends on the choice of the edge matrices Ww and Wb.

Before we further check this property more closely by a simple toy example, let us focus on

the solution of the GED problem. In (24), both Lw and Lb are Laplacian matrices and it is easy

to show that all the Laplacian matrices have a trivial eigenvector βββ0 = eeen corresponding to the

eigenvalue of 0. With βββ = βββ0, the Fisher’s criterion J(βββ) is of the form 0
0

and λ in (24) can take

any value, which makes the problem ill-posed. Therefore, it is necessary to remove this trivial

solution from the eigenvector matrix B.

One way of doing this is to avoid 0 from the denominator of J(βββ) as follows. Let r(< n)

be the rank of Lw
3. Then, by the eigenvalue decomposition, it becomes Lw = UΛUT , where

U = [uuu1, · · · ,uuur] ∈ Rn×r and Λ = diag(λ1, · · · , λr) ∈ Rr×r. Let U ′ = [uuu1/
√
λ1, · · · ,uuur/

√
λr]

3In most cases, r will be r = n− 1.
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and let us introduce a new variable βββ′ such that βββ = U ′βββ′. Then U ′TLwU
′ = Ir and maximizing

(23) is equivalent to maximizing

J(βββ′) =
βββ′TU ′TLbU

′βββ′

βββ′Tβββ′

which is again equivalent to maximizing

J(βββ′) = βββ′TL′
bβββ

′ subject to ||βββ′|| = 1 (25)

where L′
b = U ′TLbU

′. The solution βββ′ of the above optimization problem is just the eigenvector

corresponding to the largest eigenvalue of L′
b. By this technique, we can successfully avoid the

ill-posed condition of 0
0
.

Revisiting the original solution ααα, the rank of SK
W does not exceed that of Lw because SK

W =

KLwK. Furthermore, ααα0 = K−1eeen becomes a trivial generalized eigenvector for (SK
B , SK

W ). To

remove ααα0 from the eigenvector matrix A, the same technique can also be applied in solving

the GED problem for (SK
B , SK

W ).

Although the kernel function does not have any influence on the projection of the training

data, it plays its role for the projection of the unseen test data xxx. Because βββ = Kααα, it becomes

ααα = K−1βββ, if K is nonsingular. Therefore, replacing ααα with K−1βββ in (19), the projection of the

test data can be obtained as zzz = BTK−1k(xxx). However, this alternative approach of solving βββ

instead of ααα is not preferable in practice because taking the inverse of K is a time consuming

job especially when the number of training samples is large.

B. Different type of membership sets

Now, let us more closely look at the property of KDAr that the nonlinear projection Z of

the training data X only depends on the choice of the edge matrices Ww and Wb by using a

toy example shown below. From now on, we assume that the data X = [xxx1, · · · ,xxxn] is sorted

according to their target values y’s in ascending order, i.e., if i < j then yi ≤ yj for all

i, j ∈ {1, · · · , n}. In addition, to simplify the problem, let the ϵ-neighborhood membership sets

(5) are modified as the k-nearest neighborhood type membership sets as follows:

Aw = {(i, j) : |i− j| ≤ τ, i, j ∈ {1, · · · , n}}

Ab = {(i, j) : |i− j| > τ, i, j ∈ {1, · · · , n}},
(26)

and let the weight function be constant, i.e., f(a, b) = 1.
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Now consider 5 training samples X = [xxx1, · · · ,xxx5] are given. If we set τ = 1 in (26), then

the edge matrices become

Ww =



1 1 0 0 0

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 0 1 1


,Wb =



0 0 1 1 1

0 0 0 1 1

1 0 0 0 1

1 1 0 0 0

1 1 1 0 0


,

and the corresponding Laplacian matrices become

Lw =



1 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 1


, Lb =



3 0 −1 −1 −1

0 2 0 −1 −1

−1 0 2 0 −1

−1 −1 0 2 0

−1 −1 −1 0 3


.

Solving the GED problem (25), the largest eigenvalue is λ1 = 12.09 and the corresponding

eigenvector becomes βββ1 = [−0.97,−0.60, 0.00, 0.60, 0.97]T . This result shows that regardless of

the input data X , the nonlinear mapping maps the training sample xxx1 with smallest target value

to −0.97, the one, xxx2, with the second smallest target value to −0.60 and so on. Note that as the

target value increases, the projection value also increases. The four eigenvectors βββi, i = 1, · · · , 4

are plotted in Fig. 1 with their corresponding eigenvalues. In the figure, we can see that as the

index i of the eigenvector increases, the frequency of βββi becomes higher.

C. Relationship with Laplacian Eigenmap

From now on, let us further focus on the optimization function (23). As in the previous toy

example, if we use a constant weight function f(a, b) = 1, it becomes Lw + Lb = nIn − 111n

because Ww +Wb = 111n and Dw +Db = nIn. From this, (23) becomes

J(βββ) =
βββT (nIn − 111n − Lw)βββ

βββTLwβββ
=

n− (eeeTnβββ)
2

βββTLwβββ
− 1 (27)

if ||βββ|| = 1.

