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Abstract

Feature selection plays an important role in classifying systems such as neural networks. We use a set of attributes
which are relevant, irrelevant or redundant, and from the viewpoint of managing a dataset which can be huge, reducing
the number of attributes by selecting only the relevant ones is desirable. In doing so, higher performances with lower
computational effort is expected. In this paper, we propose two feature selection algorithms. The limitation of MIFS [1]
is analyzed and a method to overcome this limitation is studied. One of the proposed algorithms makes more considered
use of mutual information between input attributes and output classes than the MIFS. What is demonstrated is that the
proposed method can provide the performance of the ideal greedy selection algorithm when information is distributed
uniformly. The computational load for this algorithm is nearly the same as that of MIFS. In addition, another feature
selection algorithm using the Taguchi method is proposed. This is advanced as a solution to the question as to how to
identify good features with as few experiments as possible. The proposed algorithms are applied to several classification
problems and compared with MIFS. These two algorithms can be combined to complement each other’s limitations.
The combined algorithm performed well in several experiments and should prove to be a useful method in selecting

features for classification problems.
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I. INTRODUCTION

Feature selection plays an important role in classifying systems such as neural networks. For the purpose
of classification problems, the classifying system has usually been implemented with rules using if — then
clauses, which state the conditions of certain attributes and resulting rules [2] [3]. However, it has proven
to be a difficult and time consuming method. From the viewpoint of managing large quantities of data,
it would still be most useful if irrelevant or redundant attributes could be segregated from relevant and
important ones, although the exact governing rules may not be known. In this case, the process of
extracting useful information from a large dataset can be greatly facilitated. In this paper, the problem of
selecting relevant attributes among the attributes available for the purpose of classification is dealt with.

This problem of feature selection has been tackled by several researchers [1], [4]-[10]. One of the most
popular methods for dealing with this problem is the PCA (principal component analysis) method [4].
This method transforms the existing attributes into new ones considered to be crucial in classification.
However from the viewpoint of maintaining data, this method is not desirable, as it needs to process all
the data when new data is added. The main drawback of this method is that it is not immune from
distortion under transformation. Simply scaling some of the attributes can cause serious changes to the
results. Recently, the feature selection problem has been dealt with intensely and some solutions have been
proposed. One of the most important contributions has been made using the decision tree method. This
uncovers relevant attributes one by one iteratively [9]-[12]. Setiono and Lui proposed a feature selection
algorithm based on a decision tree by excluding the input features of the neural network one by one
and retraining the network repeatedly [9]. It has many attractive attributes but it basically requires the

process of retraining for almost every combination of input features. To overcome this shortcoming, a fast
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training algorithm other than the BP (back-propagation) is used, but nevertheless requires a considerable
amount of time. The CDP (classifier with dynamic pruning) of Agrawal et. al. and his colleagues is also
based on the decision tree which makes use of the mutual information between inputs and outputs [10].
It is very efficient in finding rules which map inputs to outputs but as a downside, requires a great deal
of memory, because it generates and counts all the possible input-output pairs. Battiti’s MIFS(mutual
information feature selector) [1] uses mutual information between inputs and outputs like the CDP. He
demonstrated that mutual information can be very useful in feature selection problems and the MIFS can
be used in any classifying systems for its simplicity whatever the learning algorithm may be. But the
performance can be degraded as a result of large errors in estimating the mutual information.

Regarding the topic of selecting appropriate number of features, stepwise regression [13] and Winston’s
Best-first search [14] and considered as a standard technique. The former uses a statistical partial F-
test in deciding whether to add a new feature or to stop regression. The latter searches the space of
attribute subsets by greedy hillclimbing augmented with backtracking facility. Since it does not care
how the performance of subsets are evaluated, the sucess of the algorithm usually depends on the subset
evaluation scheme.

This paper investigates the limitation of MIFS using a simple example and proposes an algorithm
which can overcome this limitation and improve performance. The Taguchi method [15] [16] to the
feature selection problem is also applied. The Taguchi method was devised for robust design of complex
systems and has been successfully applied in many manufacturing problems. Recently, Peterson et al.
used the Taguchi method to find the neural network structure that best fits the given data [17].

In the following section, the basics of information theory and the Taguchi method are briefly presented
with concepts such as entropy, mutual information, and orthogonal array. In Section III, the limitation of
MIFS is analyzed and an improved version of MIFS is proposed. In Section IV, we show the limitation of
the selection algorithms based on mutual information and how the Taguchi method can be incorporated
in such cases. In Section V, the proposed algorithms are applied to several classification problems to show
their effectiveness. And finally, conclusions follow in Section VI. In implementing classifying systems, we

use neural networks, but the proposed methods can be equally well used in other applications.
II. PRELIMINARIES
In this section we briefly introduce some basic concepts and notations of the information theory and
the Taguchi method which are used in the development of the proposed algorithms.
A. Entropy and Mutual Information

A classifying system such as neural networks (NN) maps input features onto output classes. In this
process, there are relevant features that have important information regarding output, whereas irrelevant

ones contain little information regarding output. In solving feature selection problems, we try to find
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inputs that contain as much information about the output as possible and need tools for measuring the
information. Fortunately, Shannon’s information theory provides a way to measure the information of
random variables with entropy and mutual information [19] [20].

