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Abstract

The advent of internet and development of new computer technologies made

it easy to create huge databases with a large number of features that are some-

times called as ‘attributes’ or ‘fields’. Among these, there are features that are

relevant or irrelevant to the concerning problem and there may be redundant ones

also. From the viewpoint of managing and analyzing a database, reducing the

number of features by selecting only the relevant ones or extracting new features,

which are relevant to the problem, from the original ones is desirable. Using

only problem-relevant features, the dimension of the feature space can be greatly

reduced in line with the principle of parsimony, resulting better generalization.

This thesis deals with the problem of feature selection and extraction for

classification problems. Throughout the thesis, mutual information is used as a

measure of correlation between class labels and features. In the first part of the

dissertation, the feature selection problem is studied and a new method of feature

selection is proposed. In order to calculate the mutual information between input

features and class labels, a new method based on the Parzen window is proposed,

and it is applied to a greedy feature selection algorithm for classification prob-

lems. In the second part, the feature extraction problem is dealt with and a new

method of feature extraction is proposed. It is shown how standard algorithms

for independent component analysis (ICA) can be appended with class labels to

produce a number of features that carry whole the information about the class

labels that was contained in the original features. A local stability analysis of

the proposed algorithm is also provided. The advantage of the proposed method

is that general ICA algorithms become available to a task of feature extraction

for classification problems by maximizing the joint mutual information between

the class labels and the new features. Using the new features, the dimension

of the feature space can be greatly reduced without degrading the classification

performance.

The proposed feature selection and extraction methods are applied to various

pattern recognition problems such as face recognition and the performances of

the proposed methods are compared with those of other conventional methods.

The experimental results show that the proposed methods outperform the other
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methods using small numbers of features.
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Chapter 1

Introduction

In recent years, there has been an explosive growth in men’s capability to

generate and collect data. According to some estimates, the amount of data in

the world is doubling every twenty months [1]. Consequently, it is becoming more

and more important to interpret, digest, and analyze this data in order to extract

useful knowledge out of them. Therefore, there exists a significant need for new

techniques and tools with the ability of assisting human beings intelligently and

automatically in analyzing mountains of data for nuggets of knowledge. The

overall efforts toward this ends are collectively referred to as knowledge discovery

in database (KDD) [2].

Recently, the term data mining is widespread to refer to the subject [2] [3]

[4]. There are arguments whether the term should be used in a narrow sense

to indicate a single step in the KDD process that involves finding patterns in

the data as in [2], where it is defined as a step in the KDD process consisting

a particular algorithms that produces a particular enumeration of patterns over

data, or it should be used in a wide sense to refer to the entire process of KDD

[3], where it is defined as the entire process of discovering advantageous patterns

in data. Especially, all the pattern recognition problems can be viewed as data

mining problems in a wide sense. Both viewpoints are adopted in this dissertation

and if necessary, it will be clearly indicated whether the term is used in a wide

sense or in a narrow sense in the following.

There are several ways of classifying data mining processes. One is to cate-
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Figure 1.1: Data Mining Process

gorize the processes sequentially. The other is to categorize them by the charac-

teristics of the problem in question. For the first case, there exist various steps

in the data mining process and Fig. 1.1 shows typical steps in the data mining

process. It is a modified version of the Figure 1.3 in [2]. Broad outlines of their

basic functions are as follows:

1. Data generation: generating or collecting domain specific data that contain

information about the goals of the end-user, on which discovery is to be

performed.

2. Preprocessing: basic operations such as the removal of noise or outliers if

appropriate. Normalization or quantization may occur in this step.

3. Data reduction: finding useful features or samples to represent the data

depending on the goal of the task. Dimensionality reduction or sample

selection methods are used in this step to reduce the effective number of

variables or samples under consideration or to find invariant representation

of the data.
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Chapter 1. Introduction

4. Data mining (narrow sense): choosing and applying an appropriate algo-

rithms in searching for the patterns in the data, depending on whether the

goal of the KDD process is classification, regression, clustering, etc. The

resultant patterns may be classification rules or trees, regression equations,

clusters, etc.

5. Interpretation: interpreting and evaluating the resultant patterns to get

the knowledge. After evaluating the performance, any of the previous steps

may be revisited for the next iteration.

Among the five steps above, data reduction and data mining steps have been

studied actively and many algorithms have been proposed on these areas. For

example, neural networks, decision trees, example based methods such as nearest

neighborhood classifiers, and many statistical methods are in popular usage in

the data mining step. On the other hand, feature selection, feature extraction,

and sample selection methods are typically used for the data reduction.

For the second case, the entire data mining process can be divided into su-

pervised and unsupervised learning depending whether there are target (output)

values or not. In supervised learning, one tries to investigate the relationship

between the inputs and the targets using given input-target (output) patterns.

On the other hand, in unsupervised learning, there are no distinction between

attributes and the purpose is to investigate the underlying structure of the data

such as the distribution of the data or the minimum variance direction and these

are mostly related to the clustering problems. Supervised learning can be further

divided into the classification and the regression problems depending on the char-

acteristics of the target values. Typically it is classified as a classification problem

if the targets are categorical, while it is referred to as a regression problem if the

targets are continuous numerical values.

In this dissertation, the main focus is on the data reduction step and the

feature selection and extraction for classification problems are extensively studied.
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1.1 Feature Selection and Extraction

In data mining problems, one is given an array of attributes or data fields

to search for the underlying patterns in the data. These attributes are called

features, and there may exist irrelevant or redundant features to complicate the

learning process, thus leading to an erroneous result. Even when the features

presented contain enough information about the problem, the resultant patterns

after the data mining process may not be relevant because the dimension of fea-

ture space can be so large that it may require numerous instances to investigate

the patterns. This problem is commonly referred to as the curse of dimension-

ality [5]. Especially in supervised learning, where the purpose is to investigate

the input-output relationship and predict output class using input features, some

experiments have also reported that the performance of classifier systems deteri-

orates as irrelevant features are added [3].

Though some of the modern classifiers, such as the support vector machines

(SVM), are surprisingly tolerant to extra irrelevant information, this problem

can be avoided by selecting only the relevant features or extracting new features

containing the maximal information about the problem in question from the

original ones. The former methodology is called as the feature selection or the

subset selection, while the latter is named as the feature extraction which includes

all the methods that takes any functions, logical or numerical, of the original

features to extract new features.

Reduction of pattern dimensionality may improve the data mining process by

considering only compact, the most important data representation, possibly with

elements retaining maximum information about the original data and with better

generalization abilities [6]. Not only in the aspect of curse of dimensionality, but

also in the viewpoint of data storage and computational complexity, dimension-

ality reduction through feature selection or extraction is quite desirable.

1.2 Previous Works for Feature Selection

Feature selection is usually defined as a process of finding a subset of fea-

tures, from the original set of features forming patterns of a given data, optimal
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according to the goal and criterion of feature selection [6].

Feature selection algorithms can be classified as a filter model or a wrapper

model, depending on whether it is treated as a preprocess or interwinded with the

learning task. More precisely, in a filter model, the data mining (in narrow sense)

process is performed after the features are selected, while in a wrapper model,

features are selected in the process of data mining. A wrapper approach generally

outperforms a filter model because it directly optimizes the evaluation measure

of the learning task while removing irrelevant features, but the time needed to

complete feature selection is much longer than that of a filter approach [4].

The feature selection problem has been dealt with intensely, and some solu-

tions have been proposed [7] – [15]. Among these, one of the most important

contributions has been made using the decision tree method. This method can

be classified as a wrapper model and it uncovers relevant attributes one by one

iteratively [13], [14]. Setiono and Lui [13] proposed a feature selection algorithm

based on a decision tree by excluding the input features of the neural network one

by one and retraining the network repeatedly. It has many attractive characteris-

tics, but it basically requires a process of retraining for almost every combinations

of input features. To overcome this shortcoming, a fast training algorithm other

than the BP (back-propagation) is used, but nevertheless it requires a consider-

able amount of time. The CDP (classifier with dynamic pruning) of Agrawal et

al. [15] is also based on the decision tree which makes use of the mutual infor-

mation between inputs and outputs. It is very efficient in finding rules that map

inputs to outputs, but as a downside, requires a great deal of memory because it

generates and counts all the possible input-output pairs. MIFS (mutual informa-

tion feature selector) by Battiti [7] uses mutual information between inputs and

outputs like the CDP but it is a filter method. Batitti demonstrated that mutual

information can be very useful in feature selection problems, and the MIFS can be

used in any classifying systems for its simplicity whatever the learning algorithm

may be. Because the computation of mutual information between continuous

variables is a very difficult job requiring probability density functions (pdf ) and

involving integration of those functions, Battiti used histograms to avoid these

complexities. Thus, the performance can be degraded as a result of large er-
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rors in estimating the mutual information. Kwak and Choi [8], [9] proposed an

extended version of MIFS that can provide better estimation of mutual informa-

tion between inputs and outputs. Though easy to implement without degrading

the performance much, the MIFS methods have another limitation in that these

methods do not provide a direct measure to judge whether to add additional fea-

tures or not. More direct calculation of mutual information is attempted using

the quadratic mutual information in [16] – [18].

Regarding the topic of selecting appropriate number of features, the stepwise

regression [19] and the best-first search by Winston [20] are considered as standard

techniques. The former uses a statistical partial F-test in deciding whether to

add a new feature or not. The latter searches the space of attribute subsets by

greedy hillclimbing augmented with backtracking facility. Since it does not care

how the performance of subsets are evaluated, the sucess of the algorithm usually

depends on the subset evaluation scheme.

1.3 Previous Works for Feature Extraction

Feature extraction is a process of revealing a number of descriptors from raw

data of an object, representing information of an object, suitable for further data

mining process. Usually feature extraction is realized via transformations of the

raw data into condensed representation in a feature space [6].

Many researches have been made on the feature extraction problems. Though

the principal component analysis (PCA) is the most popular [21], by its nature, it

is not well-fitted for supervised learning since it does not make use of any output

class information in deciding the principal components. The main drawback of

this method is that the extracted features are not invariant under transformation.

Merely scaling the attributes changes resulting features.

Unlike PCA, Fisher’s linear discriminant analysis (LDA) [22] focuses on clas-

sification problems to find optimal linear discriminating functions. Though it is

a very simple and powerful method for feature extraction, the application of this

method is limited to the case in which classes have significant differences between

means, since it is based on the information about the differences between means.
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In addition, the original LDA cannot produce more than Nc − 1 features, where

Nc is the number of classes though an extension has been made for this problem

in [23].

Another common method of feature extraction is to use a feedforward neural

network such as multilayer perceptron (MLP). This method uses the fact that

in the feedforward structure the output class is determined through the hidden

nodes which produce transformed forms of original input features. This notion

can be understood as squeezing the data through a bottleneck of a few hidden

units. Thus, the hidden node activations are interpreted as new features in this

approach. This line of research includes [24] - [27]. Fractal encoding [28] and

wavelet transformation [29] have also been used for feature extraction.

Recently, in neural networks and signal processing circles, independent com-

ponent analysis (ICA), which was devised for blind source separation problems,

has received a great deal of attention because of its potential applications in

various areas. Bell and Sejnowski [30] have developed an unsupervised learn-

ing algorithm performing ICA based on entropy maximization in a single-layer

feedforward neural network. ICA can be very useful as a dimension-preserving

transform because it produces statistically independent components, and some

have directly used ICA for feature extraction and selection [31] - [34]. Recent re-

searches [17], [35] are focused on extraction of output relevant features based on

mutual information maximization methods. In these researches, Renyi’s entropy

measure was used instead of that of Shannon.

1.4 Organization of the Dissertation

In this dissertation, new methods for the feature selection and extraction for

classification problems are presented and the proposed methods are applied to

various problems including face recognition problems. Throughout the disserta-

tion, the mutual information is used as a measure in determining the relevance

of features.

In the first part of the dissertation, a new feature selection method with the

mutual information maximization scheme is proposed for the classification prob-
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lem. In calculating the mutual information between the input features and the

output class, instead of discretizing the input space, the Parzen window method

is used to estimate the input distribution. With this method, more accurate

mutual information is calculated. It has been used for measuring the relative

importance of input features in determining the class labels, and this feature

selection method gives better performances than other conventional methods.

In the second part of the dissertation, the feature extraction problem is dealt

with and it is shown how standard algorithms for ICA can be appended with

class labels to extract good features for classification. The proposed method

produces a number of features that do not carry information about the class

label – these features will be discarded – and a number of features that do. The

advantage is that general ICA algorithms become available to a task of feature

extraction by maximizing the joint mutual information between class labels and

new features. It is an extended version of [36] and this method is well-suited

for classification problems. The algorithm is originally developed for binary-

class classification problems and then it is extended to multi-class classification

problems. A stability analysis is also provided for this method.

The proposed feature selection and extraction methods are applied to several

classification problems. The proposed algorithms greatly reduces the dimension

of feature space while improving classification performance.

The remainder of this dissertation is organized as follows. In the following

chapter, the basics of information theory, Parzen window method, and ICA are

briefly presented. In Chapter 3, a new feature selection method based on Parzen

window method is proposed. In Chapter 4, a new feature extraction algorithm

based on ICA is proposed and a local stability analysis of the algorithm is also

provided. At the end of Chapter 3 and 4, the proposed algorithms are applied to

several classification problems to show their effectiveness. And finally, conclusions

follow in Chapter 5.

8



Chapter 2

Preliminaries

In this section, some basic concepts and notations of the information the-

ory and the Parzen window that are used in the development of the proposed

algorithms are briefly introduced. A brief review of ICA is also presented.

To make things clear, from now on, capital letters represent random variables

and small letters are instances of the corresponding random variables. Boldfaced

letters represent vectors.

2.1 Entropy and Mutual Information

A classifying system maps input features onto output classes. There are

relevant features that have important information on outputs, whereas irrelevant

ones contain little information on outputs. In solving the feature selection and

extraction problems, one tries to find inputs that contain as much information on

the outputs as possible and need tools for measuring the information. Fortunately,

the information theory provides a way to measure the information of random

variables with entropy and mutual information [37], [38].

The entropy is a measure of uncertainty of random variables. If a discrete

random variable X has X alphabets and the pdf is p(x) = Pr{X = x}, x ∈ X ,

the entropy of X is defined as

H(X) = −
∑

x∈X

p(x) log p(x). (2.1)

9
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Here the base of log is 2 and the unit of entropy is the bit. For two discrete

random variables X and Y with their joint pdf p(x, y), the joint entropy of X

and Y is defined as

H(X, Y ) = −
∑

x∈X

∑

y∈Y

p(x, y) log p(x, y). (2.2)

The joint entropy measures the total uncertainty of random variables.

When certain variables are known and others are not, the remaining uncer-

tainty is measured by the conditional entropy:

H(Y |X) =
∑

x∈X

p(x) H(Y |X = x)

= −
∑

x∈X

p(x)
∑

y∈Y

p(y|x) log p(y|x)

= −
∑

x∈X

∑

y∈Y

p(x, y) log p(y|x). (2.3)

In the equation above, H(Y |X) represents the remaining information of Y when

X is known. As shown in (2.3) the conditional entropy is defined as the condi-

tional expectation of the entropy of an unknown variable given a known random

variable. The joint entropy and the conditional entropy has the following relation:

H(X, Y ) = H(X) + H(Y |X)

= H(Y ) + H(X|Y ). (2.4)

This, known as the chain-rule, implies that the total entropy of random variables

X and Y is the entropy of X plus the remaining entropy of Y for a given X.

The information found commonly in two random variables is of importance in

this thesis, and this is defined as the mutual information between two variables:

I(X; Y ) =
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
. (2.5)

If the mutual information between two random variables is large (small), it means

two variables are closely (not closely) related. If the mutual information becomes

10
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zero, the two random variables are totally unrelated and the two variables are in-

dependent. The mutual information and the entropy have the following relation:

I(X; Y ) = H(X)−H(X|Y )

I(X; Y ) = H(Y )−H(Y |X)

I(X; Y ) = H(X) + H(Y )−H(X, Y )

I(X; Y ) = I(Y ; X)

I(X; X) = H(X). (2.6)

Until now, definitions of the entropy and the mutual information of discrete

random variables have been presented. For many classifying systems the output

class C can be represented with a discrete random variable, while the input

features are generally continuous. For continuous random variables, though the

differential entropy and mutual information are defined as

H(X) = −

∫

p(x) log p(x)dx

I(X; Y ) =

∫

p(x, y) log
p(x, y)

p(x)p(y)
dxdy, (2.7)

it is very difficult to find pdf s (p(x), p(y), p(x, y)) and to perform the integra-

tions. Therefore the continuous input feature space is divided into several dis-

crete partitions and the entropy and the mutual information is calculated using

the definitions for discrete cases. The inherent error that exists in the quan-

tization process is of great concern in the computation of entropy and mutual

information of continuous variables.

2.2 The Parzen Window Density Estimate

To calculate the mutual information between the input features and the out-

put class, one need to know the pdf s of the inputs and the output. The Parzen

window density estimate can be used to approximate the probability density p(xxx)

of a vector of continuous random variables XXX [39]. It involves the superposition

of a normalized window function centered on a set of random samples. Given a

11
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set of n d-dimensional training vectors D = {xxx1,xxx2, · · · ,xxxn}, the pdf estimate of

the Parzen window is given by

p̂(xxx) =
1

n

n
∑

i=1

φ(xxx− xxxi, h), (2.8)

where φ(·) is the window function and h is the window width parameter. Parzen

showed that p̂(xxx) converges to the true density if φ(·) and h are selected properly

[39]. The window function is required to be a finite-valued non-negative density

function such that
∫

φ(yyy, h)dyyy = 1, (2.9)

and the width parameter is required to be a function of n such that

lim
n→∞

h(n) = 0, (2.10)

and

lim
n→∞

nhd(n) =∞. (2.11)

The selection of h is always crucial in the density estimator by the Parzen

window. Despite significant efforts in the past, it is still unclear how to optimize

the value of h. Some authors [40], [41] recommended the method of selecting

experimentally the best h for a particular data set. In the Parzen window classifier

system [42], h was selected by varying it over several orders of magnitude and

choosing the values hopt corresponding to the minimum error. In [43], h was set

to 1
log n .

For window functions, the rectangular and the Gaussian window functions

are commonly used. In this dissertation, the Gaussian window function of the

following is used:

φ(zzz, h) =
1

(2π)d/2hd|Σ|1/2
exp(−

zzzT Σ−1zzz

2h2
), (2.12)

where Σ is a covariance matrix of a d-dimensional random vector ZZZ whose instance

is zzz.

In the density estimation by the Parzen window, the ratio of the sample size to

the dimensionality may be too small or too large. If it is too small, the covariance

12
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Figure 2.1: An example of Parzen window density estimate

matrix becomes singular and Muto et al. [44] devised a method to avoid this

situation. On the other hand, if the ratio is too large, the computational burden

becomes heavier and the clustering method [42] or the sample selection method

[45] can be used in estimating the density function by the Parzen window. Figure

2.1 is a typical example of the Parzen window density estimate. In the figure,

a Gaussian kernel is placed on top of each data point to produce the density

estimate p̂(x).