Considering that eeen is a trivial eigenvector of Lw, all the other eigenvectors of Lw can be

made to be orthogonal to eeen. Therefore, eeeTnβββ = 0 if βββ is a non-trivial eigenvector of Lw. Then,
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Fig. 1. Projection of the training samples (B = [βββ1, · · · ,βββ4]) for the toy problem.

we can clearly see that maximizing J(βββ) in (27) is equivalent to minimizing the denominator

βββTLwβββ of (27) excluding the trivial solution of βββ0 = eeen, i.e.,

βββ = argmin
βββ

βββTLwβββ subject to ||βββ|| = 1,βββ ̸∝ eeen.

This is an ED problem of Lw and the formulation is almost the same as the Laplacian eigenmap

which tries to solve the following GED []

βββ = argmin
βββ

βββTLwβββ subject to βββTDwβββ = 1,βββ ̸∝ eeen.

Note that especially when the number of training samples n is big, Dw approaches In, in

which case, the form of the above Laplacian eigenmap problem becomes exactly the same as

that of KDAr. The main difference between Laplacian eigenmap and KDAr lies in that the

Laplacian matrix Lw is generated based on the target value y in KDAr, while it is from the
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neighborhood information of the input data X in Laplacian eigenmap. Again, note that although

Lw is independent of the neighborhood information of the input data X , X play its role through

the kernel matrix K by ααα = K−1βββ and consequently in the projection of the unseen test data xxx.

D. Choice of the edge matrices

In KDAr, the edge matrices Ww and Wb which are from the membership sets Aw and Ab

play a key role. Therefore, the choice of membership sets are very important in the success

of KDAr. Previously in this paper, two versions of membership sets have been introduced, i.e.,

ϵ-neighborhood (5) and k-nearest neighborhood (26). In this subsection, the conditions to be

good membership sets are discussed.

Let each sample of the training data {(xxxi, yi)}ni=1 be denoted as a node of a size n adjacency

graph G, which is indexed by an integer i ∈ {1, · · · , n}. In addition, assume that a pair of nodes

(i, j) are linked if the pair is an element of Aw. A graph is said to be connected in the sense of

a topological space, if there is a path from any node to any other node in the graph [35] and in

our case, the connectivity of G is absolutely determined by the edge matrix Ww. Remind that

we assume that the data are sorted in the ascending order of the target value.

Now, consider G can be divided into two non-empty connected sub-graph G1 = {1, · · · , k}

and G2 = {k + 1, · · · , n} where all the nodes in G1 have no link with the nodes in G2. In

this case, the similarity edge matrix Ww can be divided into two parts Ww =

 Ww1 0

0 Ww2

,

where Ww1 ∈ Rk×k and Ww2 ∈ R(n−k)×(n−k). Consequently, the corresponding Laplacian matrix

Lw can also be divided into two parts Lw =

 Lw1 0

0 Lw2

.

Note that like Lw, the sub-matrices Lw1 and Lw2 are also Laplacian matrices. Therefore, Lw1

and Lw2 have their corresponding trivial eigenvectors of eeek and eeen−k, respectively. Combining

these two, the rank of Lw will be at most n−2 and the two orthogonal eigenvectors corresponding

to zero eigenvalue are βββ0,1 = [eeeTk ,000
T
n−k]

T and βββ0,2 = [000Tk , eee
T
n−k]

T , where 000i is the i-dimensional

zero vector. Any combination βββ0 = c1βββ0,1 + c2βββ0,2 (c1, c2 ∈ R) of these two orthogonal

eigenvectors also makes Lwβββ
0 = 0. However, βββ0(̸∝ eeen) does not make Lbβββ

0 = 0 in general.

Therefore, with βββ = βββ0, the generalized eigenvalue λ in (24) will be positive infinite and βββ0

becomes the optimal solution of (23). However, considering that input data X are projected to

βββT , we can see that βββ0 is not a good choice. With βββ0 all the data in G1, i.e., {xxx1, · · · ,xxxk}, are
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projected to the same point and likewise, the ones in G2 ({xxxk+1, · · · ,xxxn}) are also projected to

a single point.

Although this problem can be resolved by the technique described in Section IV.A which

avoids 0 from the denominator of J(βββ), there remains another problem. Remind that finding βββ

is equivalent to finding the eigenvector of Lw corresponding to the smallest non-trivial eigenvalue,

if the constant weight function f(a, b) = 1 is used. If we assume Lw can be separated into two

disjoint sub-matrices Lw1 ∈ Rk×k and Lw2 ∈ R(n−k)×(n−k), then the eigenvectors of Lw are also

divided into two sets {βββ : βββ = [vvvT ,000Tn−k]
T} and {βββ : βββ = [000Tk ,uuu

T ]T}, where vvv’s and uuu’s are

the eigenvectors of Lw1 and Lw2 respectively. In this case, any eigenvector contains a group of

zeros, which indicates that many training samples are projected to a single point 0.

From the above discussion, it is desirable that Lw is not separated into sub-matrices which is

possible by making a connected graph G. If we use the ϵ-neighborhood membership sets (5), then

the connectivity depends on the difference of the target values of two consecutive nodes i and

i+ 1. That is, if yi+1 − yi > τ , the two consecutive nodes are not linked, making the adjacency

graph G disconnected. Therefore, to ensure G be connected, for all the i ∈ {1, · · · , n − 1},

yi+1 − yi should not exceed ϵ. As a consequence, in case of large variation of yi+1 − yi values,

the performance of ϵ-neighborhood membership sets (5) is expected be poor.

