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ABSTRACT

In this paper, feature extraction for classification problems
are dealt with. The proposed algorithm searches for a set
of linear combinations of original features that maximizes
the mutual information between the extracted features and
the output class. The difficulties in the calculating mutual
information between the extracted features and output class
are resolved using Parzen window density estimate. Greedy
algorithm with gradient ascent method is used to find the
new feature. The computational load is proportional to the
square of the number of the given samples. We have ap-
plied the proposed method to a simple classification prob-
lems and have observed that the proposed method gives bet-
ter or compatible performance than the conventional feature
extraction methods.

1. INTRODUCTION

For many pattern recognition problems, it is desirable to re-
duce the dimension of feature space via feature extraction
because there may be irrelevant or redundant features that
complicate the learning process, thus lead to erroneous re-
sults. Even when the features presented contain enough in-
formation about the problem, the result may be erroneous
because the dimension of feature space can be so large that
it may require numerous instances to obtain a generalized
result.

Though mutual information is widely accepted as a good
measure in the feature extraction problems, the computa-
tional complexity makes it difficult to use mutual informa-
tion as a measure of extracting features. For this reason, in
[1] Torkkola extracted output relevant features based on mu-
tual information maximization using Renyi’s entropy mea-
sure instead of that of Shannon.

Recently we have developed an effective way of cal-
culating mutual information between an output class and
continuous input features and applied it to feature selection
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problems [2]. In this paper, this method is applied to feature
extraction problems by maximizing mutual information. In
calculating the mutual information between the input fea-
tures and the output class, instead of discretizing the input
space, we use the Parzen window method to estimate the
input distribution. With this method, more accurate mutual
information is calculated and the projection direction which
produces maximum mutual information is searched for.

In the following section, the method of calculating mu-
tual information by Parzen window is presented. In Sec-
tion III, we propose a new feature extraction method and
in Section IV, the proposed algorithm is applied to a simple
classification problem to show its effectiveness. And finally,
conclusions follow in Section V.

2. CALCULATION OF MUTUAL INFORMATION
WITH PARZEN WINDOW

In this section, the method of estimating the conditional en-
tropy and the mutual information by the Parzen window in
[2] is presented.

To calculate the mutual information between the input
features and the output class, we need to know the prob-
ability density functions (pdfs) of the inputs and the out-
put. The Parzen window density estimate can be used to
approximate the probability densityp(xxx) of a vector of con-
tinuous random variablesXXX [3]. It involves the superpo-
sition of a normalized window function centered on a set
of samples. Given a set ofn d-dimensional samplesD =
{x1, x2, · · · , xnx1, x2, · · · , xnx1, x2, · · · , xn}, thepdf estimate by the Parzen window is
given by

p̂(xxx) =
1
n

n∑

i=1

φ(xxx− xxxi, h), (1)

whereφ(·) is the window function andh is the window
width parameter. Parzen showed thatp̂(xxx) converges to the
true density ifφ(·) andh are selected properly [3]. The win-
dow function is required to be a finite-valued non-negative



density function where
∫

φ(yyy, h)dyyy = 1, (2)

and the width parameter is required to be a function ofn
such that

lim
n→∞

h(n) = 0, (3)

and
lim

n→∞
nhd(n) = ∞. (4)

For window functions, the rectangular and the Gaussian
window functions are commonly used. The Gaussian win-
dow function is given by

φ(zzz, h) =
1

(2π)d/2hd|Σ|1/2
exp(−zzzT Σ−1zzz

2h2
), (5)

whereΣ is a covariance matrix of ad-dimensional vector of
random variablesZZZ.

In classification problems, the class has discrete values
while the input features are usually continuous variables. In
this case, the mutual information between the input features
FFF and the classC can be represented as follows:

I(FFF ; C) = H(C)−H(C|FFF ). (6)

In this equation, because the class is a discrete variable, the
entropy of the class variableH(C) can be easily calculated.
But the conditional entropy

H(C|FFF ) = −
∫

FFF

p(fff)
N∑

c=1

p(c|fff) log p(c|fff)dfff, (7)

whereN is the number of classes, is hard to get because it
is not easy to estimatep(c|fff).