2.3 Review of ICA

The problem of linear independent component analysis for blind source sepa-

ration was developed in the literature [46] - [48]. In parallel, Bell and Sejnowski

[30] have developed an unsupervised learning algorithm based on entropy maxi-

mization of a feedforward neural network’s output layer, which is referred to as

the Infomax algorithm. The Infomax approach, maximum likelihood estimation

(MLE) approach, and negentropy maximization approach were shown to lead to

identical methods [49] - [51].

The problem setting of ICA is as follows. Assume that there is an L-dimensional

13
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zero-mean non-Gaussian source vector sss(t) = [s1(t), · · · , sL(t)]T , such that the

components si(t)’s are mutually independent, and an observed data vector xxx(t) =

[x1(t), · · · , xN (t)]T is composed of linear combinations of sources si(t) at each

time point t, such that

xxx(t) = Asss(t) (2.13)

where A is a full rank N × L matrix with L ≤ N . The goal of ICA is to find

a linear mapping W such that each component of an estimate uuu of the source

vector

uuu(t) = Wxxx(t) = WAsss(t) (2.14)

is as independent as possible. The original sources sss(t) are exactly recovered

when W is the inverse of A up to some scale changes and permutations. For a

derivation of an ICA algorithm, one usually assumes that L = N , because he

has no idea about the number of sources. In addition, sources are assumed to

be independent of time t and are drawn from independent identical distribution

pi(si).

Bell and Sejnowski [30] have used a feed-forward neural processor to develop

the Infomax algorithm, one of the popular algorithms for ICA. The overall struc-

ture of the Infomax is shown in Fig. 2.2. This neural processor takes xxx as an

input vector. The weight W is multiplied to the input xxx to give uuu and each com-

ponent ui goes through a bounded invertible monotonic nonlinear function gi(·)

to match the cumulative distribution of the sources. Let yi = gi(ui) as shown in

the figure.

From the view of information theory, maximizing the statistical independence

among variables ui’s is equivalent to minimizing mutual information among ui’s.

This can be achieved by minimizing mutual information between yi’s, since the

nonlinear transfer function gi(·) does not introduce any dependencies.

In [30], it has been shown that by maximizing the joint entropy H(YYY ) of

the output yyy = [y1, · · · , yN ]T of a processor, the mutual information among the

output components Yi’s

I(YYY ) , I(Y1; Y2; · · · ; YN ) =

∫

p(yyy) log
p(yyy)

∏N
i=1 pi(yi)

dyyy (2.15)
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Figure 2.2: Feedforward structure for ICA

can be approximately minimized. Here, p(yyy) is the joint pdf of a random vector

YYY , and pi(yi) is the marginal pdf of the random variable Yi.

The joint entropy of the outputs of this processor is

H(YYY ) = −

∫

p(yyy) log p(yyy)dyyy

= −

∫

p(xxx) log
p(xxx)

| det J(xxx)|
dxxx

(2.16)

where J(xxx) is the Jacobian matrix whose (i, j)th element is the partial derivative

∂yj/∂xi. Note that J(xxx) = W . Differentiating H(YYY ) with respect to W leads to

the learning rule for ICA:

∆W ∝W−T −ϕϕϕ(uuu)xxxT . (2.17)

By multiplying W T W on the right, the natural gradient [52] is obtained speeding

up the convergence rate

∆W ∝ [I −ϕϕϕ(uuu)uT ]W (2.18)

where

ϕϕϕ(uuu) =

[

−

∂p1(u1)
∂u1

p1(u1)
, · · · ,−

∂pN (uN )
∂uN

pN (uN )

]T

. (2.19)
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The parametric density estimation pi(ui) plays an important role in the

success of the learning rule in (2.18). If pi(ui) is assumed to be Gaussian,

ϕi(ui) = −ṗi(ui)/pi(ui) becomes a linear function of ui with a positive coeffi-

cient and the learning rule (2.18) becomes unstable. This is why non-Gaussian

sources are assumed in ICA.

There is a close relation between the assumption on the source distribution

and the choice of the nonlinear function gi(·). By simple computation with (2.15)

and (2.16), the joint entropy H(YYY ) becomes

H(YYY ) =
N
∑

i=1

H(Yi)− I(YYY ). (2.20)

The maximal value for H(YYY ) is achieved when the mutual information among

the outputs is zero and their marginal distributions are uniform. For a uniform

distribution of Yi, the distribution of Ui must be

pi(ui) ∝

∣

∣

∣

∣

∂gi(ui)

∂ui

∣

∣

∣

∣

(2.21)

because the relation between the pdf of Yi and that of Ui is

pi(yi) = pi(ui)/

∣

∣

∣

∣

∂gi(ui)

∂ui

∣

∣

∣

∣

, for pi(yi) 6= 0. (2.22)

By the relationship (2.21), the estimate ui of the source has a distribution that

is approximately the form of the derivative of the nonlinearity.

Note that if the sigmoid function is used for gi(·) as in [30], pi(ui) in (2.21)

becomes super-Gaussian, which has longer tails than the Gaussian pdf. Some

research [52], [53] relaxes the assumption on the source distribution to be sub-

Gaussian or super-Gaussian and [52] leads to the extended Infomax learning rule:

∆W ∝ [I −D tanh(uuu)uuuT − uuuuuuT ]W (2.23)






di = 1 : super-Gaussian

di = −1 : sub-Gaussian.

Here di is the ith element of the N -dimensional diagonal matrix D, and it switches

between sub- and super-Gaussian using a stability analysis.

In this dissertation, the extended Infomax algorithm in [52] is adopted because

it is easy to implement with less strict assumptions on the source distribution.
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Feature Selection Based on

Parzen Window

Various feature selection methods can be devised depending on the goal and

the criterion of a data mining problem. In this chapter, a new input feature se-

lection algorithm by maximizing the mutual information between input features

and the output class is presented for classification problems. In the previous fea-

ture selection algorithms such as the mutual information feature selector (MIFS)

[7] and the mutual information feature selection under uniform information dis-

tribution (MIFS-U) [8], [9], an extension of the MIFS, the mutual information

of continuous variables is calculated using discrete quantization method. This

quantization step inherently involves some errors in computation of mutual in-

formation and feature subset selected with this criterion may contain erroneous

features. The proposed method, called Parzen window feature selector (PWFS),

computes the mutual information between input features which take on continu-

ous values and categorical output class directly using Parzen window method [54].

Before presenting the algorithm, the feature selection problems are formalized in

the following.
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3.1 Problem Formulation

The success of a feature selection algorithm for classification problems depends

critically on how much information about the output class is contained in the

selected features. A useful theorem in relation to this is Fano’s inequality [38] in

information theory.

(Fano’s inequality) Let XXX and C be random variables that represent

input features and output class, respectively. If one tries to esti-

mate the output class C using the input features XXX, the minimal

probability of incorrect estimation PE satisfies the following in-

equality:

PE ≥
H(C|XXX)− 1

log Nc
=

H(C)− I(XXX; C)− 1

log Nc
. (3.1)

Because the entropy of class H(C) and the number of classes Nc is fixed, the

lower bound of PE is minimized when I(XXX; C) becomes the maximum. Thus it is

necessary for good feature selection methods to maximize the mutual information

I(XXX; C).

Battiti [7] formalized this concept of selecting the most relevant k features

from a set of n features as a “feature reduction” problem:

FRn-k (feature reduction from n to k) : Given an initial set F with

n features and an output class C, find the subset S ⊂ F with k

features that minimizes H(C|SSS), i.e., that maximizes the mutual

information I(SSS; C). Where SSS is a k-dimensional feature vector

whose components are the elements of S.

There are three key strategies for solving this FRn-k problem. The first

strategy is the generate and test. All the feature subsets S are generated and

their I(SSS; C) are compared. Theoretically, this can find the optimal subset, but

it is almost impossible due to the large number of combinations when the number

of features are reasonably large. The second strategy is the backward elimination.

In this strategy, from the full feature set F that contains n elements, the worst
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features are eliminated one by one until k elements remain. This method also

has many drawbacks in computing I(SSS; C) because the dimension of feature space

can be too large in calculating the joint pdfs. The final strategy is the greedy

selection. In this method, starting from the empty set of selected features, the

best available input feature is added to the selected feature set one by one until

the size of the set reaches k. This ideal greedy selection algorithm using the

mutual information as the relevance criterion is realized as follows:

1. (Initialization) set F ←− “initial set of n features,” S ←− “empty set.”

2. (Computation of the MI with the output class) ∀Fi ∈ F , compute I(Fi; C).

3. (Selection of the first feature) find the feature that maximizes I(Fi; C), set

F ←− F\ {Fi} , S ←− {Fi}.

4. (Greedy selection) repeat until desired number of features are selected.

(a) (Computation of the joint MI between variables) ∀Fi ∈ F , compute

I(Fi,SSS; C).

(b) (Selection of the next feature) choose the feature Fi ∈ F that maxi-

mizes I(Fi,SSS; C), and set F ←− F\{Fi} , S ←− {Fi}.

5. Output the set S containing the selected features.

To compute the mutual information, the pdf s of input and output variables

must be known, but this is difficult in practice, so the histogram method has been

used in estimating the pdf s. But the histogram method needs extremely large

memory space in calculating the mutual information. For example, in selecting

k features problem, if the output classes are composed of Kc classes and the jth

input feature space is divided into Pj partitions to get the histogram, there must

be Kc × Πk
j=1Pj cells to compute I(Fi,SSS; C). In this case, even for a simple

problem of selecting 10 important features, Kc × 1010 memories are needed if

each feature space is divided into 10 partitions. Furthermore, to get a correct

mutual information, the number of samples must be at least in the same order as

the number of cells. Therefore realization of the ideal greedy selection algorithm
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is practically impossible by estimating the pdf s with histogram. To overcome

this practical obstacle, alternative methods have been devised [7] [8] [9]. In the

following section, these methods are briefly reviewed. Thereafter, in the Section

3.3, a new method of feature selection using Parzen window density estimation

is proposed.

3.2 Previous Works (MIFS, MIFS-U)

The mutual information feature selector (MIFS) algorithm [7] is the same

as the ideal greedy selection algorithm except for Step 4. Instead of calculating

I(Fi,SSS; C), the mutual information between a candidate for newly selected feature

Fi plus already selected features SSS and output classes C, Battiti [7] used only

I(Fi; C) and I(Fi; Fj). To be selected, a feature which cannot be predictable

from the already selected features in S, must be informative regarding the class.

In the MIFS, Step 4 in ideal greedy selection algorithm was replaced as follows

[7]:

4. (Greedy selection) repeat until desired number of features are

selected.

(a) (Computation of the MI between variables) for all cou-

ples of variables (Fi, Fs) with Fi ∈ F , Fs ∈ S compute

I(Fi; Fs), if it is not yet available.

(b) (Selection of the next feature) choose the feature Fi ∈

F that maximizes I(Fi; C) − β
∑

Fs∈S
I(Fi; Fs); set F ←−

F\{Fi} , S ←− {Fi}.

Here β is a redundancy parameter which is used in considering the redun-

dancy among input features. If β = 0, the mutual informations among input

features are not taken into consideration and the algorithm selects features in the

order of the mutual information between an input feature and output classes, the

redundancy between input features is never reflected. As β grows, the mutual

informations between input features begin to influence the selection procedure

and the redundancy becomes reduced. But in the case where β is too large, the

20



Chapter 3. Feature Selection Based on Parzen Window
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Figure 3.1: The relation between input features and output classes

algorithm only considers the relation between inputs and does not reflect the

input-output relation well.

The relation between input features and output classes can be represented as

shown in Fig. 3.1. The ideal greedy feature selection algorithm using the mu-

tual information chooses the feature Fi that maximizes joint mutual information

I(Fi, Fs; C) which is the area 2,3, and 4, represented by the dashed area in Fig.

3.1. Because I(Fs; C) (area 2 and 4) is common for all the unselected features

Fi in computing the joint mutual information I(C; Fi, Fs), the ideal greedy al-

gorithm selects the feature Fi that maximizes the area 3 in Fig. 3.1. On the

other hand, the MIFS selects the feature that maximizes I(C; Fi) − βI(Fi; Fs).

For β = 1, it corresponds to area 3 subtracted by area 1 in Fig. 3.1.

Therefore if a feature is closely related to the already selected feature Fs, the

area 1 in Fig. 3.1 is large and this can degrade the performance of MIFS. For this

reason, the MIFS does not work well in nonlinear problems such as the following

example.

Example Two independent random variables X and Y are uniformly distributed

on [-0.5,0.5], and assume that there are 3 input features X, X − Y and Y 2. The
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Table 3.1: Feature Selection by MIFS for the Example

(a) MI between input and output classes (I(Fi; C))

X X − Y Y 2

0.8459 0.2621 0.0170

(b) MI between input features (I(Fi; Fj))

X X − Y Y 2

X – 0.6168 0.0610

X − Y 0.6168 – 0.5624

Y 2 0.0610 0.5624 –

(c) I(fi; C) − I(Fi; Fs)

X − Y I(X − Y ; Z) − I(X − Y ; X) = −0.3537

Y 2 I(Y 2; Z) − I(Y 2; X) = −0.0439

(d) Order of Selection

X X − Y Y 2

Ideal Greedy 1 2 3

MIFS (β = 1) 1 3 2

output belongs to class Z

Z =

{

0 if X + 0.2Y < 0

1 if X + 0.2Y ≥ 0.

When 1,000 samples are taken and each input feature space is partitioned into

ten, the mutual information between each input feature and the output classes

and those between input features are shown in Table 3.1. The order of selection

by the MIFS(β = 1) is X, Y 2, and X − Y in that order.

As shown in Table 3.1(c) the MIFS selects Y 2 rather than the more important

feature X − Y as the second choice. Note that Y can be calculated exactly by a

linear combination of X and X−Y . Because the output class Z can be computed

exactly by X and X −Y , one can say X −Y rather than Y 2 is more informative

about the Z for a given X. To verify that X − Y is a more important feature

than Y 2, neural networks were trained with (X,X − Y ) and (X,Y 2) as input

features respectively. The neural networks were trained with sets of 200 training

data and the classification rates are on the test data of 800 patterns. Two hidden
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nodes were used with a learning rate of 2.0 and momentum of 0.1. The number

of epochs at the time of termination was 200. As expected, the results are 99.8%

when X and X − Y are selected, and 93.4% when X and Y 2 are selected.

This is due to the relatively large β, and is a good example showing a case

where the relations between inputs are weighted too much.This is due to the

difference of the algorithm from the ideal greedy selection algorithm described

ahead. The MIFS handles redundancy at the expense of classifying performance.

The mutual information feature selection under uniform information distri-

bution (MIFS-U) [8] [9] that is closer to the ideal one than the MIFS is now

reviewed. The ideal greedy algorithm tries to maximize I(C; Fi, Fs) (area 2, 3,

and 4 in Fig. 3.1) and this can be rewritten as

I(C; Fi, Fs) = I(C; Fs) + I(C; Fi|Fs). (3.2)

Here I(C; Fi|Fs) represents the remaining mutual information between the output

class C and the feature Fi for a given Fs. This is shown as area 3 in Fig. 3.1,

whereas the area 2 plus area 4 represents I(C; Fs). Since I(C; Fs) is common for

all the candidate features to be selected in the ideal feature selection algorithm,

there is no need to compute this. So the ideal greedy algorithm now tries to find

the feature that maximizes I(C; Fi|Fs) (area 3 in Fig. 3.1). However, calculating

I(C; Fi|Fs) requires as much work as calculating H(Fi, Fs, C).

So I(C; Fi|Fs) will be approximated with I(Fs; Fi) and I(C; Fi), which are

relatively easy to calculate. The conditional mutual information I(C; Fi|Fs) can

be represented as

I(C; Fi|Fs) = I(C; Fi)− {I(Fs; Fi)− I(Fs; Fi|C)}. (3.3)

Here I(Fs; Fi) corresponds to area 1 and 4 and I(Fs; Fi|C) corresponds to area 1.

So the term I(Fs; Fi) − I(Fs; Fi|C) corresponds to area 4 in Fig. 3.1. The term

I(Fs; Fi|C) means the mutual information between the already selected feature

Fs and the candidate feature Fi for a given class C. If conditioning by the class

C does not change the ratio of the entropy of Fs and the mutual information

between Fs and Fi, i.e., if the following relation holds,

H(Fs|C)

H(Fs)
=

I(Fs; Fi|C)

I(Fs; Fi)
, (3.4)
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Table 3.2: Validation of (3.4) for the Example

H(Fs|C)/H(Fs)

H(X) 3.3181

H(X|Z) 2.4723

H(X|Z)/H(X) 0.745

I(Fs; Fi|C)/I(Fs; Fi)

I(X − Y ; X) 0.6168 I(Y 2; X) 0.0610

I(X − Y ; X|Z) 0.4379 I(Y 2; X|Z) 0.0491

I(X − Y ; X|Z)/I(X − Y ; X) 0.709 I(Y 2; X)/I(Y 2; X|Z) 0.805

I(Fs; Fi|C) can be represented as

I(Fs; Fi|C) =
H(Fs|C)

H(Fs)
I(Fs; Fi). (3.5)

Using the equation above and (3.3)

I(C; Fi|Fs) = I(C; Fi)− (1−
H(Fs|C)

H(Fs)
)I(Fs; Fi)

= I(C; Fi)−
I(C; Fs)

H(Fs)
I(Fs; Fi). (3.6)

If it is assumed that each region in Fig. 3.1 corresponds to its corresponding

information, condition (3.4) is hard to satisfied when information is concentrated

on one of the four regions in Fig. 3.1, i.e., H(Fs|Fi, C), I(Fs; Fi|C), I(C; Fs|Fi),

or I(C; Fs; Fi). It is more likely that the condition (3.4) holds when information

is distributed uniformly throughout the region of H(Fs) in Fig. 3.1. Because

of this, the algorithm is referred to as the MIFS-U (mutual information feature

selector under uniform information distribution). The ratio in (3.4) is computed

for the Example and the values of several pieces of mutual information are shown

in Table 3.2. It shows that the relation (3.4) holds with less than 10% of error.

With this formula, the Step 4 in the ideal greedy selection algorithm is revised

as follows:

4. (Greedy selection) repeat until desired number of features are

selected.
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(a) (Computation of entropy) ∀Fs ∈ S, compute H(Fs) if

it is not already available.

(b) (Computation of the MI between variables) for all cou-

ples of variables (Fi, Fs) with Fi ∈ F , Fs ∈ S, compute

I(Fs; Fi), if it is not yet available.

(c) (Selection of the next feature) choose a feature Fi ∈

F that maximizes I(C; Fi) − β
∑

Fs∈S
I(C;Fs)
H(Fs)

I(Fi; Fs); set

F ←− F\{Fi} , S ←− {Fi}.