On the other hand, if we adopt k-nearest neighborhood type membership sets (26), then for

all the τ > 0, the connectivity of G is guaranteed. Therefore, in all the experiments of the next

section, we use (26) for the membership sets.

V. EXPERIMENTAL RESULTS

In this section, the proposed algorithm KDAr is applied to several regression problems and the

performance of KDAr is compared with those of conventional linear feature extraction methods

such as PCA, MLR, GPL [38], SIR, PHD, WPCA [22], LDAr. Note that among these, PCA

can be categorized as unsupervised feature extraction methods, while the others are classified as

supervised feature extraction methods which utilizes the target information.

Throughout the paper, the following experimental settings were used.

• Regressor: As in [22], the weighted 5 nearest neighborhood (5NN) regression [39] was

used as a regression system. This regressor was chosen because of its simplicity. For some
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experiments, support vector regressor (SVR) [29] [40] and Gaussian process regressor (GPR)

[38] were also used for comparison.

In the 5NN regressor, the estimation of the target variable t̂(zzz) with input variables zzz is

obtained as follows:

t̂(zzz) =

∑
i∈N(zzz) q(zzz,zzzi)ti∑
i∈N(zzz) q(zzz,zzzi)

. (28)

Here, N(zzz) is the set of indices of 5 nearest neighbors of zzz in the training set and q(zzz,zzzi)

is a weight function which was set q(zzz,zzzi) = 1

1+
√

||zzz−zzzi||
.

• Edge matrices: For KDAr, the (i, j)-th elements of the similarity edge matrix Ww and

the dissimilarity edge matrix Wb were set to wij =

τ − |i− j| if |i− j| < τ

0 otherwise
and bij =min(|i− j| − τ, τ) if |i− j| ≥ τ

0 otherwise
, respectively where τ was set to n/10.

• Kernel function: As a kernel function, Gaussian RBF kernel of the form κ(xxx,yyy) = exp(− ||xxx−yyy||2
dσ

)

is used with various values of σ. Here, in the denominator of the exponential, the dimen-

sionality of input space d is multiplied as a normalizing factor. The σ that resulted the best

performance on the test data is reported in this paper.

All the experimental settings of the conventional methods are the same as in [22].

A. Artificial Problems

1) Linear Case: Suppose we have five independent input features x1 ∼ x5 which have

Gaussian distribution with zero mean and variance of 1. Also suppose that the target output

variable t has the following relationship with the input xxx:

t = 2x1 + 3x3.

For this problem, 1000 samples were generated and the performance of KDAr was compared

with those of conventional feature extraction methods. As a regressor, not only 5NN regressor

described above, but also SVR and GPR were used. Ten-fold cross-validation was applied and

root mean square (rms) errors on the test data with various numbers of extracted features (m =

1, · · · , 5) are shown in Table I. The numbers in the parentheses are the standard deviations. For
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KDAr, the optimal σ value is also reported in the table. Note that MLR and GPL can extract

only one feature.

From the table, regardless of the type of regressor, we can see that when the number of

extracted features is 1 (m = 1), all the feature extraction methods except PCA, GPL and PHD

performed well and resulted almost the same rms error. GPL was better than PCA and PHD,

but it resulted in poorer performance than the other methods. Because this problem is linear and

the distribution is Gaussian, MLR is optimal in the least square sense and other linear methods

such as SIR, WPCA and LDAr performed almost the same as MLR when m = 1. Regardless

of the type of regressor, KDAr which extracts nonlinear features performed equally well for this

linear problem.

When 5NN regressor was used, as the number of extracted features increases, the performances

of other conventional linear feature extraction methods become worse, while the rms error of

KDAr remains unchanged. On the other hand, when other nonlinear regressors such as SVR and

GPR were used, the performances were almost constant regardless of the number of extracted

features. The reason why 5NN regressor performs poorer with additional features is that the

additional features act as noise in calculating the Euclidian distance in (??) while the nonlinear

regressors, SVR and GPR, efficiently reduce the effect of the additional features.

2) Nonlinear Case: Suppose we have five independent input features x1 ∼ x5 which have

Gaussian distribution with zero mean and variance of 1. Furthermore, suppose that the target

output variable t has the following nonlinear relationship with the input xxx:

t = sin(x2 + 2x4).

For this problem, 1000 samples were generated. Ten-fold cross-validation was applied to this

dataset and the rms errors of various feature extraction methods on the test data are reported in

Table II. As well as 5NN regressor, SVR and GPR were also used. As in Table I, the numbers

in the parentheses are the standard deviation and the optimal value of σ is reported for KDAr.

As can be seen from the table, for this nonlinear problem, when 5NN was used as a regressor,

KDAr performed far better than the other linear methods because it utilizes nonlinear feature

space. Note that the performance of KDAr is almost constant regardless of the number of

extracted features m in Table II (a). When SVR was used, in Table II (b), we can obtain a

slightly improved performance of KDAr compared to 5NN case. In this case also, KDAr slightly
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TABLE I

RMS ERRORS FOR THE SIMPLE LINEAR DATASET. AVERAGES OF 10-FOLD CV. NUMBERS IN THE PARENTHESES ARE THE

STANDARD DEVIATIONS.