By the Bayesian rule, the conditional probabilityp(c|fff)
can be written as

p(c|fff) =
p(fff |c)p(c)

p(fff)
. (8)

If there areNc classes, we get the estimate of the conditional
pdf p̂(fff |c) of each class using the Parzen window method
as

p̂(fff |c) =
1
nc

∑

i∈Ic

φ(fff − fff i, h), (9)

wherec = 1, · · · , Nc; nc is the number of the examples
belonging to classc; andIc is the set of indices of the train-
ing examples belonging to classc. Because the sum of the
conditional probability eqauls one, i.e.,

Nc∑

k=1

p(k|fff) = 1,

the conditional probabilityp(c|fff) is

p(c|fff) =
p(c|fff)∑Nc

k=1 p(k|fff)
=

p(c)p(fff |c)∑Nc

k=1 p(k)p(fff |k)
.

The second equality follows from the Bayesian rule (8). Us-
ing (9), the estimate of the conditional probability becomes

p̂(c|fff) =
∑

i∈Ic φ(fff − fff i, hc)∑Nc

k=1

∑
i∈Ik φ(fff − fff i, hk)

, (10)

wherehc andhk are window width parameters correspond-
ing to classc andk.

Using the Gaussian window function (5) with the same
window width parameterh and the same covariance matrix
ΣFFF for each class, (10) becomes

p̂(c|fff) =
∑

i∈Ic exp(− (fff−fffi)
T Σ−1

FFF
(fff−fffi)

2h2 )
∑Nc

k=1

∑
i∈Ik exp(− (fff−fffi)T Σ−1

FFF
(fff−fffi)

2h2 )
. (11)

Now in the calculation of the conditional entropy (7)
with n samples, if we replace the integration with the sum-
mation of sample points and suppose that each sample has
the same probability, then we get

Ĥ(C|FFF ) = −
n∑

j=1

1
n

Nc∑
c=1

p̂(c|fff j) log p̂(c|fff j), (12)

wherefff j is thejth sample. With (6) and (11), the estimate
of the mutual information is obtained as follows:

Î(FFF ;C) = −
Nc∑
c=1

p̂(c) log p̂(c)+
n∑

j=1

1
n

Nc∑
c=1

p̂(c|fff j) log p̂(c|fff j),

(13)
wherep̂(c) andp̂(c|fff) can be replaced with1/nc and (12)
respectively.

3. FEATURE EXTRACTION BY MAXIMIZING
MUTUAL INFORMATION

Because the covariance matrixΣFFF i
has to be inverted in the

calculation ofH(C|FFF i), it would be better ifΣFFF i
takes a

special form. To this end, the originalN dimensional fea-
ture vectorXXX is transformed intoN ′(≤ N) dimensional
vectorYYY = WWWT

pcaXXX using PCA. Note that the rankN ′ of
WWW pca becomesN if the covariance matrixΣXXX of the orig-
inal featuresXXX is nonsingular. Note also that by the data
processing inequality [4],I(YYY ;C) = I(XXX; C) if WWW pca has
rank N . After PCA, the covariance matrix ofYYY becomes
N ′ dimensional identity matrix, i.e.,ΣYYY = IN ′ . Instead of
usingXXX, if we useYYY , the feature extraction problem we are
going to study is to findvvv∗i ∈ <N ′

, i = 1, · · · ,M , such that

vvv∗i = arg min
vvv

H(C|FFF i) = arg min
vvv

H(C|VVV T
i YYY ), (14)



whereVVV i , [vvv∗1|, · · · , |vvv∗i−1|vvv] andFFF i , VVV T
i YYY .

In this case, the search space ofwww is restricted toN ′

dimensional subspace such thatwww = WWW pcavvv and theith
newly extracted featureFi becomes

Fi = vvv∗Ti YYY = vvv∗Ti WWWT
pcaXXX. (15)

Henceforth, the covariance matrix ofFFF i becomes

ΣFFF i
, E{FFF iFFF

T
i } = E{VVV T

i YYY YYY TVVV i}
= VVV T

i VVV i.
(16)

To make the inversion ofΣFFF i
easy, the candidate vector

vvv ∈ <N ′
for the last column ofVVV i is restricted only to the

orthogonal direction to all the otheri − 1 columns ofVVV i.
In addition, because scalingvvv does not change the value of
p̂(c|VVV T

i yyy) andĤ(C|VVV T
i YYY ) in (11) and (12),vvv can always

be normalized such thatvvvTvvv = 1. Then, the covariance ma-
trix of FFF i becomesi dimensional identity matrixIi. These
orthonormalization of the weight matrix is unnecessary but
effective way to avoid matrix inversion in the calculation of
the conditional entropy (12) and its derivative, alleviating
the computational complexities.