Here the entropy H(Fs) can be computed in the process of computing the

mutual information with output class C, so there is little change in computational

load with respect to the MIFS. In the calculation of mutual informations and

entropies, there are two mainly used approaches of partitioning the continuous

feature space: equi-distance partitioning [7] and equi-probable partitioning [55].

The equi-distance partitioning method is used for the MIFS-U as in [7]. The detail

of partitioning method is as follows: If the distribution of the values in a variable

Fi is not known a priori, its mean µ and the standard deviation σ are computed

and the interval [µ− 2σ, µ + 2σ] is divided into pi equally spaced segments. The

points falling outside are assigned to the extreme left (right) segment.

Parameter β offers flexibility to the algorithm as in the MIFS. If β is set to

zero, the proposed algorithm chooses features in the order of the mutual infor-

mation with the output. As β grows, it excludes the redundant features more

efficiently. In general β can be set to 1 in compliance with (3.6). For all the

experiments to be discussed later, β is set to 1 if there is no comment.

In computing mutual information I(Fs; Fi), a second order joint probability

distribution which can be computed from a joint histogram of variables Fs and

Fi is required. Therefore, if there are n features and each feature space is divided

into p partitions to get a histogram, p2 memories are needed for each of
(

n
2

)

histograms to use MIFS-U. The computational effort therefore increases in the

order of n2 as the number of features increases for given numbers of examples

and partitions. This implies that the computational complexity of MIFS-U is not

greater than that of MIFS.
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Although the MIFS and MIFS-U methods report good results on some prob-

lems, these are somewhat heuristic because they do not use the mutual informa-

tion I(Fi,SSS; C) directly. To overcome these problems, a new method for com-

puting the mutual information between continuous input features and discrete

output class is proposed in the following section.

3.3 Parzen Window Feature Selector (PWFS)

In classification problems, the class has discrete values while the input features

are usually continuous variables. In this case, rewriting the relation of (2.6),

the mutual information between the input features XXX and the class C can be

represented as follows:

I(XXX; C) = H(C)−H(C|XXX).

In this equation, because the class is a discrete variable, the entropy of the class

variable H(C) can be easily calculated as in (2.16). But the conditional entropy

H(C|XXX) = −

∫

XXX
p(xxx)

Nc
∑

c=1

p(c|xxx) log p(c|xxx)dxxx, (3.7)

where Nc is the number of classes, is hard to get because it is not easy to estimate

p(c|xxx).

Now, a new method is presented to estimate the conditional entropy and the

mutual information by the Parzen window method. By the Bayesian rule, the

conditional probability p(c|xxx) can be written as

p(c|xxx) =
p(xxx|c)p(c)

p(xxx)
. (3.8)

If the class has Nc values, say 1, 2, · · · , Nc, the estimate of the conditional pdf

p̂(xxx|c) of each class is obtained using the Parzen window method as

p̂(xxx|c) =
1

nc

∑

i∈Ic

φ(xxx− xxxi, h), (3.9)

where c = 1, · · · , Nc; nc is the number of the training examples belonging to

class c; and Ic is the set of indices of the training examples belonging to class c.
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Because the summation of the conditional probability equals one, i.e.,

Nc
∑

k=1

p(k|xxx) = 1,

the conditional probability p(c|xxx) is

p(c|xxx) =
p(c|xxx)

∑Nc

k=1 p(k|xxx)
=

p(c)p(xxx|c)
∑Nc

k=1 p(k)p(xxx|k)
.

The second equality is by the Bayesian rule (3.8). Using (3.9), the estimate of

the conditional probability becomes

p̂(c|xxx) =

∑

i∈Ic
φ(xxx− xxxi, hc)

∑Nc

k=1

∑

i∈Ik
φ(xxx− xxxi, hk)

, (3.10)

where hc and hk are the class specific window width parameters. Here p̂(k) =

nk/n is used instead of the true density p(k).

If the Gaussian window function (2.12) is used with the same window width

parameter and the same covariance matrix for each class, (3.10) becomes

p̂(c|xxx) =

∑

i∈Ic
exp(− (xxx−xxxi)

T Σ−1(xxx−xxxi)
2h2 )

∑Nc

k=1

∑

i∈Ik
exp(− (xxx−xxxi)T Σ−1(xxx−xxxi)

2h2 )
. (3.11)

Note that for multi-class classification problems, there may not be enough samples

such that the error for the estimate of class specific covariance matrix can be large.

Thus, the same covariance matrix is used for each class throughout this thesis.

Now in the calculation of the conditional entropy (3.7) with n training sam-

ples, if the integration is replaced with a summation of the sample points and it

is assumed that each sample has the same probability, Ĥ(C|XXX) can be obtained

as follows:

Ĥ(C|XXX) = −
n
∑

j=1

1

n

Nc
∑

c=1

p̂(c|xxxj) log p̂(c|xxxj). (3.12)

Here xxxj is the jth sample of the training data. With (3.11) and (3.12), the

estimate of the mutual information is obtained.

The computational complexity for (3.12) is propotional to n2×d. When there

is a computational problem because of large n, one may use the clustering method

[42] or the sample selection method [45] to speed up the calculation. The methods
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based on histograms require computational complexity and memory proportional

to qd, where q represents number of quantization levels. Note that the proposed

method does not require excessive memory, unlike the histogram based methods.

With the estimation of mutual information described in the previous section,

the FRn-k problem can be solved by the greedy selection algorithm represented

in Section 3.1. Note that the dimension of a input feature vector xxx starts from one

at the beginning and increases one by one as a new feature is added to selected

feature set S. For convenience, the proposed method is referred to as the PWFS

(Parzen window feature selector) from now on.

In the proposed mutual information estimation, the selection of the window

function and the window width parameter is very important. As mentioned in

Section II, the rectangular window and the Gaussian window is normally used

for the Parzen window function. In the simulation, the Gaussian window is used

rather than the rectangular window because it does not contain any discontinuity.

For the window width parameter h, k/log n is used as in [43], where k is a positive

constant and n is the number of the samples. This choice of h satisfies the

conditions (2.10) and (2.11).

To see the properties of the proposed algorithm, let us consider the typical

four points XOR problem. Let XXX = (X1, X2) be a continuous input feature

vector and the samples for XXX are given (0,0), (0,1), (1,0), (1,1). The term C is

the discrete output class which takes a value in {0, 1}. In the Parzen window

method, each sample point influences the conditional probability throughout the

entire feature space. The influence φ(xxx − xxxi, h) of a sample point xxxi has the

polarity of its corresponding class. It is named as a class specific influence field,

which is similar to an electric field produced by a charged particle. The influence

fields generated by given four sample points in the XOR problem are shown in Fig.

3.2. In the figure, the slope and the range of the influence field is determined

by the window width parameter h. The smaller h is, the sharper the slope

and the narrower the range of influence becomes. Figure 3.2 was drawn with

h = 1
2log n where n is the number of sample points which is four in this case.

With this h, the higher (lower) estimate for the conditional probability of class

C being 0 or 1 for each sample point is 0.90 (0.10) by (3.11). With (3.12), the
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conditional entropy estimate Ĥ(C|X1, X2) becomes 0.465, and the entropy H(C)

is 1 by (2.16). Thus, the estimate of the mutual information between two input

features and the output class Î(C; X1, X2) (= H(C) − Ĥ(C|X1, X2)) is 0.535.

The significance of Î(C; X1, X2) being greater than zero will become clear later.

In Fig. 3.3, the conditional probability of class 1 calculated by (3.11) is

provided on the input feature space. Note that one can get a Baye’s classifier if

one classify a given input to class 1 when p(c = 1|xxx) > 0.5 and to class 0 when

p(c = 1|xxx) < 0.5. This classfier system is a type of Parzen classifier [42], [44],

[45], [56]. Since the classifier system is not my concern, this issue is not further

dealt with.

In the process of the greedy selection scheme, the mutual informations I(X1; C),

I(X2; C) between the variables X1, X2 and the class C is zero, while the estimate

of the mutual information Î(C; X1, X2) between the output class and both input

features is far greater than zero. Thus, it is known that using both features gives

more information about the output class than using only one of the variables in

the greedy selection scheme with the Parzen window. But, in the conventional

feature selection methods such as MIFS [7] and MIFS-U [8] [9], this knowledge

can not be obtained because these methods do not use the mutual information of

multiple variables. Instead, to avoid using too many memory cells in calculating

mutual information with the discrete quantization method, they make use of some

measure on redundancy between variables information which can be obtained by

calculating the mutual information between two input features. These methods

report good performances in several problems, but they are prone to errors in

highly nonlinear problems like XOR problem and have to resort to some other

methods like Taguchi method [9].

One more advantage of the PWFS is that it provides a measure that indicates

whether to use additional features or not. Though it is quite difficult to estimate

how much the performance will increase with one more feature by the increase of

the mutual information, one can at least get a lower bound of error probability

by the Fano’s inequality and can compare the increseas in mutual information or

the error probability which will aid the decision whether to add more features or

not.
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3.4 Experimental Results

In this section, the PWFS is applied to some of the classification problems

and the performance of PWFS is compared with those of MIFS and MIFS-U to

show the effectiveness of the PWFS.

In all the following experiments, h is set to 1
log n where n is the sample size of

a particular data set as in [43]. Because the off diagonal terms in the covariance

matrix can be prone to large errors and need great computational efforts, only

diagonal terms are used in the covariance matrix for simplicity if not otherwise

stated.

In addition, to expedite the computation, the influence range of a sample point

is restricted to 2σ ·h for each dimension, i.e., the influence is made to zero in the

outer domain of 2σ · h from the sample point, where σ is a standard deviation

of the corresponding feature. This can greatly reduce the computational effort,

especially when there are already enough selected features.

IBM dataset

These datasets were generated by Agrawal et al. [15] to test their data mining

algorithm CDP . They were also used in [8], [9], and [13] for testing the perfor-

mances of each feature selection method. Each of the datasets has nine attributes,

which are salary, commission, age, education level, make of the car, zipcode of the

town, value of the house, years house owned, and total amount of the loan. All

of them have two classes Group A and Group B. The four classification functions

are shown in Table 3.3. For convenience, the four datasets generated using each

function in Table 3.3 are referred to as IBM1, IBM2, IBM3, IBM4 and nine input

features as F1, F2, · · · , F9, respectively. From the table, it can be seen that only

a small fraction of the original features completely determine the output class

for these datasets. Thus feature selection can be very useful for these datasets if

appropriate features are selected. Although these datasets are artificial, the same

argument is true for many real world datasets; there are many irrelevant features

and only a small number of features can be used to solve the given problem.

For each dataset, 1,000 input-output patterns are generated and the window
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Table 3.3: IBM Classification Functions

Function 1

Group A: ((age < 40) ∧ (50K ≤ salary ≤ 100K)) ∨

((40 ≤ age < 60) ∧ (75K ≤ salary ≤ 125K)) ∨

((age ≥ 60) ∧ (25K ≤ salary ≤ 75K)).

Group B: Otherwise.

Function 2

Group A: ((age < 40) ∧

(((elevel ∈ [0. . . 2] ? (25K ≤ salary ≤ 75K)) : (50K ≤ salary ≤ 100K))))∨

((40 ≤ age < 60) ∧

(((elevel ∈ [1. . . 3] ? (50K ≤ salary ≤ 100K)) : (75K ≤ salary ≤ 125K))))∨

((age ≥ 60) ∧

(((elevel ∈ [2. . . 4] ? (50K ≤ salary ≤ 100K)) : (25K ≤ salary ≤ 75K)))) .

Group B: Otherwise.

Function 3

Group A: disposable > 0, where

disposable = (0.67 × (salary + commission) − 5000 × elevel − 0.2 × loan− 10000).

Group B: Otherwise.

Function 4

Group A: ((age < 40) ∧

(((50K ≤ salary ≤ 100K) ? (100K ≤ loan ≤ 300K)) : (200K ≤ loan ≤ 400K))))∨

((40 ≤ age < 60) ∧

(((75K ≤ salary ≤ 125K) ? (200K ≤ loan ≤ 400K)) : (300K ≤ loan ≤ 500K))))∨

((age ≥ 60) ∧

(((25K ≤ salary ≤ 75K) ? (300K ≤ loan ≤ 500K)) : (100K ≤ loan ≤ 300K))))∨

Group B: Otherwise.
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Table 3.4: Feature Selection for IBM datasets. The boldfaced features are the

relevant ones in the classification.

IBM 1

F1 F2 F3 F4 F5 F6 F7 F8 F9

MIFS / MIFS-U

(β = 0)
1 3 2 8 7 9 6 4 5

MIFS (β = 1) 1 9 2 3 5 4 8 6 7

MIFS-U (β = 1) 1 9 2 3 6 8 7 4 5

PWFS 1 3 2 4 6 7 8 5 9

IBM 2

F1 F2 F3 F4 F5 F6 F7 F8 F9

MIFS / MIFS-U

(β = 0)
2 3 1 8 5 6 7 9 4

MIFS (β = 1) 2 9 1 3 5 4 8 6 7

MIFS-U (β = 1) 2 9 1 3 5 6 7 8 4

PWFS 1 9 3 2 7 6 8 5 4

IBM 3

F1 F2 F3 F4 F5 F6 F7 F8 F9

MIFS / MIFS-U

(β = 0)
2 3 6 4 8 9 7 5 1

MIFS (β = 1) 2 9 7 3 5 4 8 6 1

MIFS-U (β = 1) 2 3 5 4 8 7 9 6 1

PWFS 2 4 8 3 6 5 9 7 1

IBM 4

F1 F2 F3 F4 F5 F6 F7 F8 F9

MIFS / MIFS-U

(β = 0)
4 8 2 3 5 9 6 7 1

MIFS (β = 1) 4 8 2 3 5 9 7 6 1

MIFS-U (β = 1) 4 9 2 3 5 7 6 8 1

PWFS 2 9 3 4 5 6 8 7 1

width parameter h is set to 1
log n . The proposed algorithm is compared with MIFS

[7] and MIFS-U [9]. In MIFS and MIFS-U, each input space was divided into 10

partitions to compute the entropies and the mutual information and redundency

parameter β was set to 0 and 1 as in [9].
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Figure 3.4: Selection order and mutual information estimate of PWFS for sonar

dataset (Left bar: Type I, Right bar: Type II. The number on top of each bar is

the selected feature index.)

Table 3.4 is the order of selection by each feature selection method. The

features used in the classification functions are written in boldface in Table 3.4.

In the table, it can be seen that the PWFS performs well for all the four datasets,

while the MIFS and MIFS-U fails to identify F1 (salary) as one of the important

three features in IBM4 dataset.

Sonar dataset

This dataset [57] was constructed to discriminate between the sonar returns

bounced off a metal cylinder and those bounced off a rock, and it was used in [7]

and [9] to test the performances of their feature selection methods. It consists

of 208 patterns including 104 training and testing patterns each. It has 60 input

features and two output classes: metal and rock. As in [7], the input features are

normalized to have the values in [0,1] and one node is allotted per each output

class for the classification.

For comparison, two types of PWFS are used for this dataset; first one only
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Table 3.5: Classification Rates with Different Numbers of Features for Sonar

Dataset (%) (The numbers in the parentheses are the standard deviations of 10

experiments)

Number of PWFS PWFS MIFS MIFS-U Stepwise

features (Type I) (Type II) regression

3 70.23 (1.2) 70.23 (1.2) 51.71 (2.1) 65.23 (1.6) 68.19 (1.1)

6 79.80 (0.8) 77.82 (0.6) 74.81 (1.4) 77.03 (0.4) 76.12 (0.3)

9 80.01 (0.9) 80.44 (1.1) 76.45 (2.4) 78.98 (0.7) –

10 81.42 (1.4) – 77.12 (3.1) 78.94 (0.8) –

12 – – 78.12 (1.8) 81.51 (0.4) –

All (60) 87.92 (0.2)

uses diagonal terms in the covariance matrix (Type I), and the other uses full

covariance matrix (Type II). The selection order and the mutual information

estimate Î(SSS; C) for PWFS are presented in Fig. 4.7. In the figure, the left bars

show the results of Type I and the right bars show those of Type II. Here, C and

SSS are as defined in Section III-A. In the figure, the number on top of each bar

represents the index of selected feature. It can be seen that the estimate of the

mutual information is saturated after 10 (9) features were selected with Type I

(Type II); thus, 10 (9) features were used and any more features were not used

in PWFS. Note that the selected features of Type I and Type II give nearly the

same Î(SSS; C) and are the same when the number of selected features is small.

In Table 3.5, the performances of PWFS are compared with those of the

conventional MIFS and MIFS-U. In addition, the result of stepwise regression

[19] is also reported. Because the importance of each feature is not known a

priori, 3 ∼ 12 features (top 5% ∼ 20%) are selected among the 60 features, and

the neural networks are trained with the set of training patterns using these input

features. Multilayer perceptrons (MLP) with one hidden layer are used and the

hidden layer had three nodes as in [7]. The conventional back-propagation (BP)

learning algorithm is used with the momentum of 0.0 and learning rate of 0.2.

The networks are trained for 300 epochs in all cases as Battiti did [7]. Each input

feature space is divided into ten partitions to calculate the entropies and mutual

information by MIFS and MIFS-U. The results of MIFS, MIFS-U and stepwise
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regression are from [9]. In the table, all the resulting classification rates are the

average values of 10 experiments and the corresponding standard deviations are

shown in the parentheses.

From the table, it can be seen that PWFS produced better performances than

the others and the performances of Type I and Type II do not differ much.

Vehicle dataset

This dataset comes from the Turing Institute, Glasgow, Scotland [58]. The

purpose of the dataset is to classify a given silhouette as one of the four types of

vehicle, “Opel,” “Saab,” “bus,” and “van,” using a set of features extracted from

the silhouette. The vehicle may be viewed from one of many different angles.

There are 18 numeric features that were extracted from the silhouettes. Total

number of examples are 946, which includes 240 Opel, 240 Saab, 240 bus, and

226 van. Among these, 200 data are used as a training set and the other 746 as

a test set.

The PWFS was compared with MIFS and MIFS-U. The stepwise regres-

sion cannot be used, because this is a classification problem with more than

two classes. The classification was performed using MLP with the standard BP

algorithm. Three hidden nodes were used with learning rate of 0.2 and zero mo-

mentum. The MLP was trained for 300 iterations, 10 times for each experiment.

Table 3.6 is the classification rates of various numbers of selected features. The

numbers in the parentheses are the standard deviations of 10 experiments. The

result show that PWFS is better than the other algorithms for vehicle dataset.

Other UCI datasets

The PWFS was used for various datasets in the UC-Irvine repository [59] and

the performances were compared with those of MIFS and MIFS-U. Table 3.7 is

the brief information of the datasets used in this thesis.