(a) 5NN

No. of features (m) 1 2 3 4 5

Original – – – – 1.09 (0.07)

PCA 3.03 (0.70) 2.46 (0.63) 2.31 (0.69) 1.66 (0.71) 1.09 (0.07)

MLR 0.16 (0.08) – – – –

GPL 0.36 (0.03) – – – –

SIR 0.16 (0.07) 0.43 (0.07) 0.69 (0.06) 0.90 (0.05) 1.11 (0.04)

PHD 3.01 (0.87) 2.67 (0.80) 2.05 (0.62) 1.69 (0.57) 1.11 (0.04)

WPCA 0.18 (0.06) 0.44 (0.07) 0.70 (0.06) 0.92 (0.05) 1.11 (0.04)

LDAr 0.15 (0.08) 0.17 (0.07) 0.18 (0.07) 0.20 (0.06) 0.20 (0.06)

KDAr (σ = 103) 0.16 (0.04) 0.16 (0.04) 0.16 (0.04) 0.16 (0.04) 0.16 (0.04)

(b) SVR

No. of features (m) 1 2 3 4 5

Original – – – – 0.14 (0.02)

PCA 2.75 (0.18) 2.59 (0.24) 2.57 (0.24) 2.58 (0.29) 0.14 (0.02)

MLR 0.11 (0.01) – – – –

GPL 0.32 (0.05) – – – –

SIR 0.11 (0.01) 0.12 (0.01) 0.13 (0.02) 0.13 (0.02) 0.14 (0.02)

PHD 2.63 (0.34) 2.55 (0.32) 2.15 (0.57) 1.10 (0.86) 0.14 (0.02)

WPCA 0.12 (0.01) 0.12 (0.01) 0.13 (0.01) 0.13 (0.01) 0.14 (0.02)

LDAr 0.12 (0.01) 0.13 (0.02) 0.12 (0.01) 0.13 (0.02) 0.14 (0.02)

KDAr (σ = 103) 0.11 (0.01) 0.11 (0.01) 0.11 (0.01) 0.11 (0.01) 0.11 (0.01)

(c) GPR

No. of features (m) 1 2 3 4 5

Original – – – – 0.10 (0.01)

PCA 2.74 (0.29) 2.59 (0.24) 2.57 (0.23) 2.55 (0.28) 0.10 (0.01)

MLR 0.10 (0.01) – – – –

GPL 0.32 (0.05) – – – –

SIR 0.11 (0.01) 0.11 (0.01) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01)

PHD 2.63 (0.34) 2.55 (0.33) 2.14 (0.58) 1.10 (0.87) 0.10 (0.01)

WPCA 0.11 (0.01) 0.11 (0.01) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01)

LDAr 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01)

KDAr (σ = 103) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01)
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TABLE II

RMS ERRORS FOR THE NONLINEAR DATASET. AVERAGES OF 10-FOLD CV. NUMBERS IN THE PARENTHESES ARE THE

STANDARD DEVIATIONS.

(a) 5NN

No. of features (m) 1 2 3 4 5

Original – – – – 0.46 (0.02)

SVR (σ = 1) – – – – 0.27 (0.02)

PCA 0.77 (0.02) 0.76 (0.05) 0.61 (0.16) 0.51 (0.14) 0.46 (0.02)

MLR 0.52 (0.07) – – – –

GPL 0.54 (0.06) – – – –

SIR 0.56 (0.09) 0.50 (0.08) 0.48 (0.09) 0.44 (0.06) 0.46 (0.01)

PHD 0.72 (0.14) 0.66 (0.19) 0.59 (0.20) 0.54 (0.15) 0.46 (0.01)

WPCA 0.48 (0.07) 0.48 (0.08) 0.45 (0.08) 0.43 (0.05) 0.46 (0.01)

LDAr 0.47 (0.10) 0.44 (0.11) 0.37 (0.07) 0.38 (0.03) 0.44 (0.02)

KDAr (σ = 5) 0.24 (0.04) 0.24 (0.04) 0.24 (0.04) 0.23 (0.04) 0.23 (0.03)

(b) SVR

No. of features (m) 1 2 3 4 5

Original – – – – 0.24 (0.02)

PCA 0.70 (0.02) 0.80 (0.11) 1.11 (0.27) 1.39 (0.31) 0.24 (0.02)

MLR 0.55 (0.06) – – – –

GPL 0.64 (0.07) – – – –

SIR 0.50 (0.07) 0.50 (0.07) 0.78 (0.20) 0.86 (0.31) 0.24 (0.02)

PHD 0.71 (0.03) 0.82 (0.14) 1.04 (0.16) 1.18 (0.39) 0.24 (0.02)

WPCA 0.60 (0.06) 0.64 (0.14) 0.69 (0.08) 1.18 (0.25) 0.24 (0.02)

LDAr 0.59 (0.05) 0.64 (0.08) 0.70 (0.20) 0.88 (0.19) 0.25 (0.02)

KDAr (σ = 5) 0.22 (0.03) 0.21 (0.02) 0.21 (0.02) 0.21 (0.03) 0.20 (0.02)

(c) GPR

No. of features (m) 1 2 3 4 5

Original – – – – 0.10 (0.01)

PCA 0.70 (0.01) 0.70 (0.01) 0.68 (0.03) 0.57 (0.07) 0.13 (0.02)

