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Abstract. This study investigates a new method of feature extraction
for classification problems with a considerable amount of outliers. The
method is a weighted version of our previous work based on the indepen-
dent component analysis (ICA). In our previous work, ICA was applied to
feature extraction for classification problems by including class informa-
tion in the training. The resulting features contain much information on
the class labels producing good classification performances. However, in
many real world classification problems, it is hard to get a clean dataset
and inherently, there may exist outliers or dubious data to complicate
the learning process resulting in higher rates of misclassification. In ad-
dition, it is not unusual to find the samples with the same inputs to have
different class labels. In this paper, Parzen window is used to estimate
the correctness of the class information of a sample and the resulting
class information is used for feature extraction.

1 Introduction

In this paper, the feature extraction for classification problems are dealt with
and the focus is on the feature extraction by a linear transform of the origi-
nal features. These methods are generally referred to as the subspace methods
which includes principal component analysis (PCA) [1], independent component
analysis (ICA) [2], Fisher’s linear discriminant analysis (LDA) [3] and so on.

In our previous work, we developed ICA-FX (feature extraction based on
independent component analysis) [4], a supervised feature extraction method for
classification problems. Like ICA, it utilizes higher order statistics, while unlike
ICA, it was developed as a supervised method in that it includes the output class
information to find an appropriate feature subspace. This method is well-suited
for classification problems in the aspect of constructing new features that are
strongly related to output class.

In this paper, the ICA-FX is extended to incorporate the outliers and dubious
data in the learning process. For a given training sample, the probability of the
sample belonging to a certain class is calculated by Parzen window method
[5] and this information is directly used as an input to the ICA-FX. By this
preprocessing, the samples with higher class-certainty are enforced and those



with lower class-certainty are suppressed in the learning process. The proposed
method is applied to an artificial dataset to show effectiveness of the method.

This paper is organized as follows. In Section 2, Parzen window method is
briefly reviewed. ICA-FX, our previous feature extraction algorithm, is reviewed
in Section 3 and a new method, weighted ICA-FX, is presented in Section 4.
Simulation results are presented in Section 5 and conclusions follow in Section
6.

2 A Review of Parzen Window

For a given sample in a dataset, to correctly estimate in what extent the sample
belongs to a class, one need to know the pdf s of the data. The Parzen window
density estimate can be used to approximate the probability density p(xxx) of a
vector of continuous random variables XXX [5]. It involves the superposition of a
normalized window function centered on a set of random samples. Given a set of
n d-dimensional training vectors D = {xxx1,xxx2, · · · ,xxxn}, the pdf estimate of the
Parzen window is given by

p̂(xxx) =
1

n

n
∑

i=1

φ(xxx − xxxi, h), (1)

where φ(·) is the window function and h is the window width parameter. Parzen
showed that p̂(xxx) converges to the true density if φ(·) and h are selected properly
[5]. The window function is required to be a finite-valued non-negative density
function such that

∫

φ(yyy, h)dyyy = 1, (2)

and the width parameter is required to be a function of n such that

lim
n→∞

h(n) = 0, (3)

and

lim
n→∞

nhd(n) = ∞. (4)

For window functions, the rectangular and the Gaussian window functions
are commonly used. In this paper, the Gaussian window function of the following
is used:

φ(zzz, h) =
1

(2π)d/2hd|Σ|1/2
exp(−

zzzT Σ−1zzz

2h2
), (5)

where Σ is a covariance matrix of a d-dimensional random vector ZZZ whose in-
stance is zzz.

Figure 1 is a typical example of the Parzen window density estimate. In the
figure, a Gaussian kernel is placed on top of each data point to produce the
density estimate p̂(x).
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Fig. 1. An example of Parzen window density estimate

3 A Review of ICA-FX

ICA outputs a set of maximally independent vectors that are linear combina-
tions of the observed data. Although these vectors might have some applications
in such areas as blind source separation and data visualization, it is not suitable
for feature extraction of classification problems, because it is the unsupervised
learning that does not use class information. The effort to incorporate the stan-
dard ICA with supervised learning has been made in our previous work [4],
where a new feature extraction algorithm, ICA-FX for classification problems
was proposed. ICA-FX tries to solve the following problem:

(Problem statement) Assume that there are a normalized input feature
vector, xxx = [x1, · · · , xN ]T , and an output class, c ∈ {c1, · · · , cNc

}. The purpose
of feature extraction is to extract M(≤ N) new features fafafa = [f1, · · · , fM ]T from
xxx, by a linear combination of the xi’s, containing the maximum information on
class c. Here Nc is the number of classes.