For these datasets, several features have been selected, and the results are

shown in Tables 3.8 ∼ 3.11. As classifier systems, the decision tree classifier

C4.5 [14] was used for “letter” and “breast cancer” datasets and the nearest

neighborhood classifier with neighborhood size of three was used for “waveform”
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Table 3.6: Classification Rates with Different Numbers of Features for Vehicle

Dataset (%) (The numbers in the parentheses are the standard deviations of 10

experiments)

Number of PWFS MIFS MIFS-U

features

2 58.77 (0.5) 40.23 (0.6) 57.53 (2.5)

4 62.50 (0.5) 57.32 (0.7) 59.97 (2.2)

6 68.89 (1.3) 65.50 (1.7) 63.94 (1.1)

8 71.59 (1.5) 70.04 (1.2) 70.35 (2.5)

10 73.20 (0.8) 71.57 (1.5) 72.70 (1.9)

All (18) 76.45 (1.0)

Table 3.7: Brief Information of the Datasets Used

Name # features # instances # classes

Letter 16 20,000 26

Breast Cancer 9 699 2

Waveform 21 1,000 3

Glass 9 214 6

Table 3.8: Classification Rates for Letter Dataset

Number of features PWFS MIFS MIFS-U

2 36.36 35.44 35.44

4 67.58 62.46 68.56

6 82.86 81.00 80.50

8 84.72 84.94 83.18

All (16) 87.68

Table 3.9: Classification Rates for Breast Cancer Dataset

Number of features PWFS MIFS MIFS-U

1 92.28 92.28 92.28

2 95.71 93.42 95.71

3 96.00 93.42 95.00

4 96.57 93.71 94.28

All (9) 96.28
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Table 3.10: Classification Rates for Waveform Dataset

Number of features PWFS MIFS MIFS-U

2 67.71 65.85 58.85

4 75.42 67.57 73.85

6 75.42 67.14 71.57

8 78.85 66.28 77.24

10 79.10 67.71 79.57

All (21) 76.57

Table 3.11: Classification Rates for Glass Dataset

Number of features PWFS MIFS MIFS-U

1 48.13 48.13 48.13

2 62.61 57.94 57.94

3 68.22 64.95 65.42

4 71.49 66.35 66.35

All (9) 70.56

and “glass” datasets. In the experiments, 75% was used as the training set and

the other 25% was used as the test set for “letter” data, 50% as the training

set and the other 50% as the test set for “breast cancer”, 30% as the training

set and 70% as the test set for “waveform”. Since the number of instances is

relatively small in “glass” dataset, the 10-fold cross-validation was used for this

dataset. In most experiments, it can be seen that the PWFS exhibits better

performances than MIFS and MIFS-U. Note also that except for the “letter”

dataset, the performances with a smaller number of features are better than

those with all features. This result clearly shows the necessity and advantages of

feature selection in data mining process.
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Feature Extraction Based on

ICA (ICA-FX)

As stated in Introduction, feature extraction is a processing of revealing a

number of descriptors from raw data of an object (a sample), representing in-

formation about an object, suitable for further data mining processing. For real

valued attributes, subspace methods such as PCA and LDA have been used in-

tensively. Usually, different feature extraction methods are preferred depending

on the goal and the criterion of a data mining problem. In this chapter, feature

extraction for classification problems, where the goal is to extract features that

result in a good classification performance with a reduced dimension of a feature

space, is dealt with. As in the feature selection method in the previous chapter,

mutual information is adopted as the criterion of extracting new features where

the features whose mutual information with the output class are the largest are

searched for.

Recently, ICA, one of the subspace methods, has been focused in many areas.

ICA outputs a set of maximally independent vectors which are linear combina-

tions of observed data. Although these vectors may find some applications in

such areas as blind source separation [30] and data visualization [31], it does

not fit for feature extraction for classification problems, because it is an unsu-

pervised learning that does not use class information. In this chapter, a feature

extraction algorithm is proposed for the classification problem by incorporating
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standard ICA algorithms with binary class labels and it is extended to multi-class

problems.

The main idea of the proposed feature extraction algorithm is simple. In

applying standard ICA algorithms to feature extraction for classification prob-

lems, it makes use of the binary class labels to produce two sets of new features;

one that does not carry information about the class label (these features will be

discarded) and the other that does (these will be useful for classification). The

advantage is that general ICA algorithms become available to a task of feature

extraction by maximizing the joint mutual information between class labels and

new features. Before the algorithm ICA-FX [60] [61] is presented, the purpose of

feature extraction is formalized.

4.1 Problem Formulation

The formulation of feature extraction for classification problems is almost

the same as that of feature selection. Suppose that there are N normalized

input features XXX = [X1, · · · , XN ]T and a output class label C. The purpose of

feature extraction is to extract M(≤ N) new features FFF a = [F1, · · · , FM ]T from

XXX containing maximal information of the class.

Using the same argument as in the feature selection formulation, it is neces-

sary for good feature extraction methods to extract features maximizing mutual

information with the output class. But there is no transformation T (·) that can

increase the mutual information between input features and output class as shown

by the following data processing inequality [38].

(Data processing inequality) Let XXX and C be random variables that

represent input features and output class, respectively. For any

deterministic function T (·) of XXX, the mutual information between

T (XXX) and output class C is upper-bounded by the mutual infor-

mation between XXX and C:

I(T (XXX); C) ≤ I(XXX; C) (4.1)

where the equality holds if the transformation is invertible.
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Figure 4.1: Feature extraction algorithm based on ICA (ICA-FX)

Thus, the purpose of a feature extraction is to extract M(≤ N) features FFF a

from XXX, such that I(FFF a; C), the mutual information between newly extracted

features FFF a and output class C, becomes as close as to I(XXX; C), the mutual

information between original features XXX and output class C.

4.2 Algorithm: ICA-FX for Binary-Class Problems

In this section, a feature extraction method ICA-FX is proposed for binary

classification problems [60] by modifying a standard ICA algorithm for the pur-

pose presented in the previous section. It is an extension of [36]. The main idea

of the proposed method is to incorporate the binary class labels into the struc-

ture of standard ICA to extract a set of new features that are highly correlated

with given class labels, as LDA does but using a method other than orthogonal

projection.

Consider the structure shown in Fig. 4.1. Here, the original feature vector

XXX = [X1, · · · , XN ]T is fully connected to UUU = [U1, · · · , UN ], class label C is

connected to UUUa = [U1, · · · , UM ], and UN+1 = C. In the figure, the weight
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matrix WWW ∈ <(N+1)×(N+1) becomes

WWW =































w1,1 · · · w1,N w1,N+1

...
...

...

wM,1 · · · wM,N wM,N+1

wM+1,1 · · · wM+1,N 0
...

...
...

wN,1 · · · wN,N 0

0 · · · 0 1































. (4.2)

And let us denote the upper left N ×N matrix of WWW as W .

Now our aim is to separate the input feature space XXX into two linear subspaces:

one that is spanned by FFF a = [F1, · · · , FM ]T that contains maximal information

about the class label C, and the other spanned by FFF b = [FM+1, · · · , FN ]T that is

independent of C as much as possible.

The condition for this separation can be derived as follows. If it is as-

sumed that the weight matrix WWW is nonsingular, it can be seen that XXX and

FFF = [F1, · · · , FN ]T span the same linear space and it can be represented with a

direct sum of FFF a and FFF b. Then by the data processing inequality, the following

inequality is obtained:

I(XXX; C) =I(WXXX; C)

=I(FFF ; C)

=I(FFF a,FFF b; C)

≥I(FFF a; C).

(4.3)

The first equality holds because W is nonsingular and in the inequality on the last

line, a necessary condition for the equality is I(FFF b; C) = I(UM+1, · · · , UN ; C) = 0.

If this is possible, one can reduce the dimension of input feature space from

N to M(< N) by using only FFF a instead of XXX, without losing any information

about the target class.

To solve this problem, the feature extraction problem is interpreted in the

structure of the blind source separation (BSS) problem as shown in Fig. 4.2.

The detailed description of each step is as follows:
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Figure 4.2: Interpretation of Feature Extraction in the BSS structure

(Mixing) Assume that there exist N independent sources SSS = [S1, · · · , SN ]T

which are also independent of class label C. Assume also that the observed feature

vector XXX is the linear combination of the sources SSS and C with the mixing matrix

A ∈ <N×N and bbb ∈ <N×1; i.e.,

XXX = ASSS + bbbC. (4.4)

(Unmixing) Our unmixing stage is a little different from the BSS problem

as shown in Fig. 4.1. Let us denote the last column of WWW without the (N + 1)th

element as vvv ∈ <N×1. Then the unmixing equation becomes

UUU = WXXX + vvvC. (4.5)

Suppose that UUU has been made somehow equal to EEE, the scaled and permuted

version of source SSS; i.e.,

EEE , ΛΠSSS (4.6)

where Λ is a diagonal matrix corresponding to an appropriate scale and Π is a

permutation matrix. Then, Ui’s (i = 1, · · · , N) are independent of class C, and

among the elements of FFF = WXXX(= UUU − vvvC), FFF b = [FM+1, · · · , FN ]T will be

independent of C because vi = wi,N+1 = 0 for i = M + 1, · · · , N . Thus, one can

extract M(< N) dimensional new feature vector FFF a by a linear transformation

of XXX containing the maximal information about the class if the relation UUU = EEE

holds.
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Now that the feature extraction problem is set in a similar form as the stan-

dard BSS or ICA problem, a learning rule for WWW , can be derived using the the

similar approach for the derivation of a learning rule for ICA. Because the Info-

max approach, the MLE approach, and the negentropy maximization approach

were shown to lead to the identical learning rule for ICA problems, as mentioned

in Section 2.3, any approach can be used for the derivation. In this thesis, the

MLE approach is used to obtain a learning rule.

If it is assumed that UUU = [U1, · · · , UN ]T is a linear combination of the source

SSS; i.e., it is made to be equal to EEE, a scaled and permutated version of the source

SSS as in (4.6), and that each element of UUU is independent of other elements of UUU

and it is also independent of class C, the log likelihood of the given data becomes

L(xxx, c|WWW ) = log | detWWW |+
N
∑

i=1

log pi(ui) + log p(c) (4.7)

because

p(xxx, c|WWW ) = | detWWW | p(uuu, c) = | detWWW |

N
∏

i=1

pi(ui) p(c). (4.8)

Now, L is to be maximized, and this can be achieved by the steepest ascent

method. Because the last term in (4.7) is a constant, differentiating (4.7) with

respect to WWW leads to

∂L

∂wi,j
=

adj(wj,i)

| detWWW |
− ϕi(ui)xj 1 ≤ i, j ≤ N

∂L

∂wi,N+1
= −ϕi(ui)c 1 ≤ i ≤M

(4.9)

where adj(·) is adjoint and ϕi(ui) = −dpi(ui)
dui

/pi(ui) . Note that c has binary

numerical values corresponding to the two categories.

It can be seen that | detWWW | = | det W | and adj(wj,i)/| detWWW | = W−T
i,j . Thus

the learning rule becomes

∆W ∝ W−T −ϕϕϕ(uuu)xxxT

∆vvva ∝ −ϕϕϕ(uuua)c.
(4.10)

Since the two terms in (4.10) have different tasks regarding the update of

separate matrices W and WN+1, the learning process can be divided, and applying
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natural gradient on updating W , it is obtained:

W (t+1) =W (t) + µ1[IN −ϕϕϕ(uuu)fffT ]W (t)

vvv(t+1)
a =vvv(t)

a − µ2ϕϕϕ(uuua)c.
(4.11)

Here vvva , [w1,N+1, · · · , wM,N+1]
T ∈ <M , ϕϕϕ(uuu) , [ϕ1(u1), · · · , ϕN (uN )]T , ϕϕϕ(uuua) ,

[ϕ1(u1), · · · , ϕM (uM )]T , IN is a N ×N identity matrix, and µ1 and µ2 are learn-

ing rates that can be set differently. By this updating rule, the assumption that

ui’s are independent of one another and of c will most be likely fulfilled by the

resulting ui’s.

Note that the learning rule for W is the same as the original ICA learning

rule [30], and also note that FFF a corresponds to the first M elements of WXXX.

Therefore, one can extract the optimal features FFF a by the proposed algorithm

when it finds the optimal solution for W by (4.11).

4.3 Stability of ICA-FX

In this part, the conditions of local stability of the ICA-FX algorithm shown

in [60], [62] is presented. The local stability analysis in this thesis undergoes

almost the same procedure as that of general ICA algorithms in [63].

Stationary points

To begin with, let us first investigate the stationary point of the learning rule

given in (4.11). Let us define

A? , A(ΛΠ)−1. (4.12)

Now assuming that the output UUU is made to be equal to EEE, then (4.4), (4.5), and

(4.6) become

XXX = A?EEE + bbbC

EEE = WXXX + vvvC
(4.13)

and it becomes

(IN −WA?)EEE = (Wbbb + vvv)C. (4.14)
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Because C and EEE are assumed to be independent of each other, W and vvv must

satisfy

W = A−1
? = ΛΠA−1

vvv =−Wbbb = −A−1
? bbb = −ΛΠA−1bbb

(4.15)

if UUU were made to be equal to EEE. This solution is a stationary point of learning

rule (4.11) by the following theorem.

Theorem 1 The W and vvv satisfying (4.15) is a stationary point of the learning

rule (4.11), and the scaling matrix Λ is uniquely determined up to a sign change

in each component.

Proof: See appendix A.

In most cases, odd increasing activation functions ϕi are used for ICA, and if

the same is done for the ICA-FX, one can get the unique scale up to a sign and

W and vvv in (4.15) is a stationary point.

Local asymptotic stability

Now let us investigate the condition for the stability of the stationary point

given in (4.15). In doing so a new version of weight matrix Z and a set of scalars

ki’s are introduced such that

W (t) = Z(t)W ∗

v
(t)
i = k

(t)
i v∗i (6= 0), 1 ≤ i ≤M

(4.16)

to follow the same procedure as in [63]. Here W ∗ and v∗i are the optimal values

of W and vi which are A−1
? and −(A−1

? bbb)i, respectively. Note that the stability

of W and vi in the vicinity of W ∗ and v∗i is equivalent to the stability of Z and

ki in the vicinity of the identity matrix IN and 1.

If W ∗−1 is multiplied to both sides of the learning rule for W in (4.11), it

becomes

Z(t+1) = {IN − µ1G(Z(t), kkk(t))}Z(t) (4.17)
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where the (i, j)th element of G ∈ <N×N is

G(Z(t), kkk(t))ij = ϕi(ui)fj − δij

=







ϕi((Z
(t)W ∗xxx)i + k

(t)
i v∗i c)(Z

(t)W ∗xxx)j − δij if 1 ≤ i ≤M

ϕi((Z
(t)W ∗xxx)i)(Z

(t)W ∗xxx)j − δij if M < i ≤ N
.

(4.18)

Here, it is denoted kkk = [k1, · · · , kM ]T for convenience.

In the learning rule for vvva, to avoid difficulties in the derivation of the stability

condition, the notation of the weight update rule for vvva in (4.11) near the stable

point vvv∗a is modified a little as follows:

v
(t+1)
i = v

(t)
i − µ

(t)
i ϕi(ui)cv

∗
i v

(t)
i , 1 ≤ i ≤M. (4.19)

Here it is assumed that the learning rate µ
(t)
i (> 0) changes over time t and varies

with different index i such that it satisfies µ
(t)
i v

(t)
i v∗i = µ2. The modification is

justified because v
(t)
i v∗i

∼= v∗2i is positive when v
(t)
i is near a stationary point v∗i .

Note that the modification applies only after vvva has reached sufficiently near a

stable point vvv∗a.

Using the fact that v
(t)
i = k

(t)
i v∗i (4.19) can be rewritten as

k
(t+1)
i = [1− µ

(t)
i gi(Z

(t), kkk(t))]k
(t)
i , 1 ≤ i ≤M (4.20)

where

gi(Z
(t), kkk(t)) = ϕi(ui)c

= ϕi((Z
(t)W ∗xxx)i + k

(t)
i v∗i c)v

∗
i c

(4.21)

Using the weight update rules (4.17) and (4.20) for the new variables Z and

K, the local stability condition is obtained in the following theorem.

Theorem 2 The local asymptotic stability of the stationary point of the proposed

algorithm is governed by the nonlinear moment

κi = E{ϕ̇i(Ei)}E{E
2
i } − E{ϕi(Ei)Ei} (4.22)
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and it is stable if

1 + κi > 0, 1 + κj > 0, (1 + κi)(1 + κj) > 1 (4.23)

for all 1 ≤ i, j ≤ N . Thus the sufficient condition is

κi > 0, 1 ≤ i ≤ N. (4.24)

Here E{·} is the expectation.

Proof: See appendix B.

Because the condition for the stability of the ICA-FX in Theorem 2 is identical

to that of the standard ICA in [63], the interpretation of the nonlinear moment

κi can be consulted to [63]. Just stating the key point here, the local stability is

preserved when the activation function ϕi(ei) is chosen to be positively correlated

with the true activation function ϕ∗
i (ei) , −ṗi(ei)/pi(ei).

Thus, as the standard ICA algorithm, the choice of activation function ϕi(ei)

is of great importance, and the performance of ICA-FX depends heavily on the

function ϕϕϕ(eee), which is determined by the densities pi(ei)’s. But in practical

situations, these densities are mostly unknown, and true densities are approxi-

mated by some model densities, generally given by (i) momentum expansion, (ii)

a simple parametric model not far from Gaussian, or (iii) a mixture of simple

parametric models [64]. In this work, one does not need an exact approximation

of the density pi(ui) because we do not have physical sources like in BSS prob-

lems. Therefore, the extended Infomax algorithm [52], one of the approximation

methods belonging to type (ii), is used because of its computational efficiency

and wide applications.

4.4 Extension of ICA-FX to Multi-Class Problems

In this section, ICA-FX is extended to multi-class problems [61]. The problem

to be solved in this section is as follows:

(Problem statement) Assume that there are a normalized input

feature vector, XXX = [X1, · · · , XN ]T , and an output class, C ∈ {C1, · · · , CNc
}.
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Figure 4.3: ICA-FX for multi-class problems

The purpose of feature extraction is to extract M(≤ N) new features

FaFaFa = [F1, · · · , FM ]T from XXX, by a linear combination of the Xi’s,

containing the maximum information on class C.

First, suppose Nc(≥ 2) denotes the number of classes. To incorporate the

class labels in the ICA structure, the discrete class labels need to be encoded into

numerical variables. The 1-of-Nc scheme is used in coding classes, i.e., a class

vector, CCC = [C1, · · · , CNc
]T , is introduced and if a class label, C, belongs to the

lth value Cl, then Cl is activated as 1 and all the other Ci’s, i 6= l, are set to -1.

After all the training examples are presented, each Ci, i = 1, · · · , Nc, is shifted in

order to have zero mean and are scaled to have a unit variance.