MLR 0.54 (0.05) – – – –

GPL 0.54 (0.05) – – – –

SIR 0.48 (0.06) 0.46 (0.06) 0.45 (0.09) 0.38 (0.12) 0.10 (0.01)

PHD 0.69 (0.02) 0.67 (0.02) 0.65 (0.03) 0.53 (0.15) 0.16 (0.03)

WPCA 0.58 (0.05) 0.53 (0.06) 0.49 (0.07) 0.48 (0.08) 0.10 (0.02)

LDAr 0.58 (0.04) 0.56 (0.05) 0.42 (0.09) 0.33 (0.11) 0.10 (0.01)

KDAr (σ = 5) 0.18 (0.02) 0.16 (0.02) 0.16 (0.02) 0.15 (0.02) 0.10 (0.01)
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TABLE III

RMS ERRORS FOR THE HOUSING DATASET WITH 5NN. AVERAGES OF 10 EXPERIMENTS. NUMBERS IN THE PARENTHESES

ARE THE STANDARD DEVIATIONS.

No. of features (m) 1 3 5 7 9 11 13

Original – – – – – – 4.02 (0.48)

PCA 7.98 (0.82) 4.44 (0.63) 4.10 (0.55) 4.03 (0.50) 3.98 (0.57) 3.90 (0.50) 4.02 (0.48)

MLR 4.04 (0.50) – – – – – –

GPL 6.82 (1.24) – – – – – –

SIR 4.26 (0.56) 4.15 (0.48) 3.66 (0.53) 3.77 (0.58) 3.98 (0.67) 4.01 (0.60) 4.17 (0.66)

PHD 8.25 (0.81) 5.16 (0.77) 4.57 (0.39) 4.32 (0.72) 4.23 (0.61) 4.19 (0.60) 4.17 (0.66)

WPCA 4.68 (0.51) 4.18 (0.66) 3.89 (0.59) 3.78 (0.70) 4.06 (0.60) 4.08 (0.59) 4.17 (0.66)

LDAr 4.19 (0.64) 3.98 (0.61) 3.60 (0.73) 3.55 (0.60) 3.48 (0.67) 3.49 (0.66) 3.52 (0.67)

KDAr (σ = 103) 3.10 (0.42) 2.73 (0.51) 2.65 (0.44) 2.77 (0.43) 2.81 (0.43) 2.85 (0.46) 2.84 (0.47)

outperformed other methods. In Table II (c), when GPR was used, the rms errors of MLR, SIR,

WPCA, LDAr and KDAr were almost the same regardless of the number of extracted features.

The reason for this phenomenon can be conjectured as follows. The conventional feature

extractors have a limited power of extracting good features because they only try to find linear

combinations of input variables. Therefore, simple regressors such as 5NN cannot achieve good

performance, while more complex and contrived regressors such as SVR and GPR may achieve

relatively good results on these linear feature extractors. On the other hand, because KDAr is a

nonlinear feature extractor for regression problems, its output features are good for any regressor,

whether it is simple or complex. From this, we can conclude that the performance of KDAr is

rather consistent regardless of the regressor used.

B. Real world datasets

1) Housing - Boston: In this section, we have applied the proposed feature extraction methods

to the Housing (Boston) dataset in UCI Machine Learning Repository [41].

The dataset contains 13 input features, 12 continuous and 1 binary, and one continuous

target variable. There are total 506 instances. We have randomly divided this dataset into 90%

training and 10% test sets 10 times and reported the average rms error on the test data in Table

III. Weighted 5NN regressor is used as a regression system. In the table, the numbers in the

parentheses are the standard deviation of 10 experiments.
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TABLE IV

ONE TAILED T-TEST FOR THE HOUSING DATASET.

No. of features (m) 1 3 5 7 9 11 13

T -value 4.55 4.97 3.52 3.34 2.66 2.52 2.63

d.o.f. 17 17 15 16 15 16 16

T99% 2.57 2.57 2.60 2.58 2.60 2.58 2.58

T95% 1.74 1.74 1.75 1.75 1.75 1.75 1.75

Accepted (99%) HA HA HA HA HA H0 HA

Accepted (95%) HA HA HA HA HA HA HA

From the table, we can see that the KDAr is better than all the other methods especially when

the number of extracted features m is small. For m = 1, the difference of rms errors between

KDAr and LDAr is more than 1.0, while it decreases to around 0.7 when m = 13. The minimum

rms error 2.65 was obtained when m = 5.

To show the statistical significance of the experimental results, we have performed one tailed

Welch’s T-test [42] on Table III. The null (H0) and the alternative (HA) hypotheses for this

statistical test are as follows:

• H0: For a fixed number of extracted features m, the performances of KDAr and the best

linear feature extraction method are the same.

• HA: For a fixed number of extracted features m, KDAr outperforms all the other linear

feature extraction methods.

The computed T -value, degree of freedom (d.o.f.) and the corresponding target T values are

shown in Table IV. For each m, if the T -value is greater than T99% (T95%), the null hypothesis

H0 is rejected with 99% (95%) of confidence, thus alternative hypothesis HA is adopted.

In the table, when the confidence level is 95%, for all the numbers of extracted features m,

the null hypothesis was rejected, thus the alternative hypothesis was accepted. If we raise the

confidence level to 99%, for all the numbers of extracted features except for the case of m = 11,

the null hypothesis was rejected. From this, we can conclude that the KDAr outperforms other

linear feature extraction methods for Housing dataset.