The main idea of the ICA-FX is simple. It tries to apply the standard ICA
algorithms to feature extraction for classification problems by making use of the
class labels to produce two sets of new features; features that carry as much
information on the class labels (these features will be useful for classification) as
possible and the others that do not (these will be discarded). The advantage is
that the general ICA algorithms can be used for feature extraction by maximizing
the joint mutual information between the class labels and new features.

First, suppose Nc(≥ 2) denotes the number of classes. To incorporate the
class labels in the ICA structure, the discrete class labels need to be encoded
into numerical variables. The 1-of-Nc scheme is used in coding classes, i.e., a
class vector, ccc = [c1, · · · , cNc

]T , is introduced and if a class label, c, belongs to
the lth value, then cl is activated as 1 and all the other ci’s, i 6= l, are set to -1.
After all the training examples are presented, each ci, i = 1, · · · , Nc, is shifted
in order to have zero mean and are scaled to have a unit variance.

Now consider the structure shown in Fig. 2. Here, the original feature vector
xxx is fully connected to uuu = [u1, · · · , uN ], the class vector ccc is connected only



~~
�X

�u

�u�

�t

�X

�t

�X

�t

T}t��

R

�uRu�

�u

X

�tRX �tRX

T}X��

R

�X �uRX
X

Fig. 2. Feature extraction algorithm based on ICA (ICA-FX)

to uuua = [u1, · · · , uM ], and uN+l = cl, l = 1, · · · , Nc. In the figure, the weight
matrix WWW ∈ <(N+Nc)×(N+Nc) becomes

WWW =

(

W V
000Nc,N INc

)

=








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





. (6)

where W ∈ <N×N and V = [V T
a ,000T

N−M,Nc
]T ∈ <N×Nc . Here the first nonzero

M rows of V is denoted as Va ∈ <M×Nc .
In information theoretic view, the aim of feature extraction is to extract M

new features fffa from the original N features, xxx, such that I(fffa; c), the mutual
information between newly extracted features fffa and the output class c, ap-
proaches I(xxx; c), the mutual information between the original features xxx and the
output class c [4].

This can be satisfied if we can separate the input feature space xxx into two
linear subspaces: one that is spanned by fffa = [f1, · · · , fM ]T , which contains
the maximum information on the class label c, and the other spanned by fff b =
[fM+1, · · · , fN ]T , which is independent of c as much as possible.

The condition for this separation can be derived as follows. If it is assumed
that WWW is nonsingular, then xxx and fff = [f1, · · · , fN ]T span the same linear space,
which can be represented with the direct sum of fffa and fff b, and then by the
data processing inequality [6],

I(xxx; c) = I(Wxxx; c) = I(fff ; c) = I(fffa, fff b; c) ≥ I(fffa; c). (7)



The first equality holds because W is nonsingular. The second and the third
equalities are from the definitions of fff , fffa and fff b. In the inequality on the last
line, the equality holds if I(fff b; c) = I(uM+1, · · · , uN ; c) = 0.

If this is possible, the dimension of the input feature space can be reduced
from N to M(< N) by using only fffa instead of xxx, without losing any information
on the target class.

To solve this problem, the feature extraction problem is interpreted in the
structure of the blind source separation (BSS) problem as shown in Fig. 3. The
detailed description of each step is as follows:
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Fig. 3. Interpretation of Feature Extraction in the BSS structure

(Mixing) Assume that there are N independent sources sss = [s1, · · · , sN ]T

which are also independent of the class label c. Assume also that the observed
feature vector xxx is a linear combination of the sources sss and ccc with the mixing
matrix A ∈ <N×N and B ∈ <N×Nc ; i.e.,

xxx = Asss + Bccc. (8)

(Unmixing) The unmixing stage is slightly different from the BSS problem
as shown in Fig. 2. In the figure, the unmixing equation becomes

uuu = Wxxx + V ccc. (9)

Suppose uuu is somehow made equal to eee, the scaled and permuted version of the
source sss; i.e.,

eee , ΛΠsss (10)

where Λ is a diagonal matrix corresponding to an appropriate scale and Π is
a permutation matrix. The ui’s (i = 1, · · · , N) are then independent of the
class label c by the assumption. Among the elements of fff = Wxxx(= uuu − V ccc),
fff b = [fM+1, · · · , fN ]T will be independent of c because the ith row of V , Vi =
[wi,N+1, · · · , wi,N+Nc

] = 000 and fi = ui for i = M + 1, · · · , N . Therefore, the
M(< N) dimensional new feature vector fffa can be extracted by a linear trans-
formation of xxx containing the most information on the class if the relation uuu = eee
holds.



The learning rule for the ICA-FX is obtained in a similar way as that of ICA
using the MLE approach as follows.