Now consider the structure shown in Fig. 4.3. Here, the original feature

vector XXX is fully connected to UUU = [U1, · · · , UN ], the class vector CCC is connected

only to UUUa = [U1, · · · , UM ], and UN+l = Cl, l = 1, · · · , Nc. In the figure, the
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weight matrix WWW ∈ <(N+Nc)×(N+Nc) becomes

WWW =

(

W V

000Nc,N INc

)

=































w1,1 · · · w1,N w1,N+1 · · · w1,N+Nc

...
...

...
...

wM,1 · · · wM,N wM,N+1 · · · wM,N+Nc

wM+1,1 · · · wM+1,N

...
... 000N−M,Nc

wN,1 · · · wN,N

000Nc,N INc































.

(4.25)

where W ∈ <N×N and V = [V T
a ,000T

N−M,Nc
]T ∈ <N×Nc . Here the first nonzero M

rows of V is denoted as Va ∈ <
M×Nc .

The mixing and unmixing stages and the underlying assumptions for the

multi-class ICA-FX is almost the same as the binary ICA-FX. Consequently,

the derivation of the learning rule for this takes exact the same steps as in the

ICA-FX for binary-class problems and the learning rule becomes as follows:

W (t+1) =W (t) + µ1[IN −ϕϕϕ(uuu)fffT ]W (t)

V (t+1)
a =V (t)

a − µ2ϕϕϕ(uuua)ccc
T .

(4.26)

The stability condition of the ICA-FX for binary classification problems in

[60] [62] can also be easily extended to multi-class ICA-FX as follows:

Theorem 3 The local asymptotic stability of the ICA-FX around the stationary

point (W = ΛΠA−1, V = −ΛΠA−1B) is governed by the nonlinear moment

κi = E{ϕ̇i(Ei)}E{E
2
i } − E{ϕi(Ei)Ei} (4.27)

and it is stable if

1 + κi > 0, 1 + κj > 0, (1 + κi)(1 + κj) > 1 (4.28)

for all 1 ≤ i, j ≤ N . Therefore, the sufficient condition is

κi > 0, 1 ≤ i ≤ N. (4.29)
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Because the proof of the theorem is almost the same as that for binary-class

problems, the proof is omitted.

Now, the properties of the ICA-FX is discussed in terms of the suitability of

the proposed algorithm for the classification problems.

4.5 Properties of ICA-FX

In ICA-FX, given a new instance consisting of N features XXX = [X1, · · · , XN ],

it is transformed into an M -dimensional new feature vector FFF a = [F1, · · · , FM ]

and it is used to estimate which class the instance belongs to. In the following, it is

discussed why ICA-FX is suitable for the classification problems in the statistical

sense.

Consider a normalized zero-mean binary output class C, with its density

pc(c) = p1δ(c− c1) + p2δ(c− c2), (4.30)

where δ(·) is a dirac delta function, and p1, p2 are the probabilities that class C

takes values c1 and c2, respectively.

Suppose that Ui (i = 1, · · · , N) has density pi(ui), which is sub-Gaussian

(pi(ui) ∝ N(µ, σ2) + N(−µ, σ2)) or super-Gaussian (pi(ui) ∝ N(0, σ2)sech2(ui))

as in [52], where N(µ, σ2) is the normal density with mean µ and variance σ2.

Then the density of Fi (i = 1, · · · , M) is proportional to the convolution of

two densities pi(ui) and pc(−c/wi,N+1) by the assumption that Ui’s and C are

independent; i.e.,

p(fi) =
1

|wi,N+1|
pi(ui) ∗ pc(−

c

wi,N+1
)

∝



























































p1N(−wi,cc1, σ
2)sech2(fi + wi,N+1c1)

+p2N(−wi,N+1c2, σ
2)sech2(fi + wi,N+1c2)

if pi(ui): super-Gaussian

p1N(µ− wi,N+1c1, σ
2) + p2N(µ− wi,N+1c2, σ

2)

+p1N(−µ− wi,N+1c1, σ
2) + p2N(−µ− wi,N+1c2, σ

2)

if pi(ui): sub-Gaussian

(4.31)
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because fi = ui − wi,N+1c.

Figure 4.4 shows the densities of super- and sub-Gaussian models of ui and

the corresponding densities of Fi for varying wi,N+1 = [0 · · · 4]. In the figure, it is

set µ = 1, σ = 1, p1 = p2 = 0.5, and c1 = −c2 = 1. It can be seen in Fig. 4.4 that

super-Gaussian is sharper than sub-Gaussian at peak. For the super-Gaussian

model of Ui, it can be seen that as wi,N+1 grows, the density of Fi has two peaks,

which are separated from each other, and the shape is quite like a sub-Gaussian

model with a large mean. For the sub-Gaussian model of Ui, it also takes two

peaks as the weight wi,N+1 grows, though the peaks are smoother than those of

super-Gaussian. In both cases, as wi,N+1 grows, the influence of output class C

becomes dominant in the density of Fi, and the classification problem becomes

easier: for a given Fi check if it is larger than zero and then associate it with the

corresponding class C.

This phenomenon can be interpreted as a discrete source estimation problem

in a noisy channel, as shown in Fig. 4.5. If the class C is regarded as an input

and Ui as noise, the goal is to estimate C through channel output Fi. Because it

is assumed that C and Ui’s are independent, the higher the signal-to-noise ratio

(SNR) becomes, the more class information is conveyed in the channel output Fi.

The SNR can be estimated using powers of source and noise, which in this case

leads to the following estimation:

SNR =
E{C2}

E{(Ui/wi,N+1)2}
. (4.32)

Therefore, if one can make large wi,N+1, the noise power in Fig. 4.5 is suppressed

and the source C can be easily estimated.

In many real-world problems, as the number of input features increases, the

contribution of class C to Ui becomes small; i.e., wi,N+1 becomes relatively small

such that the density of Fi is no longer bimodal. Even if this is the case, the

density has a flatter top that looks like a sub-Gaussian density model, which is

easier to estimate classes than those with normal densities.

As in standard ICA, applying PCA before conducting the ICA-FX can en-

hance the performance of the ICA-FX much more. Therefore, the PCA was used

in all the following experimental results before applying the ICA-FX.
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Figure 4.4: Super- and sub-Gaussian densities of Ui and corresponding densities

of Fi (p1 = p2 = 0.5 , c1 = −c2 = 1, µ = 1, and σ = 1).
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Figure 4.5: Channel representation of feature extraction
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4.6 Experimental Results of ICA-FX for Binary Clas-

sification Problems

In this section some experimental results of ICA-FX for binary classification

problems will be presented to show the characteristics of the ICA-FX. In order

to show the effectiveness of the proposed algorithm, the same number of features

were selected from both the original features and the extracted features and the

classification performances were compared. For comparison, the PCA and LDA

were also performed to extract features. In the selection of features for original

data, the MIFS-U [8], [9], which makes use of the mutual information between

input features and output class in ordering the significance of features, was used.

It is noted that the simulation results can vary depending on the initial condition

of the rate updating rule because there may be many local optimum solutions.

Simple problem

Suppose there are two input features x1 and x2 uniformly distributed on [-1,1]

for a binary classification, and the output class y is determined as follows:

y =







0 if x1 + x2 < 0

1 if x1 + x2 ≥ 0.

Here, y = 0 corresponds to c = −1 and y = 1 corresponds to c = 1.

Plotting this problem on a three-dimensional space of (x1, x2, y) leads to Fig.

4.6 where the class information, as well as the input features, correspond to each

axis, respectively. The data points are located in the shaded areas in this problem.

As can be seen in the figure, this problem is linearly separable and clearly shows

the necessity of feature extraction; if x1+x2 is extracted as a new feature, perfect

classification is possible with only one feature. But feature extraction algorithms

based on conventional unsupervised learning, such as the conventional PCA and

ICA, cannot extract x1+x2 as a new feature because they only consider the input

distribution; i.e., they only examine (x1, x2) space. For problems of this kind,

feature selection methods in [8], [9] also fail to find adequate features because

they have no ability to construct new features by themselves. Note that other
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Figure 4.6: ICA-FX for a simple problem

feature extraction methods using supervised algorithms such as LDA and MMI

can solve this problem.

For this problem, the ICA-FX was performed with M = 1 and could get

u1 = 43.59x1 +46.12x2 +36.78y from which a new feature f1 = 43.59x1 +46.12x2

is obtained. To illustrate the characteristic of ICA-FX on this problem, u1 is

plotted as a thick arrow in Fig. 4.6 and f1 is the projection of u1 onto the

(x1, x2) feature space.

IBM datasets

The IBM datasets were generated by Agrawal et al. [15] as stated in Section

3.4. Each of the datasets has nine attributes: salary, commission, age, education

level, make of the car, zipcode of the town, value of the house, years house owned,

and total amount of the loan. The data generation code was downloaded from

[65]. It can generate about 100 different datasets among which three datasets are

used in this part. They are pred 4, pred 5, and pred 9 which correspond to IBM2,

IBM3, and IBM1 in Table 4.1 respectively. Note that these datasets are different

from those used in Section 3.4. The proposed algorithm ICA-FX was tested for

these datasets and the classification performances were compared with those of
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Table 4.1: IBM Data sets

IBM1

Group A: 0.33 × (salary + commission) − 30000 > 0

Group B: Otherwise.

IBM2

Group A: 0.67 × (salary + commission) − 5000 × ed level − 20000 > 0

Group B: Otherwise.

IBM3

Group A: 0.67 × (salary + commission) − 5000 × ed level − loan/5 − 10000 > 0

Group B: Otherwise.

other feature extraction methods.

As can be seen from Table 4.1, these datasets are linearly separable and use

only a few features for classification. Total 1000 instances were generated for

each dataset with noise of zero mean and either 0% or 10% of SNR added to the

attributes, among which 66% were used as training data while the others were

reserved for test. In the training, C4.5 [14], one of the most popular decision-

tree algorithms which gives deterministic classification rules, and a three-layered

MLP were used. To show the effectiveness of our feature extraction algorithm,

the performance of ICA-FX was compared with PCA, LDA, and the original

data with various number of features. For the original data, the feature selection

algorithm MIFS-U, which selects good features among candidate features, was

used before training. In training C4.5, all the parameters were set as the default

values in [14], and for MLP, three hidden nodes were used with a standard back-

propagation (BP) algorithm with zero momentum and a learning rate of 0.2.

After 300 iterations, the training of the network was stopped.

The experimental results are shown in Table 4.2. In the table, the performance

of the original features selected with MIFS-U and the newly extracted features

were compared with those of PCA, LDA, and ICA-FX. Because this is a binary

classification problem, standard LDA extracts only one feature for all cases. The

classification performances on the test set trained with C4.5 and BP are presented

in Table 4.2. The parentheses after the classification performance of C4.5 contain

the sizes of the decision trees.

56



Chapter 4. Feature Extraction Based on ICA (ICA-FX)

Table 4.2: Experimental results for IBM data (Parentheses are the sizes of the

decision trees of c4.5)

IBM1

Noise No. of Classification performance (%) (C4.5/MLP)

power features MIFS-U PCA LDA ICA-FX

0%

1 87.6(3)/85.8 53.0(3)/55.6 82.2(3)/84.0 96.8(3)/97.0

2 97.8(25)/97.8 85.4(21)/85.8 – 99.6(3)/97.6

all 97.8(27)/97.6 89.4(49)/90.2 99.6(3)/97.8

10%

1 82.0(3)/81.4 53.0(3)/56.2 81.2(3)/81.4 92.6(3)/91.8

2 89.4(21)/90.2 81.6(37)/81.6 – 92.6(11)/92.8

all 87.6(47)/87.8 87.4(49)/88.0 – 92.4(17)/92.2

IBM2

Noise No. of Classification performance (%) (C4.5/MLP)

power features MIFS-U PCA LDA ICA-FX

0%

1 89.4(5)/91.0 87.0(3)/87.2 96.4(3)/96.6 97.8(7)/98.0

2 96.6(5)/97.0 89.6(13)/89.4 – 98.8(15)/98.4

3 98.8(25)/98.8 89.6(13)/89.8 – 98.8(17)/98.8

all 98.8(23)/98.6 93.8(33)/95.2 – 99.0(25)/98.8

10%

1 90.0(5)/90.6 87.0(3)/87.0 94.6(9)/95.2 96.2(5)/96.8

2 94.8(13)/95.6 85.6(19)/86.0 – 94.8(13)/96.8

3 96.0(13)/95.2 85.6(23)/85.0 – 95.2(19)/97.0

all 95.0(21)/94.6 92.2(23)/92.4 – 95.8(29)/97.4

IBM3

Noise No. of Classification performance (%) (C4.5/MLP)

power features MIFS-U PCA LDA ICA-FX

0%

1 85.0(3)/85.0 55.4(3)/55.4 92.2(3)/92.2 93.2(3)/94.2

2 91.2(31)/91.4 61.8(7)/63.8 – 93.6(15)/96.4

3 90.6(29)/91.8 65.8(23)/66.0 – 97.0(3)/97.0

4 90.2(33)/92.0 65.8(27)/66.4 – 96.8(21)/97.4

all 92.4(65)/98.2 88.8(113)/89.6 – 97.8(39)/100.0

10%

1 84.8(3)/84.4 52.2(3)/52.2 89.0(3)/90.0 92.2(3)/93.0

2 88.4(21)/89.6 58.8(11)/61.4 – 93.4(5)/93.2

3 86.8(31)/88.8 63.0(11)/64.0 – 94.4(15)/94.0

4 87.4(41)/87.0 63.0(15)/64.2 – 93.4(19)/94.2

all 89.4(57)/92.6 79.8(103)/81.8 – 92.4(49)/93.6
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As can be seen from Table 4.2, C4.5 and BP produce similar classification

performances on these data sets. For all three of the problems, ICA-FX out-

performed other methods. It also can be seen that PCA performed worst in all

cases, even worse than the original features selected with MIFS-U. This is be-

cause PCA can be thought as an unsupervised feature extraction method, and

the ordering of its principle components has nothing to do with the classification.

Note that the performances with ‘all’ features are different for different feature

extraction/selection methods, although they operate on the same space of all

the features. They operate on the same amount of information about the class.

But the classifier systems do not make full use of the information. Also note

that for all the three datasets with 10% noise, the performances of ICA-FX with

one feature is quite better than those with all nine original features of MIFS-U.

This clearly shows the advantages of feature extraction; by feature extraction,

better generalization performance is expected with reduced dimensionality. The

comparison of the tree sizes of C4.5 on these datasets also shows that the com-

putational complexity can also be greatly reduced by feature extraction. For

example, the tree size of ICA-FX with one feature is 3 while that corresponds to

all original features is 47 for the case of IBM1 with 10% noise.

In the cases of 0% noise power, very good performance was achieved for all

the cases with only one feature. In fact, in IBM1 and IBM2, the first feature

selected among the original ones was salary, while the newly extracted feature

with M = 1 corresponds to (salary + commission) and (salary + commission−

6500 × ed level), respectively. Comparing these with Table 4.1, one can see

these are very good features for classification. The small numbers of tree size

for extracted features compared to that for the other methods show our feature

extraction algorithm can be utilized to generate oblique decision trees resulting

in rules easy to understand. For the case of 10% SNR, ICA-FX also performed

better than others in most cases. From these results, it is seen that ICA-FX

performs excellently, especially for linearly separable problems.
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Table 4.3: Brief Information of the UCI Data sets Used

Name No. of No. of No. of

features instances classes

Sonar 60 208 2

Breast Cancer 9 699 2

Pima 8 768 2

UCI datasets

The UCI machine learning repository contains many real-world data sets that

have been used by numerous researchers [59]. In this subsection, experimental

results of the proposed extraction algorithm was presented for some of these data

sets. Table 4.3 shows the brief information of the data sets used in this thesis.

Conventional PCA, ICA, and LDA algorithms were conducted on these datasets

and various numbers of features were extracted and the classification perfor-

mances were compared with that of the ICA-FX. Because there is no measure on

relative importance among independent components from ICA, the MIFS-U was

used in selecting the important features for the classification. For comparison,the

MIFS-U was also conducted on the original datasets and the performance were

reported.

As classifier systems, MLP, C4.5, and SVM were used. For all the classifiers,

input values of the data were normalized to have zero means and standard devi-

ations of one. In training MLP, the standard BP algorithm was used with three

hidden nodes, two output nodes, a learning rate of 0.05, and a momentum of

0.95. The networks were trained for 1,000 iterations. The parameters of C4.5

were set to default values in [14]. For SVM, the ‘mySVM’ program by Stefan

Ruping of University of Dortmund [66] was used. For the kernel function, radial

(Gaussian) kernel was used and the other parameters were set as default. Because

the performance of the radial kernel SVM critically depends on the value of γ,

SVM has been conducted with various values of γ = 0.01 ∼ 1 and the maximum

classification rate was reported. Thirteen-fold cross-validation was used for the

sonar dataset and ten-fold cross-validation was used for the others. For MLP, ten

experiments were conducted for each dataset and the averages and the standard
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deviations are reported in this thesis.

Sonar dataset

Here, the same dataset used in Section 3.4 is also used. It consists of 208

instances, with 60 features and two output classes: mine/rock. In this experiment,

13-fold cross validation were used in getting the performances as follows. The

208 instances were divided randomly into 13 disjoint sets with 16 cases in each.

For each experiment, 12 of these sets are used as training data, while the 13th

is reserved for testing. The experiment is repeated 13 times so that every case

appears once as part of a test set.

The training was conducted with MLP, C4.5, and SVM for various numbers of

features. Table 4.4 shows the result of our experiment. The reported performance

for MLP is an average over the 10 experiments and the numbers in parentheses

denote the standard deviation. The result shows that the extracted features

from ICA-FX perform better than the original ones, especially when the number

of features to be selected is small. In the table, one can see that the performances

of ICA-FX are almost the same for small numbers of features and far better than

when all the 60 features were used. From this phenomenon, it can be inferred

that all the available information about the class is contained in the first feature.

As in the IBM datasets, this shows the advantage of feature extraction. The

performance of ICA-FX with one feature is more than 4% better than that with

all the original features when SVM is used. Considering the fact that SVM is

very insensitive to noises or outliers and it does not suffer from the ‘curse of

dimensionality’ much, the generalization performance of feature extraction by

ICA-FX can be concluded very effective for this dataset. The differences become

over 10% when C4.5 and MLP are used as classifier systems.

Note that the performances of unsupervised feature extraction methods PCA

and ICA are not as good as expected. From this, one can see that the unsu-

pervised methods of feature extraction are not good choices for the classification

problems.