2) Year Prediction of Million Song Dataset: This data, a subset of the Million Song Dataset

(MSD) [43], can be found in the UCI Machine Learning Repository [41]. This dataset consists

of total 515,345 songs, among which the first 463,715 examples are training data while the other
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TABLE V

RMS ERRORS FOR THE YEAR PREDICTION MSD DATASET WITH 5NN. THE NUMBERS IN THE PARENTHESES ARE THE

STANDARD DEVIATIONS OF 20 EXPERIMENTS.

No. of features (m) 1 3 5 10 15

PCA 11.80(0.13) 11.49 (0.15) 11.41 (0.13) 11.16 (0.17) 11.01 (0.13)

MLR 10.44 (0.21) – – – –

GPL 11.25 (0.12) – – – –

SIR 10.44 (0.12) 10.39 (0.14) 10.33 (0.18) 10.29 (0.15) 10.28 (0.14)

PHD 11.81 (0.16) 11.73 (0.16) 11.55 (0.17) 11.33 (0.21) 11.17 (0.21)

WPCA 11.72 (0.26) 11.02 (0.41) 10.74 (0.27) 10.50 (0.12) 10.49 (0.15)

LDAr 11.37 (0.46) 10.74 (0.28) 10.60 (0.09) 10.51 (0.09) 10.49 (0.12)

KDAr 10.23 (0.34) 10.03 (0.10) 10.01 (0.10) 9.96 (0.14) 9.95 (0.11)

TABLE VI

ONE TAILED T-TEST FOR THE YEAR PREDICTION MSD DATASET.

No. of features (m) 1 3 5 10 15

T -value 1.84 6.43 4.91 5.09 5.86

d.o.f. 11 16 14 18 17

T99% 2.72 2.58 2.62 2.56 2.57

T95% 1.77 1.75 1.76 1.73 1.74

Accepted (99%) H0 HA HA HA HA

Accepted (95%) HA HA HA HA HA

51,630 examples are test data. In the dataset, there are 90 input attributes and the target value

is the year of the song, ranging from 1922 to 2011.

Because the number of training data is so huge, for computational efficiency, we randomly

selected 2,000 training samples 20 times to extract features with various methods and report the

average rms errors in Table V. The numbers in the parentheses are the standard deviations of

20 experiments. In the table, we can see that for all m, KDAr outperforms other conventional

feature extraction methods.

To show the statistical significance of this result, we also performed one tailed Welch’s T-test

[42] on Table V. The null (H0) and the alternative (HA) hypotheses for this statistical test are the

same as the ones in the previous experiments on Housing dataset. Table VI shows that regardless

of the number of extracted features m, HA is accepted with 95% of confidence. This is also true

for 99% confidence except when m = 1 where H0 is adopted. This results show that KDAr is
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TABLE VII

RMS ERRORS FOR THE ORANGE JUICE DATASET WITH 5NN.

No. of features (m) 1 3 5 7 9 11 13 700

Original – – – – – – – 8.92

PCA 9.89 9.38 9.11 9.10 8.92 8.91 8.91 –

MLR 7.46 – – – – – – –

GPL 9.04 – – – – – – –

SIR 9.32 9.38 9.15 8.91 8.92 8.93 8.92 –

PHD 10.38 9.20 9.36 9.05 9.20 8.93 8.92 –

WPCA 9.61 9.38 9.09 9.09 8.91 8.91 8.91 –

LDAr 6.39 6.83 6.85 6.52 6.15 6.41 6.54 –

KDAr (σ = 2× 104) 5.45 6.23 6.11 6.29 6.31 6.36 6.41 –

better than other conventional feature extraction methods for this dataset.

3) Orange Juice: Orange juice dataset was obtained from the UCL machine learning database

[44], which is to estimate the level of saccharose of an orange juice from its observed near-

infrared spectrum. It consists of 150 training and 68 test examples with 700 input features. The

target is a continuous variable which corresponds to the level of saccharose.

As can be seen, this problem is a typical example of small sample size (SSS) problem whose

input dimension d(= 700) is much larger than the number of training examples n(= 150). To

resolve this SSS problem, for all the linear feature extraction methods except PCA, we have

preprocessed the dataset with PCA and reduced the dimension of input space into 149(= n−1).

On the otherhand, unlike the conventional linear feature extraction methods, the preprocessing

step is not applied to KDAr because KDAr does not suffer from SSS problem.

Table VII shows the performances of various feature extraction methods on the test dataset.

For this problem, the best rms error 5.45 was obtained by KDAr when m = 1. As m increases,

the rms error of KDAr increases up to 6.41 when m = 13. Note that the performance is somewhat

unstable and LDAr performed better than KDAr when m = 9. The reason can be attributed to

the fact that 5NN regressor performs unstably when the number of training examples is small.

In fact for σ = 2 × 103, the rms error of KDAr was 6.07 which is smaller than that of LDAr.

However, for this value of σ rms error was 5.95 when m = 1.