If it is assumed that uuu = [u1, · · · , uN ]T is a linear combination of the source
sss; i.e., it is made equal to eee, a scaled and permutated version of the source, sss,
as in (10), and that each element of uuu is independent of the other elements of uuu,
which is also independent of the class vector ccc, the log likelihood of the data for
a given WWW becomes the following:

L(uuu,ccc|WWW ) = log |detWWW | +

N
∑

i=1

log pi(ui) + log p(ccc) (11)

because

p(xxx,ccc|WWW ) = |detWWW | p(uuu,ccc) = |detWWW |
N
∏

i=1

pi(ui) p(ccc). (12)

Now, L can be maximized, and this can be achieved by the steepest ascent
method. Because the last term in (11) is a constant, differentiating (11) with
respect to WWW leads to

∂L

∂wi,j
=

adj(wj,i)

|detWWW |
− ϕi(ui)xj 1 ≤ i, j ≤ N

∂L

∂wi,N+j
= −ϕi(ui)cj 1 ≤ i ≤ M, 1 ≤ j ≤ Nc

(13)

where adj(·) is adjoint and ϕi(ui) = −dpi(ui)
dui

/pi(ui) . Note that each ci has
binary numerical values depending on the class label c.

It can be seen that |detWWW | = |det W | and
adj(wj,i)
| detWWW | = W−T

i,j . Thus the learn-

ing rule becomes

∆W ∝ W−T −ϕϕϕ(uuu)xxxT

∆Va ∝ −ϕϕϕ(uuua)cccT .
(14)

Here ϕϕϕ(uuu) , [ϕ1(u1), · · · , ϕN (uN )]T and ϕϕϕ(uuua) , [ϕ1(u1), · · · , ϕM (uM )]T .
Applying a natural gradient on updating W , by multiplying WT W on the

right side of the first equation of (??), the following is obtained.

W (t+1) =W (t) + µ1[IN −ϕϕϕ(uuu)fffT ]W (t)

V (t+1)
a =V (t)

a − µ2ϕϕϕ(uuua)cccT .
(15)

Here µ1 and µ2 are the learning rates that can be set differently. By this weight
update rule, the resulting ui’s will have a good chance of fulfilling the assumption
that ui’s are not only independent of one another but also independent of the
class label c.

Note that the learning rule for W is the same as the original ICA learning rule
[2], and also note that fffa corresponds to the first M elements of Wxxx. Therefore,
the optimal features fffa can be extracted by the proposed algorithm when it
finds the optimal solution for W by (15).



4 Weighted ICA-FX

In ICA-FX presented in the above section, the 1-of-Nc scheme was used to code
the discrete class labels into numerical ones, but in many real world problems
the same sample may be classified as either one or another class with probability.
In addition, the training data may contain incorrect class information resulting
errors in classification. This problem may be solved if the probabilistic coding
scheme is used for coding the discrete class information into numerical values.
That is, suppose there are 3 classes and a training sample says that it belongs to
class 1. Because the class information of this sample may or may not be correct,
instead of using (1, 0, 0) for coding the class of this sample, probabilistic coding
such as (0.7, 0.1, 0.2) using the other training data can be used to train ICA-FX.
This is done if we know the conditional distribution of classes for a given dataset
p(c|xxx).

For this purpose, Parzen window presented in Section 2, is used to estimate
the probability that the sample belongs to either class 1, class 2 or class 3 as
follows.

By the Bayesian rule, the conditional probability p(c|xxx) can be written as

p(c|xxx) =
p(xxx|c)p(c)

p(xxx)
. (16)

If the class has Nc values, say 1, 2, · · · , Nc, the estimate of the conditional pdf
p̂(xxx|c) of each class is obtained using the Parzen window method as

p̂(xxx|c) =
1

nc

∑

i∈Ic

φ(xxx − xxxi, h), (17)

where c = 1, · · · , Nc; nc is the number of the training examples belonging to
class c; and Ic is the set of indices of the training examples belonging to class c.
Because the summation of the conditional probability equals one, i.e.,

Nc
∑

k=1

p(k|xxx) = 1,

the conditional probability p(c|xxx) is

p(c|xxx) =
p(c|xxx)

∑Nc

k=1 p(k|xxx)
=

p(c)p(xxx|c)
∑Nc

k=1 p(k)p(xxx|k)
.

The second equality is by the Bayesian rule (16). Using (17), the estimate of the
conditional probability becomes

p̂(c|xxx) =

∑

i∈Ic
φ(xxx − xxxi, hc)

∑Nc

k=1

∑

i∈Ik
φ(xxx − xxxi, hk)

, (18)

where hc and hk are the class specific window width parameters. Here p̂(k) =
nk/n is used instead of the true density p(k).