The first three figures in Fig. 4.7 are the estimates of conditional densities

p(f |c)’s (class-specific density estimates) of the first selected feature among the
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Table 4.4: Classification performance for Sonar Target data (Parentheses are the

standard deviations of 10 experiments)

No. of Classification performance (%) ( C4.5/MLP/SVM )

features MIFS-U PCA ICA LDA ICA-FX

1
73.1/74.8(0.32)/ 52.4/59.3(0.41)/ 65.9/67.9(0.25)/ 71.2/75.2(0.37)/ 87.5/87.3(0.17)/

74.8 58.6 67.2 74.1 87.1

3
70.2/72.9(0.58)/ 51.0/57.9(0.42)/ 63.0/71.1(0.45)/ – 86.1/88.1(0.37)/

75.5 54.7 69.7 89.0

6
69.7/77.5(0.24)/ 64.9/63.8(0.72)/ 61.2/69.9(0.63)/ – 85.6/86.4(0.42)/

80.8 63.0 70.2 87.1

9
81.7/80.1(0.61)/ 69.7/71.2(0.67)/ 61.5/68.7(0.62)/ – 83.2/85.0(0.83)/

79.9 70.2 68.7 88.8

12
79.3/79.5(0.53)/ 73.1/74.0(0.64)/ 60.1/71.4(0.71)/ – 78.2/83.4(0.49)/

81.3 75.1 71.7 86.6

60
73.1/76.4(0.89)/ 73.1/75.5(0.96)/ 63.9/74.1(1.43)/ – 73.1/80.0(0.78)/

82.7 82.7 77.0 84.2

original features by MIFS-U (which is the 11th of 60 features), the feature ex-

tracted by LDA, and the feature extracted by ICA-FX with M = 1. The density

estimates were used with the well known Parzen window method [39] using both

training and test data. In applying Parzen window, the window width parameter

was set to 0.2. The result shows that the conditional density of the feature from

ICA-FX is much more balanced than those of the original and LDA in the feature

space. In the figures of 6.(a),(b),(c), if the domain for p(f |c = 0) 6= 0 and the

domain for p(f |c = 1) 6= 0 do not overlap, then no error can be made in classifica-

tion. One can see that the overlapping region of the two classes is much smaller

in ICA-FX than the other two. This is why the performance of ICA-FX is far

better than the others with only one feature. The density estimate p(f) of the

feature from ICA-FX is presented in Fig. 4.7(d). Note that in Fig. 4.7(d), the

distribution of the feature from ICA-FX is much flatter than the Gaussian distri-

bution and looks quite like the density of feature fi obtained with sub-Gaussian

model. The dotted line of Fig. 4.7(d) is the density of sub-Gaussian model shown

in Fig. 4.4(d) with wi,N+1 = 1.5.
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Table 4.5: Classification performance for Breast Cancer data (Parentheses are

the standard deviations of 10 experiments)

No. of Classification performance (%) (C4.5/MLP/SVM)

features MIFS-U PCA ICA LDA ICA-FX

1
91.1/92.4(0.03)/ 85.8/86.1(0.05)/ 84.7/81.5(0.29)/ 96.8/96.6(0.07)/ 97.0/97.1(0.11)/

92.7 85.8 85.1 96.9 97.0

2
94.7/95.8(0.17)/ 93.3/93.8(0.07)/ 87.3/85.4(0.31)/ – 96.5/97.1(0.09)/

95.7 94.7 90.3 97.1

3
95.8/96.2(0.15)/ 93.8/94.7(0.11)/ 89.1/85.6(0.33)/ – 96.7/96.9(0.12)/

96.1 95.9 91.3 96.9

6
95.0/96.1(0.08)/ 94.8/96.6(0.15)/ 90.4/90.0(0.59)/ – 95.9/96.7(0.27)/

96.7 96.6 94.3 96.7

9
94.5/96.4(0.13)/ 94.4/96.8(0.16)/ 91.1/93.0(0.84)/ – 95.5/96.9(0.13)/

96.7 96.7 95.9 96.6

Wisconsin Breast Cancer dataset

This database was obtained from the University of Wisconsin Hospitals, Madi-

son, from Dr. William H. Wolberg [67]. The data set consists of nine numerical

attributes and two classes, which are benign and malignant. It contains 699

instances with 458 benign and 241 malignant. There are 16 missing values in

our experiment and these were replaced with average values of corresponding

attributes.

The performances of ICA-FX were compared with those of PCA, ICA, LDA,

and the original features selected with MIFS-U. The classification results are

shown in Table 4.5. As in the sonar dataset, the data were trained with C4.5,

MLP, and SVM. The meta-parameters for C4.5, MLP, and SVM are the same as

those for the sonar problem. For verification, 10-fold cross validation is used. In

the table, classification performances are present and the numbers in parentheses

are standard deviations of MLP over 10 experiments.

The result shows that with only one extracted feature, one can get nearly

the maximum classification performance that can be achieved with at least two

or three original features. It shows that feature extraction is desirable for this

classification problem. The reduced feature space by feature extraction is a lot
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Table 4.6: Classification performance for Pima data (Parentheses are the standard

deviations of 10 experiments)

No. of Classification performance (%) (C4.5/MLP/SVM)

features MIFS-U PCA ICA LDA ICA-FX

1
72.8/74.1(0.19)/ 67.8/66.2(0.17)/ 69.7/71.6(0.17)/ 74.5/75.2(0.23)/ 76.0/78.6(0.11)/

74.5 66.3 73.2 75.6 78.7

2
74.2/76.7(0.13)/ 75.0/74.4(0.23)/ 72.7/76.8(0.24)/ – 75.2/78.2(0.25)/

75.8 75.1 76.7 78.1

3
74.1/76.3(0.27)/ 74.2/75.1(0.23)/ 72.7/76.7(0.54)/ – 75.7/76.7(0.18)/

76.8 75.5 76.8 77.8

5
73.3/75.3(0.64)/ 73.7/75.2(0.39)/ 72.9/76.4(0.55)/ – 77.2/77.8(0.38)/

76.6 75.5 77.2 78.3

8
74.5/76.5(0.45)/ 74.5/76.6(0.31)/ 72.3/77.0(0.62)/ – 72.9/76.7(0.48)/

78.1 78.1 77.9 78.0

easier to work with in the sense of computational complexity and data storage.

The performance of LDA is almost the same as ICA-FX for this problem.

Pima Indian Diabetes dataset

This dataset consists of 768 instances in which 500 are class 0 and the other

268 are class 1. It has 8 numeric features with no missing value.

For this data, PCA, ICA, LDA, and ICA-FX were applied, and their per-

formances were compared. Original features selected by MIFS-U were also com-

pared. In training, C4.5, MLP, and SVM were used. The meta-parameters for

the classifiers were set to be equal to the previous cases. For verification, 10-fold

cross validation was used.

In Table 4.6, classification performances are presented. As shown in the table,

the performance of ICA-FX is better than those of other methods regardless of

what classifier system was used when the number of features is small. It is

also seen that the performances of different methods get closer as the number of

extracted features becomes large. Note also that for ICA-FX, the classification

rate of one feature is as good as those of the other cases where more features are

used.

64



Chapter 4. Feature Extraction Based on ICA (ICA-FX)

4.7 Face Recognition by Multi-Class ICA-FX

Face recognition is one of the most actively studied pattern recognition fields

where the problem is that the dimension of the raw data is so large that feature

extraction is inevitable. Because all the pattern recognition problems can be

considered as data mining problems as mentioned in Introduction, the feature

extraction method described in the early part of this chapter can be directly

used for face recognition. In addition to the previously mentioned advantages of

feature extraction, feature extraction for face recognition may be used as a coding

scheme for the compression of face images. Before the experimental results of

ICA-FX for face recognition problems are presented, some of the most popular

face recognition techniques are briefly reviewed.

Many subspace methods have been successfully applied to construct features

of an image [68] – [71]. Among these, the Eigenface [68] (based on PCA) and Fish-

erface [69] (based on LDA) methods are popular, because they allow the efficient

characterization of a low-dimensional subspace whilst preserving the perceptual

quality of a very high-dimensional raw image.

Though it is the most popular, the Eigenface method [68], by its nature, is not

suitable for classification problems since it does not make use of any output class

information in computing the principal components (PC). The main drawback of

this method is that the extracted features are not invariant under the transfor-

mation. Merely scaling the attributes changes resulting features. In addition, it

does not use higher order statistics and it has been reported that the performance

of the Eigenface method is severely affected by the level of illumination [69].

Unlike the Eigenface method, the Fisherface method [69] focuses on the classi-

fication problems to determine optimal linear discriminating functions for certain

types of data whose classes have a Gaussian distribution and the centers of which

are well separated. Although it is quite simple and powerful for classification

problems, it cannot produce more than Nc − 1 features, where Nc is the number

of classes. As in the Eigenface method, it only uses second order statistics in rep-

resenting the images. Some researchers have proposed subspace methods using

higher order statistics such as the evolutionary pursuit and kernel methods for
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Figure 4.8: Experimental procedure

face recognition [70], [71].

Recently, some researchers have shown that ICA is more powerful for face

recognition than the PCA [72] [73]. Unlike PCA and LDA, ICA uses higher or-

der statistics and has been applied successfully in recognizing faces with changes

in pose [72], and classifying facial actions [73]. This method was applied to

face recognition and facial expression problems. The proposed algorithm greatly

reduces the dimension of feature space while improving the classification perfor-

mance.

In this section, the ICA-FX for multi-class classification problems is applied

to face recognition problems and the performance is compared with those of the

other methods such as PCA, pure ICA, and LDA. This is an extension of [74]

where face recognition problems were viewed as multiple binary classification

problems and the binary version of the ICA-FX [60] [62] was used to tackle the

problems.

To apply the ICA-FX to face recognition problems, firstly the original fea-

tures XXX of an image, which will be used to obtain new features FFF a, need to be

determined. There are several methods for determining the features of an image,

such as wavelets, Fourier analysis, fractal dimensions, and many other methods

[75]. Among them, one can easily come up with an idea of using each pixel as one

feature. Though this is the most simple method without losing any information

of an image, the dimension of feature space by this method becomes too large to

be handled easily. In this thesis, each image is downsampled into a manageable

size in order to reduce the computational complexity. Subsequently, each down-
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Figure 4.9: Example of one nearest neighborhood classifier

sampled pixel is transformed to have a zero mean and unit variance, and PCA is

then performed both as a whitening process of the ICA-FX and for the purpose

of further reducing the dimension of the feature space. Therefore, Xi corresponds

to the coefficient of the ith principal component of a given image. Finally, the

main routine of the ICA-FX is applied to extract the valuable features for clas-

sification. Figure 4.8 shows the experimental procedure used in this thesis. For

comparison, ICA and LDA are also used after PCA is performed, as shown in

the figure. The performances are tested with the leave-one-out scheme and the

classifications are performed using the one nearest neighborhood classifier. That

is, to test the ith image among the total n images, all the other (n−1) images are

used for training and the ith image is classified as the identity of the image whose

Euclidean distance from the ith image is the closest among the (n − 1) images.

Figure 4.9 is a typical example of classification using one nearest neighborhood.

In the figure, each image is projected onto the feature space (f1, f2, f3) and if

the features are good, the distance of d1 will be the smallest among the three

distances d1 ∼ d3 and the classification will be correct.

The ICA-FX is applied to the Yale [69] and AT&T [76] face databases for face

recognition, and to the Japanese Female Facial Expression (JAFFE) [77] database
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Figure 4.10: Yale Database

for classifying facial expressions. Throughout the experiments, the learning rates

µ1 and µ2 for the ICA-FX are set to 0.002 and 0.1 respectively and the number of

iterations for learning is set to 300. The ICA results are obtained by an extended

infomax algorithm [52] with a learning rate of 0.002 and 300 iterations.

Yale Database

The Yale face database consists of 165 grayscale images of 15 individuals.

There are 11 images per subject with different facial expressions or configurations.

In [69], the authors report two types of databases: a closely cropped set and a

full face set. In this thesis, the closely cropped set was used and the images

were downsampled into 21 × 30 pixels. Figure 4.10 represents the downsampled

images of the first three individuals of the dataset.

For the data, PCA was first performed on 630 downsampled pixels and various

numbers of principal components were used as the inputs of the ICA, LDA and

ICA-FX. Figure 4.11 represents the typical weights of PCA, ICA, LDA, and ICA-

FX. The top row is the first 10 principal components (PC) among 165 PC’s, which

are generally referred to as Eigenfaces. The third row is the first 10 out of 14

Fisherfaces that are the weights of LDA. The second and the fourth rows are the

weights of ICA and ICA-FX respectively. Here, the first 30 principal components

were used as inputs to ICA, LDA, and ICA-FX and ten features were extracted

using the ICA-FX.

Figure 4.12 shows the performances of PCA, ICA, LDA, and ICA-FX when

different numbers of principal components were used in the face classification.
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Figure 4.11: Weights of various subspace methods for Yale dataset. (1st row:

PCA (Eigenfaces), 2nd row: ICA, 3rd row: LDA (Fisherfaces), 4th row: ICA-

FX)

Note that the number of features produced by the LDA is 14, because there are

15 subjects in this dataset, while the number of features by ICA is the same as

that of PCA. In the ICA-FX, the number of features was set to 10. Because

ICA and the ICA-FX can have different results according to the initial weight

randomization, the results of ICA and ICA-FX are averages of two experiments.

From the figure, it can be seen that the performance of ICA-FX is better than

those of the other methods regardless of the number of principal components that

are used as inputs to the ICA-FX.

Note that the error rate decreases as the number of principal components

increases in ICA-FX. In other methods, the error rates decrease in the beginning

as the number of features increases but they increase as the number of features

further increases.

Figure 4.13 shows the performance of the ICA-FX with various numbers of

extracted features (M in Section III) when the number of principal components

(N in Section III) was fixed to 30, 40, and 50. In the figure, it can be seen that

the performances are better when 10 ∼ 20 features are extracted and the error

rates tend to grow as the number of extracted features increases for all the three

cases. This phenomenon can be explained by what is referred to as ‘the law of

parsimony’, or ‘Occam’s razor’ [78]. The unnecessarily large number of features
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Table 4.7: Experimental results on Yale database

Method
Dim. of No. of Error

Reduced Space Error Rate (%)

Eigenface (PCA) 30 41 24.85

ICA 30 38 23.03

Fisherface (LDA) 14 14 8.48

Kernel Eigenface (d=3) 60 40 24.24

Kernel Fisherface (G) 14 10 6.06

ICA-FX (binary) 14 6 3.64

ICA-FX (multi) 10 7 4.24

degrades the classification performance.

To provide insights on how the ICA-FX simplifies the face pattern distribu-

tion, each face pattern is projected onto the two dimensional feature space in

Fig. 4.14. This figure provides a low-dimensional representation of the data,

which can be used to capture the structure of the data. In the figure, the PCA,

ICA, LDA, and ICA-FX were used to generate features using all the 165 face

images. Thirty principal components are used as inputs of ICA, LDA, and ICA-

FX. For ICA-FX 10 features are extracted. The most significant two features are

selected as bases for PCA and LDA cases, and the first two features are selected

as bases for ICA and ICA-FX. For the sake of simplicity in visualization, the first

7 identities among the total 15 identities are shown in the figure, that is total 77

images are used for the plots. Before plotting, features are normalized to have

zero means and unit variances. Seven different symbols such as ’+’, and ’*’ are

used to represent different identities. Note that the same symbols cluster more

closely in the cases of LDA and ICA-FX than those of PCA and ICA as expected.

In Table 4.7, the performance of the ICA-FX was compared with those of the

other algorithms: PCA (Eigenface), LDA (Fisherface), ICA, and the kernel meth-

ods presented in [71]. In the experiments, PCA was initially conducted on 630

pixels and the first 30 principal components were used as in [69]. Subsequently,

the LDA, ICA, and ICA-FX were applied to these 30 principal components. Ta-

ble 4.7 shows the classification error rates of each methods. In the test, the

error rates were determined by the ‘leave-one-out’ strategy and recognition was
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Figure 4.14: Distribution of 7 identities (·, ◦, ∗,×, +, �, �) of Yale data drawn on

2 dimensional subspaces of PCA, ICA, LDA, and ICA-FX.
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performed using the one nearest neighbor classifier as in [69]. In the table, the

performances of the kernel Eigenface, and the kernel Fisherface are from [71].

From the table it can be seen that ICA-FX outperforms the other methods using

a smaller number of features.

For comparison, the performance of the binary version ICA-FX is also re-

ported in the table [74]. In this experiment, the face recognition problem is

viewed as multiple binary classification problems or face authentication problems

where the purpose is to accept or reject a person as a targeted person. Each

image among 165 images is reserved for test and the remaining 164 images are

used to train the binary version ICA-FX. Because the binary-class ICA-FX is for

two-class problems, the identity of the test image is set as class 0 and all the

other identities are classified as class 1. After the features are extracted using

binary-class ICA-FX, one nearest neighborhood method is used to test the per-

formance. This procedure is performed for every 165 images and the error rate

is 3.64% with 14 features. Note that the performance of multi-class ICA-FX is

compatible with that of binary-class ICA-FX. Considering that the face authen-

tication problem is generally easier than the face recognition problems where one

must decide who the person really is, it can be concluded that the multi-class

ICA-FX is very good at extracting features for face recognition problems.

AT&T Database

The AT&T database of faces (formerly ‘The ORL Database of Faces’) [76],

consists of 400 images, which are ten different images for 40 distinct individuals.

It includes various lighting conditions, facial expressions, and facial details. The

images were downsampled into 23 × 28 pixels for efficiency. Figure 4.15 shows

the downsampled images of the first three individuals.

The experiments were performed exactly the same way as in the Yale database.

Leave-one-out strategy was used with the one nearest neighborhood classifier

throughout the experiments. Averages of two experiments for the ICA and ICA-

FX are reported here. Figure 4.16 shows the weights of the PCA, ICA, LDA,

and ICA-FX for this dataset respectively.

Figure 4.17 shows the error rates of the PCA, ICA, LDA, and ICA-FX when
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Figure 4.15: AT&T Database

Figure 4.16: Weights of various subspace methods for AT&T dataset. (1st row:

PCA (Eigenfaces), 2nd row: ICA, 3rd row: LDA (Fisherfaces), 4th row: ICA-FX)
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Figure 4.17: Comparison of performances of PCA, ICA, LDA, and ICA-FX on

AT&T database with various number of PC’s. (The numbers of features for LDA

and ICA-FX are 39 and 10 respectively. The number of features for ICA is the

same as that of PCA)

different numbers of principal components were used. Note that the number of

extracted features by LDA is 39, because there are 40 classes. Because there

must be at least 40 PC’s to get 39 Fisherfaces, the error rates of the LDA for 20

and 30 PC’s are not reported. The number of extracted features for the ICA-FX

was set to 10.

Figure 4.18 shows the error rates of the ICA-FX when different numbers

of features were used with 40, 50, or 60 principal components. It can be seen

that there are little differences in the performance when 10 or more features are

extracted and the error rates gradually increase as an increase number of features

are extracted in all the cases. This phenomenon is the same as that for the Yale

database.