4) SARCOS Robot Arm: The dataset is to learn the inverse dynamics of a seven degrees-of-

freedom SARCOS anthropomorphic robot arm. It consists of 21 input features (7 joint positions,
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TABLE VIII

RMS ERRORS FOR THE SARCOS ROBOT ARM DATASET WITH 5NN. THE NUMBERS IN THE PARENTHESES ARE THE BEST

NUMBER OF EXTRACTED FEATURES.

target 1 2 3 4 5 6 7

Original 9.79 (21) 5.92 (21) 3.49 (21) 4.51 (21) 0.37 (21) 0.70 (21) 0.86 (21)

PCA 10.21 (10) 6.21 (10) 3.65 (10) 5.29 (10) 0.39 (10) 0.73 (10) 1.01 (10)

MLR 6.18 (1) 5.23 (1) 3.36 (1) 3.42 (1) 0.40 (1) 0.94 (1) 0.72 (1)

GPL 15.28 (1) 8.65 (1) 5.14 (1) 6.58 (1) 0.59 (1) 1.20 (1) 1.29 (1)

SIR 6.55 (1) 5.01 (3) 3.22 (3) 3.50 (3) 0.37 (5) 0.69 (10) 0.71 (3)

PHD 10.20 (10) 6.33 (10) 4.13 (10) 4.55 (10) 0.40 (10) 0.81 (10) 0.84 (10)

WPCA 8.07 (5) 5.54 (5) 3.56 (5) 3.59 (5) 0.39 (10) 0.70 (10) 0.74 (3)

LDAr 5.79 (10) 4.44 (10) 2.73 (10) 2.78 (10) 0.33 (10) 0.66 (10) 0.58 (10)

KDAr 5.07 (7) 3.36 (3) 1.89 (7) 1.62 (5) 0.25 (5) 0.45 (5) 0.43 (5)

σ 104 5× 103 2× 103 5× 103 2× 102 2× 102 2× 102

7 joint velocities, 7 joint accelerations) and 7 output variables (the corresponding 7 joint torques).

The dataset has previously been used to study regression algorithms [38] [45]. There are 48,933

input-output pairs in the dataset, of which 44,484 were used as a training set and the remaining

4,449 were used as a test set in [38] [45].

In our experiment, we test various feature extraction methods for each of the seven output

variables separately. To reduce the computational complexity, we randomly selected 1,000 ex-

amples from the 44,484 training set 20 times and report the performances on the 4,449 test data

in Table VIII and Figure 2. In the figure, due to space limitation, only the rms errors of the first

two and last two target variables with PCA, SIR, PHD, WPCA, LDAr, and KDAr are shown.

For each feature extraction methods, 1, 3, 5, 7 and 10 features were used for the regression.

The standard deviations were also drawn for each of the points, however in most cases, they

are very small and difficult to be distinguished in the figure. We tested various values of σ of

Gaussian RBF kernel for KDAr and reported best performance in the Figure. Fig.2(a), (b), (c),

and (d) were obtained with σ = 104, 5× 103, 2× 102, and 2× 102 respectively.

In both Fig.2(a) and Fig.2(b), the performance of KDAr was better than any other feature

extraction methods. Note that among linear feature extraction methods, LDAr performs best but

KDAr outperforms LDAr by at least 10%. This phenomenon can also be seen in Table VIII

where we show the best performances of various feature extraction methods. The best number
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Fig. 2. RMS error for the four target variables of SARCOS Robot Arm dataset.

of extracted features are also indicated. In the table, KDAr outperforms LDAr by 27.3% on

average. For PCA, SIR, PHD, WPCA, LDAr and KDAr, we extracted 1,3,5,7 and 10 features.

Note that MLR and GPL can extract only one feature. From the table, we can see that the

best performance of KDAr was better than other feature extraction methods for all the seven

target variables. Comparing LDAr and KDAr, we can see that the kernel trick is effective in

performance enhancement of regression for this problem.

C. Face Alignment

1) Yale database - rotation: In this section, we perform experimental studies on finding the

rotation angle of Yale database [9] to evaluate the performance of the KDAr. In [9], the authors

report two types of databases: a closely cropped set and a full face set. In this paper, the full
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Fig. 3. Original image (left) and 20◦ rotated image (right) of Yale database. The corner pixels that cannot be filled are painted

black.

14o 25o 17o 31o 23o

−18o −6o −28o −7o −23o

Fig. 4. Rotated images of a circularly cropped Yale database with their corresponding rotation angles

face set whose size is 100 × 80 pixels was used. The Yale database consists of 165 images

which contains 11 images per each of 15 individuals. Original images are in gray color. In our

experiment, 55 images of the first 5 individuals were rotated to generate training data while

those of the other 11 individuals were used for test data.

If we rotate a rectangular face image to obtain a new rectangular image of the same size,

the corner pixels cannot be filled as shown in Fig. 3. With this information, the rotation angle

can easily be recovered. Therefore, in our experiment, instead of rectangular image, we used

circularly cropped face images as follows. Each image was firstly cropped circularly based on

a fixed center point of (57, 40) with a radius of 30 pixels, then rotated with ten random angles

uniformly distributed from −30◦ to +30◦. As a result, 550 (5 × 11 × 10) training images and

1,100 (10 × 11 × 10) test images were obtained. Fig. 4 shows examples of circularly cropped

and randomly rotated images of one original image.