Now a new greedy extraction algorithm is proposed. In
this algorithm, the mutual information is calculated as in
Section II using the Parzen window density estimation, thus
it is named as ‘Parzen window feature extractor (PWFX)’.
The algorithm is as follows:

I. (Initialization) setF ←− “empty set.”
II. (Sphering by PCA) transform the original featuresXXX into

YYY = WT
pcaXXX to have zero mean and anN ′×N ′ identity

covariance matrix;ΣYYY = IN ′ .
III. (Greedy extraction) fori = 1, · · · ,M , repeat the

following.

1. (Randomize weight) generateN ′ dimensional random
weightvvv.

2. (Orthonormalization) Orthonormalize the weightvvv by
Gram-Schmidt method;

vvv ←− vvv −
i−1∑

j=1

(vvvTvvv∗j/||vvv∗j ||2)vvv∗j

vvv ←− vvv/||vvv||.
(17)

3. (Weight update) update weight by gradient descent
method;

(a) (Gradient calculation) calculate∇vvvH(C|VVV T
i YYY )

(b) (Weight update) reserve old weight and update
weight;

vvvold ←− vvv

∆vvv ←− −µ∇vvvH(C|VVV T
i YYY )

vvv ←− vvv + ∆vvv.

(18)

Hereµ is the learning rate.

(c) (Orthonormalization) Orthonomalize the weight
vvv to makeΣFFF i

= E{FFF iFFF
T
i } = Ii. The proce-

dure is the same as (17).

(d) (Convergence check) check if||vvv−vvvold|| < ε or
the number of iterations reached MAXITER. If
it is, goto step 4. Otherwise, goto step 3-(a).

4. (Extraction of the next feature) setvvv∗i = vvv, Fi =
vvv∗Ti YYY andwww∗i = Wpcavvv

∗
i . F ←− F ∪ {Fi}.

IV. Output the setF containing the extracted features.

The step III.3-(c) is used to make sure that the new fea-
ture candidate is uncorrelated to the already extracted fea-
tures.

In the calculation of the conditional probability (11),
the denominator of the exponent increases approximately
in proportion to the number of extracted features increases,
thus we seth = }1

√
k when the dimension ofFFF is i. Here,

}1 is a constant.
Now, the remaining part is the calculation of the gradi-

ent∇vvvH(C|VVV T
i YYY ) ∈ <N ′

in III.3-(a). ReplacingFFF with
VVV T

i YYY , (12) becomes

Ĥ(C|VVV T
i YYY ) = −

n∑

j=1

1
n

Nc∑
c=1

p̂(c|VVV T
i yyyj) log p̂(c|VVV T

i yyyj),

(19)
whereyyyj represents thejth sample of the original data trans-
formed by PCA.

Differentiating this with respect tovvv, the last column of
VVV i, we obtain

∇vvvĤ(C|VVV T
i YYY )

= −
n∑

j=1

1
n

Nc∑
c=1

∇vvvp̂(c|VVV T
i yyyj){1 + log p̂(c|VVV T

i yyyj)}.
(20)

Rewriting (11) leads to

p̂(c|VVV T
i yyy) =

∑
l∈Ic ϕ(VVV T

i ỹyyl)∑Nc

k=1

∑
l∈Ik ϕ(VVV T

i ỹyyl)
, (21)

whereϕ(zzz) , exp(−zzzT Σ−1zzz
2h2 ) andỹyyl , yyy − yyyl.

By differentiating this w.r.t.vvv,∇vvv p̂(c|VVV T
i yyy) becomes

∇vvvp̂(c|VVV T
i yyy) =

∑
l∈Ic ∇vvvϕ(VVV T

i ỹyyl)∑Nc

k=1

∑
l∈Ik ϕ(VVV T

i ỹyyl)

− [
∑

l∈Ic ϕ(VVV T
i ỹyyl)][

∑Nc

k=1

∑
l∈Ik ∇vvvϕ(VVV T

i ỹyyl)]

[
∑Nc

k=1

∑
l∈Ik ϕ(VVV T

i ỹyyl)]2
.