In Fig. 4.19, each face pattern is projected onto the two dimensional feature

space. In the figure, the PCA, ICA, LDA, and ICA-FX were used to generate

features using all the 400 face images. Forty principal components are used as

inputs of ICA, LDA, and ICA-FX. For ICA-FX 10 features are extracted. The

most significant two features are selected as bases for PCA and LDA cases, and
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Figure 4.18: Performances of ICA-FX on AT&T database with various number

of features used. (40, 50, and 60 principal components were used as inputs to

ICA-FX.)

the first two features are selected as bases for ICA and ICA-FX. As in Yale

databases, for the sake of simplicity in visualization, the first 7 identities among

the total 40 identities are shown in the figure, that is total 70 images are used

for the plots. Before plotting, features are normalized to have zero means and

unit variances. Seven different symbols are used to represent different identities.

In the figure, one can easily separate one cluster of a symbol from another in the

cases of LDA and ICA-FX, while it is hard to do so for the cases of PCA and

ICA.

Table 4.8 shows the error rates of the PCA, ICA, LDA, the kernel methods,

and ICA-FX. For ICA, LDA and ICA-FX, 40 principal components were used

for the input vector as in [71]. The performances of the kernel methods are those

from [71]. As shown in the table, it can be seen that the ICA-FX outperforms

the other methods with significantly less features.

As in the Yale face recognition problem, the performance of the binary version

ICA-FX is also reported in the table [74]. The detailed procedure for this exper-

iment is the same as that described in the Yale problem. The performance of the

multi-class ICA-FX is nearly the same as that of the binary-class ICA-FX using
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Figure 4.19: Distribution of 7 identities (·, ◦, ∗,×, +, �, �) of AT&T data drawn

on 2 dimensional subspaces of PCA, ICA, LDA, and ICA-FX.

Table 4.8: Experimental results on AT&T database

Method
Dim. of No. of Error

Reduced Space Error Rate (%)

Eigenface (PCA) 40 16 4.00

ICA 40 17 4.25

Fisherface (LDA) 39 16 4.00

Kernel Eigenface (d=3) 40 8 2.00

Kernel Fisherface (G) 39 5 1.25

ICA-FX (binary) 10 4 1.00

ICA-FX (multi) 10 4 1.00
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Figure 4.20: JAFFE Database

Figure 4.21: Weights of various subspace methods for JAFFE dataset. (1st row:

PCA (Eigenfaces), 2nd row: ICA, 3rd row: LDA (Fisherfaces), 4th row: ICA-FX)

the same number of features and it can be concluded again that the multi-class

ICA-FX is very good at extracting features for face recognition problems.

JAFFE Database

This database consists of 213 images of 7 facial expressions (angry, disap-

pointed, fearful, happy, sad, surprised, and neutral) posed by 10 Japanese female

models [77]. The number of images belonging to each category is shown in Table

4.9. Figure 4.20 shows samples of the images. For the experiments, each image

was downsampled to 16×16 and a total of 256 pixels were used. The PCA, ICA,

LDA, and ICA-FX were used for recognizing 7 facial expressions and the weights

for each method are shown in Fig. 4.21. Note that there are 6 Fisherfaces,

because there are 7 categories of facial expression.

The performances of the various methods are shown in Fig. 4.22. In the figure,
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Table 4.9: Distribution of JAFFE database

Category No. of Images Total Images

Angry 30

Disappointed 29

Fearful 32

Happy 31 213

Sad 31

Surprised 30

Neutral 30

various numbers of principal components were used as the inputs to ICA, LDA

and ICA-FX. For ICA-FX, 10 features were extracted. It can be seen that the

performances of the LDA is even worse than those of the PCA. The performance

of the ICA-FX is much better than those of the other methods. The error

rates for ICA-FX decreases consistently as the number of principal components

increases, while those of the others do not.

Figure 4.23 shows the error rates of the ICA-FX when different numbers of

features were used with 50, 60, or 70 principal components. It is expected from

Fig. 4.22 and 4.23, that error rates can be reduced to below 5% with more

principal components and 15 features extracted by the ICA-FX.

In Fig. 4.24, each face pattern is projected onto the two dimensional feature

space. Features are generated using all the 213 face images. The PCA, ICA, LDA,

and ICA-FX were compared. Forty principal components are used as inputs

of ICA, LDA, and ICA-FX. For ICA-FX 10 features are extracted. The most

significant two features are selected as bases for PCA and LDA cases, and the

first two features are selected as bases for ICA and ICA-FX. Before plotting,

features are normalized to have zero means and unit variances. Seven different

symbols are used to represent seven expressions. Though not clear as in Fig.

4.19, one can see that the localization properties of LDA and ICA-FX is quite

better than those of PCA and ICA.

Table 4.10 shows the performances of the PCA, ICA, LDA, and ICA-FX

when the first 60 principal components were used. In this table, the number of

features by the ICA-FX was set to 10. The experimental results show that the
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on 2 dimensional subspaces of PCA, ICA, LDA, and ICA-FX.
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Table 4.10: Experimental results on JAFFE database

Method
Dim. of No. of Error

Reduced Space Error Rate (%)

Eigenface (PCA) 60 24 11.27

ICA 60 26 12.20

Fisherface (LDA) 6 53 24.88

ICA-FX 10 17 7.98

classification rates of the ICA-FX are better than those of the other methods.

Furthermore, the performance of the LDA is unsatisfactory in this case. The

reason is that the number of extracted features by the LDA is too small to

contain sufficient information on the class. When five features are extracted by

the ICA-FX, the classification errors are approximately 19 ∼ 23% in Fig 4.23,

and are close to that of the LDA in Table 4.10.
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Conclusions

In this dissertation, the problems of feature selection and extraction for clas-

sification problems have been dealt with. Dimensionality reduction with feature

selection or extraction is desirable in the aspect that it can resolve the so called

‘curse of dimensionality’ problem with better generalization performance. In ad-

dition, it also reduces the data storage and the computational complexity in the

data mining process afterwards.

Mutual information has been used as a measure of importance of a feature

throughout the dissertation. Although the mutual information is a very good

indicator of the relevance between variables, the reasons why it is not widely

used is its computational difficulties, especially for continuous multi-variables.

In the first part of the dissertation, a method for calculating mutual infor-

mation between continuous input features and discrete output class is proposed

and it is applied to a greedy input feature selection algorithm for classification

problems. The proposed method makes use of the Parzen window in getting the

conditional density in a feature space. With this method, the mutual informa-

tion between output class and multiple input features can be computed without

requiring a large amount of memory.

The computational complexity of the proposed method is proportional to

the square of the given sample size. This might be a limiting factor for huge

data sets, but with a simple modification that confines each influence field in a

finite area, the computational efforts can be greatly reduced. Furthermore, it is
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expected that a clustering or sample selection method can be used to overcome

this limitation.

The proposed feature selection method PWFS was applied for several classi-

fication problems and better performances were obtained compared to the con-

ventional feature selection methods such as MIFS, MIFS-U, and the stepwise

regression.

In the second part of the dissertation, an algorithm ICA-FX is proposed

for feature extraction and the stability condition for the proposed algorithm is

also provided. Firstly, the ICA-FX is developed for binary-class classification

problems and then it is extended to multi-class classification problems. The

proposed algorithm is based on the standard ICA and can generate very useful

features for classification problems.

Although ICA can be directly used for feature extraction, it does not generate

useful information because of its unsupervised learning nature. In the proposed

algorithm, class information was added in performing ICA. The added class in-

formation plays a critical role in the extraction of useful features for classification.

With the additional class information new features containing maximal informa-

tion about the class can be obtained. The number of extracted features can be

arbitrarily chosen.

The stability condition for the proposed algorithm suggests that the activation

function ϕi(·) should be chosen to well represent the true density of the source. If

a squashing function such as sigmoid or logistic is used as an activation function,

the true source density should not be Gaussian. If it is so, the algorithm diverges

as in standard ICA.

Since it uses the standard feed-forward structure and learning algorithm of

ICA, it is easy to implement and train. Experimental results for several data sets

show that the proposed algorithm generates good features that outperform the

original features and other features extracted from other methods for classification

problems. Because the original ICA is ideally suited for processing large datasets

such as biomedical ones, the proposed algorithm is also expected to perform well

for large-scale classification problems.

The proposed feature selection and extraction algorithms were applied to
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several classification problems including face recognition problems. The perfor-

mances of the proposed methods clearly show the necessity of dimensionality

reduction in the data mining process. They outperformed the other compared

methods and it can be concluded that the proposed methods is good for selecting

or extracting features for classification problems.
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Appendix A

Proof of Theorem 1

If (4.15) is to be a stationary point of learning rule (4.11), ∆W , W (t+1) −

W (t) and ∆vvv , vvv(t+1) − vvv(t) must be zero in the statistical sense. Thus

E{[IN −ϕϕϕ(UUU)FFF T ]W} = 0

E{ϕϕϕ(UUUa)C} = 0
(A.1)

must be satisfied. The second equality is readily satisfied because of the indepen-

dence of UUUa and C and the zero mean assumption on C. The first equality holds

if

E{IN −ϕϕϕ(UUU)FFF T } = IN − E{ϕϕϕ(UUU)UUUT } − E{ϕϕϕ(UUU)C}vvvT = 0. (A.2)

In the equation the last term E{ϕϕϕ(UUU)C} = 0 because UUU and C are independent

and C is a zero mean random variable. Thus, the condition (A.2) holds if

E{ϕi(Ui)Uj} = δij , (A.3)

where δij is a Kronecker delta. When i 6= j, this condition is satisfied because of

the independence assumption on Ui(= Ei)’s, and the remaining condition is

E{ϕi(Ui)Ui} = E{ϕi(λiSΠ(i))λiSΠ(i)} = 1, ∀1 ≤ i ≤ N. (A.4)

Here the fact that Ui = Ei = λiSΠ(i) is used, where λi is the ith diagonal element

of scaling matrix Λ and SΠ(i) is the ith signal permuted through Π.

Assuming that Si has an even pdf, then Ui has an even pdf and ϕi(= ṗi(ui)/pi(ui))

is an odd function. Therefore, λi that satisfies (A.4) always comes in pairs: if

λ is a solution, so is −λ. Furthermore if we assume that ϕi is an increasing

differentiable function, (A.4) has a unique solution λ∗
i up to a sign change.
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Appendix B

Proof of Theorem 2

For the proof, a standard tool for analyzing the local asymptotic stability of

a stochastic algorithm is used. It makes use of the derivative of the mean field

at a stationary point. In our problem, Z ∈ <N×N and kkk ∈ <M constitute an

N × N + M dimensional space, and this space can be denoted as a direct sum

of Z and kkk; i.e., Z ⊕kkk. Then the derivative considered here is that of a mapping

H : Z⊕kkk → E{G(Z,kkk)Z}⊕E{g1(Z,kkk)k1}⊕· · ·⊕E{gM (Z,kkk)kM} at the stationary

point (Z∗, kkk∗) where Z∗ = IN and kkk∗ = 1M = [1, · · · , 1]T . The derivative is of

(N ×N + M)2 dimension, and if it is positive definite, the stationary point is a

local asymptotic stable point. As written in [63], because the derivative of the

mapping H is very sparse, the first-order expansion of H at the point (Z∗, kkk∗)

can be used rather than trying to use the exact derivatives.

For convenience, let us split H into two functions H1 and H2 such that

H1 : Z ⊕ kkk → E{G(Z,kkk)Z} ∈ <N×N

H2
i : Z ⊕ kkk → E{gi(Z,kkk)ki}, 1 ≤ i ≤M.

(B.1)

Note that H = H1 ⊕ H2. To get the first order linear approximation of the

function at a stationary point (Z∗, kkk∗), H1 and H2 is evaluated near a small

variation of the stationary point (Z,kkk) = (Z∗ + E , kkk∗ + εεε), where E ∈ <N×N and
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εεε ∈ <M .

H1
ij(IN + E ,1M + εεε)

= [E{G(IN + E ,1M + εεε)}(IN + E)]ij

= [E{G(IN + E ,1M + εεε)}]ij + [E{G(IN + E ,1M + εεε)}E ]ij

= E{Gij}+
N
∑

n=1

N
∑

m=1

E{
∂Gij

∂Znm
}Enm +

M
∑

m=1

E{
∂Gij

∂km
}εm +

N
∑

m=1

E{Gim}Emj

+ o(E) + o(εεε).

(B.2)

and

H2
i (IN + E ,1M + εεε)

= E{gi(IN + E ,1M + εεε)}(1 + εi)

= E{gi(IN + E ,1M + εεε)}+ E{gi(IN + E ,1M + εεε)}εi

= E{gi}+
N
∑

n=1

N
∑

m=1

E{
∂gi

∂Zmn
}Emn +

M
∑

m=1

E{
∂gi

∂km
}εm + E{gi}εi + o(E) + o(εεε).

(B.3)

Using the independence and zero mean assumptions on ei’s and c, these can be

further expanded as

H1
ij(IN + E ,1M + εεε)

=















































EijE{ϕ̇i(Ei)E
2
j }+ E{ϕi(Ei)Ei}Eji + v∗j

∑M
m=1 Eimv∗mE{ϕ̇i(Ei)C

2}

−εiv
∗
i v

∗
j E{ϕ̇i(Ei)C

2}+ o(E) + o(εεε) if 1 ≤ i, j ≤M

EijE{ϕ̇i(Ei)E
2
j }+ E{ϕi(Ei)Ei}Eji + v∗j

∑M
m=1 Eimv∗mE{ϕ̇i(Ei)C

2}

+o(E) + o(εεε) if M < i ≤ N, 1 ≤ j ≤M

EijE{ϕ̇i(Ei)E
2
j }+ E{ϕi(Ei)Ei}Eji + o(E) + o(εεε) if M < i, j ≤ N

(B.4)

and

H2
i (IN + E ,1M + εεε)

= −v∗i

M
∑

m=1

Eimv∗mE{ϕ̇i(Ei)C
2}+ εiv

∗2
i E{ϕ̇i(Ei)C

2}+ o(E) + o(εεε) 1 ≤ i ≤M.

(B.5)
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Now, the local stability conditions are developed case by case.

(Case 1) i, j > M

In this case, H1
ij and H1

ji only depend on Eij and Eji and are represented as

[

H1
ij

H1
ji

]

=

[

E{ϕ̇i(Ei)}E{E
2
j } E{ϕi(Ei)Ei}

E{ϕi(Ej)Ej} E{ϕ̇j(Ej)}E{E
2
i }

][

Eij

Eji

]

, Dij

[

Eij

Eji

]

if i 6= j

H1
ii = [E{ϕ̇i(Ei)E

2
i }+ E{ϕi(Ei)Ei}]Eii , diEii.

(B.6)

Thus for i 6= j, Zij and Zji are stabilized when Dij is positive definite. And if

i = j, Zii is stabilized when di is positive. Using the fact that E{ϕi(Ei)Ei} = 1

∀i = 1, · · · , N , it can be shown that the local stability condition for the pair (i, j)

when i, j > M is (4.28).

(Case 2) i ≤M, j > M

In this case, H1
ij and H1

ji are dependent not only on Eij and Eji but also on all

Ejm, m = 1, · · · , M . Thus for a fixed j, all the H1
ij and H1

ji, i = 1, · · · , M are aug-

mented, and a 2M -dimensional vector HHHj , [H1
1j , · · · , H

1
Mj , H

1
j1, · · · , H

1
jM ]T is

constructed. Now this augmented vector HHHj depends only on EEEj , [E1
1j , · · · , EMj ,

Ej1, · · · , EjM ]T and can be represented as a linear equation HHHj = DDDjEEEj , using an

appropriate matrix DDDj ∈ <
2M×2M . The stability of ZZZj = [Z1j , · · · , ZMj , Zj1, · · · ,

ZjM ]T for j > M is equivalent to the positive definiteness of DDDj and it can be

checked by investigating the sign of the HHHT
j EEEj .

Substituting (B.4) and using E{ϕi(Ei)Ei} = 1 ∀i = 1, · · · , N , it leads

HHHT
j EEEj =

M
∑

i=1

(H1
ijEij + H1

jiEji)

=
M
∑

i=1

[E{ϕ̇i(Ei)E
2
j }E

2
ij + 2EijEji + E{ϕ̇j(Ej)E

2
i }E

2
ji]

+ E{ϕ̇j(Ej)}E{C
2}(

M
∑

i=1

Ejiv
∗
i )

2.

(B.7)

If it is assumed that ϕ̇j(·) is nonnegative, as in the proof of the uniqueness of

the scalar λj , the last term becomes nonnegative. Thus, a sufficient condition for

this equation to be positive is to make the first term positive, and this condition
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is satisfied if and only if equation (4.28) holds. Therefore, (4.28) becomes a

sufficient condition for the local stability of ZZZj .

(Case 3) i, j ≤M

In this case, because H1
ij and H2

i are dependent both on E and εεε, a new vector

is constructed and the stability condition of the vector is investigated as in the

previous case.

Consider the M×M+M dimensional vectors HHH , [H1
11, H

1
12, · · · , H

1
MM , H2

1 , · · ·

, H2
M ]T and EEE , [E11, E12, · · · , EMM , ε1, · · · , εM ]T . Using (B.4) and (B.5), HHH can

be represented as the linear equation HHH = DDDEEE , where DDD is an appropriate matrix.

Thus, the stability of the Z = [Z11, Z12 · · · , ZMM ]T and kkk can be checked using

the same procedure as the previous case.

HHHTEEE =
M
∑

i=1

M
∑

j=1

H1
ijEij +

M
∑

i=1

H2
i εi

=
M
∑

i=1

M
∑

j=1

(E2
ijE{ϕ̇i(Ei)E

2
j }+ EijEji)

+
M
∑

i=1

[E{ϕ̇i(Ei)}E{C
2}(v∗i εi −

M
∑

j=1

v∗jEij)
2]

(B.8)

The last term is nonnegative with the assumption of ϕ̇i(·) ≥ 0, and a sufficient

condition for the double summation to be positive is (4.28). Thus, Z⊕kkk is locally

stable if condition (4.28) holds.