In this problem, each pixel constitutes one input variable while the target variable is the

rotation angle in degree. Using 550 training images, we extracted various numbers of features

with different feature extraction methods and estimated the rotation angles of the 1,100 test data.
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TABLE IX

PERFORMANCE FOR THE YALE ROTATION DATASET (RMS ERRORS OF TEST DATA IN ◦). BOTH 5NN AND GPR WERE USED

AND THE SMALLER RMS ERRORS OF THE TWO IS REPORTED. ’N’ AND ’G’ IN THE PARENTHESIS DENOTE 5NN AND GPR

RESPECTIVELY.

No. of features (m) 1 10 20 30 40 50

PCA 19.92 (G) 4.45 (N) 3.95 (N) 3.58 (N) 3.46 (N) 3.37 (N)

MLR 4.20 (N) – – – – –

GPL 7.30 (G) – – – – –

SIR 6.92 (G) 3.69 (N) 3.74 (N) 3.60 (N) 3.58 (N) 3.49 (N)

PHD 15.71 (G) 4.50 (N) 4.09 (N) 3.71 (N) 3.82 (N) 3.79 (N)

WPCA 19.13 (G) 4.35 (N) 3.93 (N) 3.57 (N) 3.48 (N) 3.40 (N)

LDAr 5.11 (N) 1.82 (N) 4.02 (N) 3.90 (N) 6.85 (N) 7.25 (N)

KDAr (σ = 2× 102) 5.71 (N) 1.55 (N) 1.28 (N) 1.19 (N) 1.17 (N) 1.19 (N)

Table IX shows the rms errors on test data with various feature extraction methods. Both 5NN

and GPR were used as a regressor and the reported rms errors are the smaller of the two.

In the table, rms error was smallest when KDAr was used as a feature extraction method

except the case for m = 1. Although the performance of KDAr was worse than MLR and LDAr

for m = 1 when σ = 200, for different values of σ KDAr performed better than LDAr and MLR

even when m = 1. In the table, the best performance was obtained with KDAr when m = 40.

Comparing the performance of GPR and 5NN, when m = 1, GPR performed better than 5NN

except for MLR, LDAr and KDAr. For other values of m, 5NN outperformed GPR in all the

experiments.

2) Yale database - scaling: In this subsection, each of the Yale face images was scaled ten

times by a random factor from 100% up to 150% and then cropped to the original 100 × 80

size as shown in Fig. 5. As in the rotation experiment in the previous subsection, the first 55

images of 5 individuals were used to create the training images, while the remaining 110 images

were used for testing. Therefore, the number of training and test images are 550 and 1,100

respectively.

In this problem, the target variable is the scaling factor in %. As a regressor, both 5NN and

GPR were used and the smaller rms errors of the two regressors on the test data are reported in

Table X.

In the table, we can see that KDAr outperforms other linear feature extraction methods for all
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109 141 136 129 135

124 148 144 128 118

Fig. 5. Scaled images of Yale database with their corresponding scaling factor in %

TABLE X

PERFORMANCE FOR THE YALE SCALING DATASET (RMS ERRORS OF TEST DATA IN %). BOTH 5NN AND GPR WERE USED

AND THE SMALLER RMS ERRORS OF THE TWO IS REPORTED. ’N’ AND ’G’ IN THE PARENTHESIS DENOTE 5NN AND GPR

RESPECTIVELY.

No. of features (m) 1 10 20 30 40 50

PCA 16.03 (G) 8.32 (N) 7.77 (N) 7.76 (N) 7.45 (N) 7.36 (N)

MLR 11.02 (N) – – – – –

GPL 7.82 (G,N) – – – – –

SIR 7.98 (G) 7.12 (N) 7.53 (N) 7.51 (N) 7.53 (N) 7.60 (N)

PHD 10.43 (G) 8.95 (N) 7.40 (N) 7.52 (N) 7.32 (N) 7.28 (N)

WPCA 16.01 (G) 8.23 (N) 7.75 (N) 7.75 (N) 7.45 (N) 7.31 (N)

LDAr 10.75 (N) 14.22 (G) 14.22 (G) 14.22 (G) 14.22 (G) 14.22 (G)

KDAr (σ = 1.5× 101) 7.60 (G) 6.80 (N) 6.83 (N) 6.84 (N) 6.86 (N) 6.82 (N)

the number of extracted features m. Note that LDAr performs rather bad for this problem but its

nonlinear extension KDAr performs better than other conventional feature extraction methods.

For this problem, when the number of extracted features is one, GPR performed better than 5NN

but as the number of features increases, 5NN becomes better except for the LDAr case.

VI. CONCLUSION

In this paper, a new feature extraction method KDAr for regression problem has been proposed.

It is an extension of LDAr, a linear discriminant analysis for regression problems, to a nonlinear

version by using the so called kernel trick. The basic idea is to map the input space to a high-

dimensional feature space in which variables are nonlinearly related to the input space and then
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try to maximize the ratio of distances of samples with large differences in the target value and

those with small differences in the target value. In the derivation of KDAr, we have investigated

the relationship of KDAr with Laplacian eigenmap and gave a guideline for edge matrices. In

addition, the properties of KDAr were also investigated.

We have applied the proposed method to several regression problems including artificial and

real-world problems as well as facial alignment problems and compared the performance of

KDAr with those of the conventional linear feature extraction methods. The experimental results

show that the proposed KDAr outperforms the conventional feature extraction methods in most

cases and can be used as a dimensionality reduction method for regression problems.
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