If the Gaussian window function (5) is used with the same window width
parameter and the same covariance matrix for each class, (18) becomes

p̂(c|xxx) =

∑

i∈Ic
exp(− (xxx−xxxi)

T Σ−1(xxx−xxxi)
2h2 )

∑Nc

k=1

∑

i∈Ik
exp(− (xxx−xxxi)T Σ−1(xxx−xxxi)

2h2 )
. (19)

Note that for multi-class classification problems, there may not be enough sam-
ples such that the error for the estimate of class specific covariance matrix can
be large. Thus, the same covariance matrix is used for each class throughout this
paper.

Using p̂(c|xxx) obtained above, the class vector ccc in Section 3 becomes proba-
bilistic depending on the whole dataset. And this can be used in training ICA-FX
directly. The advantage of this coding scheme over 1-of-Nc scheme is that the
class information of a sample is affected by its neighboring samples and it be-
comes more tolerant to outliers. This smoothing process acts as giving more
(less) weights on samples whose class information is trustworthy (uncertain).
From now on, the proposed algorithm will be referred to as the weighted ICA-
FX (wICA-FX).

5 Simulation Results

In this section, the performance of wICA-FX is compared with those of other
methods. Consider the simple problem of the following:

Suppose we have two independent input features x1 and x2 uniformly dis-
tributed on [-0.5,0.5] for a binary classification, and the output class c is deter-
mined as follows:

c =

{

0 if x1 + 3x2 < 0

1 if x1 + 3x2 ≥ 0.

For this problem, 5 datasets were generated where the class c was randomly
flipped with probability of 0 to 0.4. Each dataset contains 500 samples on which
PCA, LDA, ICA, ICA-FX and wICA-FX were performed. These feature ex-
traction methods were tested on a separate test dataset with no flip of class
information.

Table 1 is the classification performances of various feature extraction meth-
ods on these datasets. One feature is extracted with each method. Averages of
10 experiments with standard deviations are reported here. Standard multi-layer
perceptron (MLP) with one hidden layer was used for the classification. Three
hidden nodes were used with learning rate of 0.02 and momentum of 0.9. The
number of iterations was set to 100. In wICA-FX, h was set to 1

log
10

n as in [7],

where n is the number of training samples.
In the table, the performances of LDA, ICA-FX, and wICA-FX are almost

the same when there are no flipped classes. As the number of flipped samples



increases, the error rates of wICA-FX increase more slowly than those of ICA-
FX. Comparing to ICA-FX and wICA-FX, the error rates of LDA suddenly jump
to 48% when only 10% of the samples are flipped. Note that the error rates of
PCA and ICA stays the same around 20 % because these are unsupervised
learning methods.

Table 1. Classification performance for the simple dataset (Averages of 10 experiments.
Numbers in the parentheses are the standard deviations.)

% of flips Classification error (%) (MLP)
PCA ICA LDA ICA-FX wICA-FX

0 20.41 21.53 2.90 2.54 2.64

(0.32) (0.70) (0.42) (0.84) (0.86)
10 20.22 19.06 48.10 3.16 2.28

(0.28) (2.82) (0.98) (1.15) (0.74)
20 19.74 18.67 48.71 4.24 3.42

(0.98) (0.71) (1.83) (1.74) (1.05)
30 20.30 22.18 47.72 7.82 4.16

(0.14) (2.12) (0.71) (2.51) (2.47)
40 20.02 20.37 48.21 10.56 5.68

(0.56) (0.70) (1.13) (3.21) (2.09)
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6 Conclusions

This study investigates a new method of feature extraction for classification
problems with a considerable amount of outliers. In our previous work ICA-FX,
class information was added in training ICA. The added class information plays
a critical role in the extraction of useful features for classification. With the



additional class information we can extract new features containing maximal in-
formation about the class. However in many real world classification problems, it
is hard to get a clean dataset and inherently, there may exist outliers or dubious
data to complicate the learning process resulting errors in classification. In addi-
tion, a sample may be classified as either one or another class with probability.
The proposed method focuses on this problem and it is a weighted version of
ICA-FX. Parzen window is used to estimate the correctness of the class infor-
mation of a sample and the resulting class information is used to code the class
in ICA-FX. The advantage of this coding scheme over 1-of-Nc scheme is that
the class information of a sample is affected by its neighboring samples, thus
becomes more tolerant to outliers. This smoothing process acts as giving more
(less) weights on samples whose class information is trustworthy (uncertain).
Experimental result on the simple artificial dataset shows that the wICA-FX is
very effective in dealing with the incorrect class information.
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