(22)

Becausevvv is always orthonormalized in the step III.3-
(c), new feature candidate is uncorrelated with already ex-
tracted features, resultingΣFFF i

= Ii. ReplacingΣ with this



in (5), and differentiating it w.r.t.vvv, ∇vvvϕ(VVV T
i ỹyyl) ∈ <N ′

can be obtained as follows:

∇vvvϕ(VVV T
i ỹyyl) ' ∇vvv exp(− ỹyyT

l VVV iVVV
T
i ỹyyl

2h2
)

= − 1
h2

exp(− ỹyyT
l VVV iVVV

T
i ỹyyl

2h2
)(ỹyylvvv

T ỹyyl).

(23)

Finally, the computation of (20) is completed and the
PWFX algorithm can be implemented. The computational
complexity of this method is proportional to square of the
number of samples,n2.

4. EXPERIMENTAL RESULTS

Suppose we have four independent input featuresx1, x2, x3

andx4 uniformly distributed on [-1,1] for a binary classifi-
cation, and the output classc is determined as follows:

c =

{
0 if x1 + 4x2 < 0
1 if x1 + 4x2 ≥ 0.

To see the performance of feature extraction algorithms
to noisy data, five sets of data were generated where the
classc was randomly flipped with probability of 0 to 0.4.
Each dataset contains 500 samples on which PWFX was
performed. Also features found from LDA [5] and ICA-
FX [6] were used for comparison. These feature extraction
methods were tested on a separate set of test data consisting
of 500 samples with no flip of class information.

As can be seen, this problem is linearly separable and
the optimal feature isf∗ = x1 + 4x2. When we performed
PWFX for no flipped case, the newly extracted feature is
f = −7.73x1 − 30.39x2 + 0.54x3 − 1.07x4 which is very
close tof∗.

Table 1 is the classification performances of various fea-
ture extraction methods on these datasets. One feature is
extracted with each method. Averages and standard devi-
ations of 10 experiments are reported here. The standard
multi-layer perceptron (MLP) with one hidden layer was
used for the classification. Three hidden nodes were used
with learning rate of 0.1 and momentum of 0.9. The number
of iterations was set to 100. In PWFX, the window width
parameter fork extracted feature is computedh = }1

√
k

where}1 was set to 0.3.
In the table, the performances of LDA, ICA-FX, and

PWFX becomes gradually worse as more training samples
are flipped. In this example, PWFX is slightly better than
ICA-FX which is again slightly better than LDA.

5. CONCLUSIONS

In this paper, we have proposed a new method of feature ex-
traction for classification problems. The proposed method

Table 1. Classification performance for the separablex1 +
4x2 problem (Averages of 10 experiments. Numbers in the
parentheses are the standard deviations.)

% of flips
Classification error (%) (MLP)

LDA ICA-FX PWFX
0 2.90 (0.44) 3.17 (0.81) 1.61 (0.49)
10 4.22 (0.45) 3.45 (1.20) 2.01 (1.04)
20 5.25 (0.56) 5.01 (1.76) 4.19 (1.18)
30 9.08 (0.73) 8.22 (1.51) 6.62 (1.20)
40 15.48 (0.93) 11.56 (2.08) 10.93 (1.52)

searches for the direction where the mutual information be-
tween the extracted features and the class labels are maxi-
mized. Although the mutual information is a very good in-
dicator of the relevance between variables, the reasons why
it is not widely used is its computational difficulties, espe-
cially for continuous multi-variables. To overcome this, the
proposed method makes use of the Parzen window in get-
ting the conditional density in a feature space. With this
method, we can compute the mutual information between
output class and multiple input features without requiring
a large amount of memory. The stochastic gradient ascent
method was used to maximize the mutual information. In
addition, greedy extraction scheme was used in adding new
features. Though the restriction that the newly extracted
feature is orthogonal to the already extracted features is un-
necessary, it simplifies the gradient calculation greatly. The
computational complexity of the proposed method is pro-
portional to the square of the sample size.

We have applied the proposed method for several classi-
fication problems including face recognition problems and
obtained better or compatible performances than those of
LDA and ICA-FX. These results will be reported in the fu-
ture.
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