Combining the stability conditions for the case 1, 2, and 3, it is concluded

that the learning rule (4.11) for ICA-FX is locally asymptotically stable at the

stationary point (4.15) if condition (4.28) holds.
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� öùø ¾�¿ �� � � 	
AC õED FG HI É ä Å~� ø k Å ./ `�b��
��¥ �2 ï >#@$ ÔI É � 	 êë���� st u ÝÆÞß �#ßG �·  ��ë �î ï eg ÙÜÛ µ·�� Ó� ./ `�b� úû ü �#"$ *, » �6 ÊÌ±´³¶µ·¹¸º » AC õED FG HI É �î ï���+�2 ï öùø«úû ü é^êëíì i= ä Å � ø . úÈ ü«WX ü ��� npo úû üfY[Zíî ��aúû u m ÓÔ ./ 3 Å öC ÷ ÊÌ��� � �� î �� �#ßG
79 (local stability) �9����¥ 79 §^¨©	�� Y[Z5ô Å öùøáàãâ��� ø . Y[Zíî ��aúû u é^êëíì i= ÊÌ }^�� �#"¿ *, » ÔI É � 	 êë ¸¹ ±´³
µ·¹¸º » ���=?>#@$BAC õED FG HI É�Õ ø ä Å ÊÌ ÚÜTÝ 4Þ �#ßG �· ìî ï"!# ÙÜÛ ÂÃ §^¨© %ë µ·«ª8¬ ������ �! �#"$ ¢¤£¥ ICA m ÓÔ ./ 3 Å¢öC ÷
�î ï vº »ÊÉÂ WX üKY[Z ìî ï ËÌ ÝÆÞß AC õED FG ��+�2 ï é^êëíì i= %ë µ· ä Å¥¤¦ � \^]$ �6 `�b��� ø«úû ü �#"¿ ä Å � ø . ±´³¶µ·¹¸º » AC õED FG
�î ï Õ ø ¤¦ ��§^¨© %ë µ·«ª8¬ vº »ÊÉÂ x{ÄG ���� �î ï&%�'� ¾ �)(ë 3 Å k Å�m Ó< %ë c#d¥ npo ���=?>#@$fAC õED FG ÚÜTÝ ï �� ÊÌ�* ø �� � �î ï : Ó<
ä Å Q2 ï ���� �6 `�b��� ø .

Y[Zíî ��aúû u AC õED FG ���¥����� Ö �+ ��+�2 ï é^êëíì i= HI É �î ï-, i�/.0 1 ¢¤£¥	2 b$ ¯° � Ó3 *, » ¾�¿ ��� � ø k Å54 	76��¥ ¢¤£¥	2 b$ ¯°
vº »ÊÉÂ WX üKY[Z ��� �#"$ ¤¦ ���
	 Y[Zíî ��aúû u é^êëíì i= HI ÉËÊÌ x{ÄG ���� �î ï ÃÆÅ¢JL » é^êëíì i= HI ÉËÊÌ x{ÄG ���� ¯°98 Å .: �
	 �· µ<;=
� ø . >@?A �CBD ý�E�§¯° ìî ï Ar ���
	 Y[Zíî ��aúû u é^êëíì i= HI É ä Å �#"$ *, » �6 ÊÌ AC õED FG �î ï ä Å¥¤¦ � öùø8c#d¥ npo ÃÆÅ¢JL » é^êëíì i=
HI ÉËÊÌ vº »ÊÉÂGFH ï �· � ø/IJ K *, » x{ÄG ���� �î ï �· ¾�¿ 46 �6 §^¨© �î ï-LM N ¢¤£¥ \^]$ �6 `�b� à z��� ø .
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OQPSRUT<VXW
: AC õED FG ���¥����� , AC õED FG ��+�2 ï , ���=?>#@$ * ø �� �&Y ;Z\[] (dimensionality reduction), Parzen

window, ÚÜTÝ 4Þ �#ßG �· ,
üþ ÿ����= x{ÄG vº » vº »yx{z$ , , i�/.0 1 ¢¤£¥^2 b$ , vº »ÊÉÂ , àãâåä Å�¦©¨`_ ø ä Å�a FG , 4 	76��¥ ¢¤£¥	2 b$
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b ��Gc`d pq efhg
st u µ<;· ��� npo ÊÌjilk ¤C ÷ �î ï : Ó� ä Å ÝÆÞß k Å5m ¡n >@?=^oqp¥ ä Å`rû sut z�wvI xzy Å � ø . { ÓÔ �
	}|¹�~�� ./ ü����§^¨������ %ë µ·ÍÆÏ� ��� î �� �· ä Å 
��¥����® úû u Ø��� oqp¥ ÊÌ��9 vI x �î ï����® ./ ¾ �S�ë��Q�®�� 	 ���� c#d¥ 79 ìî ï öùø k Åam Ó< %ë c#d¥ �6 àãâ¿

ä Å ÕØ×��È � ÕØ×��È � �
	 k Å úû ü � ø ä Å
� ø��� à z�wvI xzy Å � ø . ilk ¤C ÷ ~ ø�� � k Å ¸¹ ���= §^¨� �� � npo ìî ï ³P´= �6 öùø ��� *� »
ýÑÐ� ô Å } ;· %ë µ· x{z$ Õ ø é ¡n Õ ø ¯° �#ßG �î ï _ ø�� Å ÃÆÅl� ø k ÅKeg üþ � î �� ÕØ× ÊÌ � 	 ����¡ 9£¢¤¦¥ Û 3 Å 
��¥ st u µ<;· ¢¤£¥
àãâ HJ É ~ ø �· y Å ðñ x{z$ ðñ x{z$ À Ó§ ���¥ ÚÜ ¨ ä Åª© ¡£ : Ó< vI xzy Å � ø . « ;· ½ �� Y ;Z Õ ø ÊÌ Ú¬ 1 �î ï�­ë � O¥./ ���� Y ;· �
	
�· y Å eg üþ � î �� : Ó< *, » Õ ø8 ¢¡£ HI É �î ï �8��ª® ;= k Å �8��"¯ ¬ �Ç ï 3 Å c#d¥ ä Å �C ÷ ä Å ���� Y ;· � ø k ÅEm Ó< úû ü �6 : Ó< *, »
Õ ø8 ¢¡£ HI É ä Å	® ;Z µ<;= vI xzy Å � ø . ���¥ é^êë k Å � ø : ÓÔ \^]$ k Å �9£¢¤±°³²´ k Å �8�� ¢¤£¥ ���� ä Å�µ �! ä Å�¶ �¥ ýÿþ® ¢¤£¥�� øw·Ç xzy Å
� ø . �9¹¸6 ���¥°T² ÃÆÅ à z$�º» ¼f�6 úû ü , i½ °³²´ k Å �8�� ç��¥ Y[Z � ø`¾¿ À *, » Õ ø8 ¢¡£ %ë µ· ÃÆÅ à z$ �� ./ >@?Á vI xÂy Å � ø .ä Å Y[Z §^¨� .: - ø«úû ü F2 ïÂÃ ø 3 Å ìî ï¡���® ¾ � � ø eg üþ � î �� ÊÌÅÄ ÓÆ ¯° úû ü9ÇÈ u ÎpÏ¥�ÉçÅ � øËÊ, »ÍÌ9 � øËÊ, »-Î Z ½ �� ä Å
ä�¨ ìî ï ÃÆÅ � ø 3 Å ./ `�b�wvI xzy Å � ø . Ì9 öùø � ø ÊÌÐÏ Ð=�Ñ �� �î ï"ÒlÓ ¾ � � ø«úû ü k ÅÕÔÖ × , �9 ÔÖ × *, » ¸6 >lØ= k Å �8��Reg
�8��ÚÙ� Û ÃÆÅ ÙÜÛ �� úû üÍY[Z ¢¤£¥ ���� ÊÌ m ÓÜ À ÓÔ �î ï �9£Ýû ü vº » HI É ä Å òô õ qr õ �
	ßÞ� >@?= ô Å  9 .ä Å h�ij °T² ÝÆÞß�àlá¥ ÊÌ úÈ ü«WX ü ä Å � ø  9 ÃÆÅl� ø k Å eg üþ � î �� : Ó< *, » vº » HI ÉËÊÌ 79ãâô ÷ ä ÅK`�b� à z�wvI xzy Å � ø .
� ø }^�� c �¥åä�¨ Y[Z âä õ oqp¥ üþ � î �� ÊÌ ÙÜÛ §^¨� �� � ����æåç è ��� npo k Å879 .: �6 µ· npo ç��¥ Y[Z � ø §^¨�\é ø µ· npo ÊÌÐêô ÷
ËÌ ìî ï ���ë k Åym Ó< %ë ô Å ./ ÝÆÞß ý�E� � Ó3 ä Å çPè¥ ðñ öùø«úû ü é ø Î Z µ· Y[Z é ø HI É �î ï k Å879 �
	7Þ�íì £¥ JL » ý�îG öùø«úû ü!# öï �ªðñ .: �6 a b¿ �� �òû ü Y ;Z Õ ø ìî ïGóë ���= y Å � ø . � ø ¤C ÷ %ë µ·²ÙÜÛ §^¨� �� � ���= §^¨�&ô �� ô Å �� ¦©¨�õ¤ µ·÷öQø¼Âù¤
ìî ï­§^¨©	�� öùø8c#d¥ npo ä�¨ ���¥°T² : Ó< *, » 79�âô ÷ �î ïGÞ�íì £¥ !#�ú £¥ à�ûG .: �6 a b¿ ¯° , � øýü¤ ì £¥ Q2TS ��� 79 ô Å ï ��
�î ï ¥ Û npo Y[Z úÈ ü«WX ü �î ï 2 b¿ Õ ø �
	wÞ� ô Å ./ : Ó< *, » �9 ç��¥«�î ïãÞ�íì £¥ }^�� �CþGSÿ ¡n .: �6 a b¿ ¯° �9 ® ;Z `�b$ .:�6 a b¿ �� 79 ú £¥	2 b¿ %ë µ· Y ;Z Õ ø óë ���= y Å � ø . úÈ ü«WX ü 2 b¿ Õ ø�� Ó WX ü ��� �6 , i= 79������ z$ ./ ÑÆÓÔ � O ¸¹ Þ�íì £¥
ä Å�© êë �6 ���¥	� 	 a b¿ 79 �#ßG : ÓÔ ./ : Ó
 vI xzy Å � ø . eg ¸� ��� 79 ä�¨ ÊÌ ÙÜÛ §^¨� ¯° ÙÜÛ §^¨� �� � ����æåç è �î ï ä Å
�¬ 1
¾ � Þ�íì £¥ ÎpÏ¥ÁÃÆÅ ÚÜTÝ §^¨� �� ÊÌ ¾�¿ ��� .: �6 a b¿ HI É �� 79 Y ;Z Õ ø ìî ïÍóë ���= y Å � ø .

Y[Z ¾ � Ö �+ ô Å´êë����� çPè¥ ðñ >@?A ÊÌ ¾�¿ ��� ���¥	� 	 a b¿ ,
üþ � ÃÆÅ , øù � 	 HI ÉËÊÌ � ø ¢¤����D ¯° �9 ç��¥ *, » Y[Z

� ø ÙÜÛ §^¨� �� � ����æåç è �î ï��6 Õ ø ÉçÅ�_ ø�� �� �6 `�b� °T² �
	wÞ� à z� ./ m ÓÜ %ë µ· ÊÌ Ä ÓÆ ��� `�b� ¾ � npo 79�� × � ø
µ �! M 	 ó �� ä Å º» ¼ ýÿþ® ���= y Å � ø . ä Å k Å c#d¥«�î ï�� �� ¾ � L "! ú £¥$#% � , & b¿ ½ �� 46 , ÎpÏ¥ ¸' » ðñ , & b¿ � þG)( �! , & b¿ x{ÄG �� � ,!# �CþG � Ó
 , ./ qr �+*º » , & b¿ 79 ��
� , x{ÄG ÇÈ u , ä Å �#ßG 46 ���¥	� 	 a b¿ HI É �� Y ;Z Õ ø óë ���= y Å � ø . üþ � WX ü ���¥	� 	 µ· npo
Y[Z � ø ä Å çPè¥ ðñ >@?A ��� HI É ¾ �  9 úû ü àãâ ý�E� �#ßG �#"$ ¢¤£¥�79�âô ÷ �î ïãÞ�íì £¥ ðñ-, £¥ ä Å<��
� ¯° >@?A �CBD >@?A ÊÌ ÙÜÛ []
Õ ø ìî ï/. ø D b¿ , i½ ä Å10324 ÃÆÅ ô Å ./ ç��¥ Y[Z � ø øù � 	 HI É ���¥°T² �2TS ./ ¾ �65�78 ÝÆÞß _ ø�9 Å ìî ï 
��¥ Å�Æ Þ� ô Å úû ü  9
x{z$ ä Å<��
� �� 79 Y ;Z Õ ø óë ���= y Å � ø . ç��¥ Y[Z � ø ,;:� 2 b¿ ÉçÅ çPè¥ ðñ öùø ô Å úû ü ��<= ä Å<��
� , ¾î ï ÕØ×Á¸º » ÙÜÛ §^¨� �� � ����åç èÄµ· ¢¤£¥ 79 �
	ËÞ�íì £¥ üþ �?>@ A ä Å<��
� 79 �#ßG : ÓÔ ./ : Ó
 vI xzy Å � ø . ÙÜÛ §^¨� �� � ô Å } ;· �î ï � Ó3 ä Å ÝÆÞß >@?A �CBD >@?A üþ �
ÃÆÅ , B 	C>@ A , B 	 F2TS ,

ú £¥&46 ���¥°T² 79 Y ;Z Õ ø ÊÌ _ ø ¤C ÷ �î ï ÎpÏ¥ \^]_ y Å � ø . ���� oqp¥ üþ � î ��EDùÅ �� � ��� npo � Ó3 ä ÅÄ ÓÔ c#d¥ npoGFIHKJ 78 �
	 ú £¥ ý�îG *º » ä Å ìî ï 8 Å �r L �
	 m ÓÜ %ë µ· ÚÜTÝ §^¨� st u �î ï ä Å
�¬ 1 ¾ � � ÓÔ *, » ( �! ä Å , B 	 ì £¥ ä Å ,Þ� ��
� ä Å , ( �! �6 , �CþG 46 ���¥°T² 79 Y ;Z Õ ø óë ���= y Å � ø . � 	7Þ�NM è y Å´êëíìî ï � Ó3 ä Å � Å 
��¥ & b¿ ý�îGPO i= é ¡n Õ ø
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a b¿ ¯° �#ßGRQS T , Þ� �· ���¥°T² 79 ./ _ ø âô ÷ ¯°VU ø�W� � ÝÆÞß ¢¤£¥ Õ ø ÊÌ : ÓÔ �î ï óë ���= y Å � ø . eg ¸� ��� é ø üþ � ÂÃ
çPè¥ ðñ [] ÊÌýüþ � à�ûG , ¸' » �6 , ���¥ ðñ , X 	 #% � , à�ûG Ñ �= ü��� ���¥°T² 79 ./ _ ø âô ÷ �î ï ÎpÏ¥ \^]_ y Å � ø . õ¤ µ·÷öQø¼Âù¤ ìî ï� Ó3 ä Å �6ZY 24 öùø8NPO � 	7Þ� �8��ª® ;= 
��¥ !#�ú £¥ à�ûG .: �6 a b¿ çPè¥ ðñ >@?A ÊÌ WX ü ��<= ä Å<��
� , � þG �6 ü��� �9¹¸6 ���
°T² 79 Y ;Z Õ ø óë ���= y Å � ø .ÙÜÛ §^¨� ���= §^¨� � Ó �� ¦©¨ st u µ<;· ����æåç è �î ïÍ§^¨©	�� öùø8c#d¥ npoynpo µ·V[ �\ ä Å �� ¾ � Þ� ./ ËÌíµ· � ø^�� à z�

��¥ ÎpÏ¥ÁÃÆÅ ÚÜTÝ §^¨� �� ���¥ øù � 	 a b¿ �� ú £¥	2 b¿ %ë µ· Y ;Z Õ ø \^]_ y Å � ø . AC õ ÉçÅ ±´³ ¦©¨ ��� npo ÝÆÞß é^êë ä Å úû u ¢¤£¥
çPè¥ ��� npo ô Å } ;· öùø ¾�¿ � ø �· �#ßG ý�îG ä Å - ø«úû ü �9 `�b¿ %ë µ· �8��+] �� x{z$ ÃÆÅ<��
� , à�ûG?^_ ü , `ba� ì £¥ , M 	 QS T , *, » �#ßG
¯° ,

üþ � �6 ��
� , M 	)ðñ ��
� , ý�E�$cd T �
	 npo { ÓÔ Ä ÓÔ ./ `�b� úû ü �#ßG B 	 , M 	 ¤¦ � , ý�E�$cd T ä Å , i� _ ø î ���® ;Z *, » M 	¢¤£¥ ���¥°T² 79 Y ;Z Õ ø ìî ïãóë ���= y Å � ø . ef }^�� _ ø * ø npo ÇÈ É1g ����î ï ÃÆÅ F2 ï ä Å 
��¥ k Å QS T ,
üþ ��ðh , , £¥ ðñ ,

ú £¥ B 	 ,
���� oqp¥ üþ � î �� ÊÌ DùÅ �� � ����æåç è ��� npo òû ü [ �\ ä Å �� ¾ � *º » ¸' » ÃÆÅ ���5°T² 79 Y ;Z Õ ø ÊÌ _ ø ¤C ÷ �î ï ÎpÏ¥ \^]_ y Å
� ø . eg ¸� à�ûG *º » ��
� , à�ûGRQS T , ��
� ú £¥ ä Å ìî ï 8 Å �r L ÝÆÞß 93A � �! üþ � ÃÆÅ HI É , ���� 3 Åji9 ä Å ÙÜÛ §^¨� ��� npo §^¨©
�� ¸�íµ· âô ÷ �î ï ÑÆÓÔ1kmln �6 `�b� à z��
��¥ B 	6o �D , x{ÄG âô õ , �· �� � , L "! ® ;Z ��
� , �� � öï � ��
� ¯°��9£Ýû ü ���¥	� 	 øù � 	
a b¿ HI É , pf Q2TS ./ ü����§^¨� .: J 78 ðñ ¢¤£¥ à�ûG ì £¥ , *, » k Å , x{z$ Þ� , M 	 �� � ,

üþ �?qsrt ü��� ���¥°T² 79 ç��¥ Y[Z � ø ./ : Ó

� ø«úû ü­: ÓÔ �î ï öùø�./ >@?Á à z�wvI xzy Å � ø .ÃÆÅjuî ï � Ó � ø ¾î ï ÕØ× F2 ï � Ó$v ø öC � � ø ÕØ×�� ø [ �\ Ýû ü����� ä Å `�b� �î ï � Ó ç��¥ Y[Z � ø � ø öï õ ä Å - ø«úû ü F2 ïÂÃ ø
3 Å µ· ä�¨ ìî ï Y ;Z	w ø Þ� ./ �· ü� Û ¾ � Þ� NPO x{ÄG �� � �
	 Þ� úû üyx6 � ø ¸¹9ú £¥+zX ü ä Å ���¥°T² �#ßG : ÓÔ ./ : Ó
 � ø«úû ü
: ÓÔ �î ï öùø�./ >@?Á ./ _ ø k Å « ;· %ë µ· k ÅÕÔÖ × ÊÌ Y[Z � ø `�b� ÃÆÅl� ø k Å �9£Ýû ü ./ ���� �î ï ~ ø�{ Å k ÅEm Ó< %ë ì £¥~ ø�� � k Å , ¾ � N � y Å �� � ø }^�� òû ü JL » ý�îG ¯° Y ;Z Õ ø ÊÌ _ ø ¤C ÷ �î ï ÎpÏ¥ \^]_ y Å � ø .
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