The entropy is a measure of uncertainty of random variables. If a discrete random variable X has X
alphabets and the probability density function (pdf) is p(z) = Pr{X = z}, x € X, the entropy of X is
defined as

H(X) ==Y p(x)logp(z). (1)

zeEX

Here the base of log is 2 and the unit of entropy is the bit. For two discrete random variables X and Y
with their joint pdf p(z,y), the joint entropy of X and Y is defined as
H(X,Y) ==Y plx,y) logp(z,y)- (2)
zeX yey

When certain variables are known and others are not, the remaining uncertainty is measured by the

conditional entropy:

HY[X) = ) pl@)HY|X =)
TEX
= — > p(@) ) plylz) logp(yl)
reX yey
= =Y play) logplyle). (3)
zEX yEY

The joint entropy and the conditional entropy has the following relation:

H(X,Y)

H(X)+H(Y|X)

H(Y)+ H(X|Y). (4)

This, known as the “chain-rule”, implies that the total entropy of random variables X and Y is the entropy
of X plus the remaining entropy of Y for a given X.

The information found commonly in two random variables is of importance in our work and this is
defined as the mutual information between two variables:

I(X;Y) =) plx,y) logIM (5)

S5 (2)p(y)”

If the mutual information between two random variables is large (small), it means two variables are
closely (not closely) related. If the mutual information becomes zero, the two random variables are

totally unrelated or the two variables are independent. The mutual information and the entropy have the
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following relation, as shown in Fig. 1.

I(X;Y) = H(X)-H(X|Y)

I(X;Y) = H®Y)-HY|X)

I(X;Y) = H(X)+H(Y)—-H(X,Y)

I(X;Y) = I(V;X)

I(X;X) = H(X). (6)

Until now, definitions of the entropy and the mutual information of discrete random variables have been
presented. For many classifying systems the output class C' can be represented with a discrete variable,
while in general terms, the input features are continuous. For continuous random variables, though the

differential entropy and mutual information are defined as

HX) = - / p() log p(z)da
I(X,)Y) = /p(w,y) logz%dwdy, (7)

it is practically impossible to find pdfs (p(x), p(y), p(x,y)) exactly and to perform integration. Therefore
we divide the continuous input feature space into several discrete partitions and calculate the entropy and
mutual information using the definitions for discrete cases. The inherent error that exists in the process of
conversion from continuous variables to discrete ones is bounded by some constant value which depends

only on the number of partitions that divide the continuous space [21].

B. The Taguchi Method

The Taguchi method, based in part on the Fisher’s experimental methods [22], was applied for the
robust design of products by Taguchi in the early 1950’s. It developed in popularity first in Japan and
later on in the U.S. and Europe [15] [16]. However, relatively few applications of this method in neural
networks exist [17]. Therefore we introduce this method in more detail.

One basic ingredient of the Taguchi method is the orthogonal array (OA) which is used to find important
control variables that influence the performance of a product among many candidate variables based on
experiments and to assign them appropriate values. Firstly, some control variables that are suspected of
influencing the performance of a product are selected, and then experiments are performed by changing
the values of the control variables systematically. Then, the best combination of the values of the control
variables are found.

Suppose the experimental result v can be represented as a function of some discretized control variables
Up, Uy * 5 Up, 1€, v = f(u1, -+ ,u,). The purpose is to control these variables and to make the result v
as close as possible to the desired value. If there are NV variables and for each control variable u; there are

l; levels that can be changed, the full factorial method will disclose the best combination of the variables.
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However, to do this, it requires 1Y, I; experiments. To reduce the time consumed conducting experiments
while taking advantage of the performance of the full factorial method, the orthogonal array method was
introduced. It is a method of setting up experiments that only requires a fraction of the full factorial
combinations. The treatment combinations are chosen to provide sufficient information to determine the
factor effects. The orthogonal array ordains the order of experiments in a specific way. An example of
the orthogonal array is shown in Table I. In Table I there are seven variables (A to G) and each variable
has two levels (1,2). If we use the full factorial method to discover the optimal combination of variables,
we need to experiment with 128 (= 27) runs, whereas the orthogonal array allows us to experiment with
only eight runs. The procedure of using the orthogonal array is quite simple. As shown in the table, in
the first run, all the variables are set to level-1, and in the second run variables A to C are set to level-1
and variables D to G are set to level-2, and so on.

We can compose numerous OAs by superimposing various Latin squares ! (see [18]) and generally, the
OA is represented in La(b¢) form. Here a represents the number of runs to be performed, b is the number
of levels of variables, and c is the number of variables. The OA in Table I is represented as L8(27) or
simply as L8. The way to construct an OA and some useful OAs can be found in [16].

In general, to determine the importance of a variable using the experimental results of OA, we use the
analysis of the mean (ANOM) method [16]. It simply averages the results performed according to the OA
to find the various factor effects. In the OA the orthogonality guarantees that all the levels are tested
equally and the influences from other variables are assumed to be almost equal. Therefore the means
of different levels of a variable are compared to determine the appropriate level of that variable. If the
variation between the averages for different levels of a certain variable is small, it strongly suggestes that
changing the level of that variable has little influence on performance and we can consider that it has a
weak relation with the output. If the variation is large, we can assume that the variable influences the
output greatly.

The OA with ANOM performs ideally when the output can be represented as a linear combination of
input variables. It also performs well when the interaction between variables is not so strong. It is widely
recognized that if the output is roughly a monotonic function of each inputs, the OA with ANOM can

still be successfully used to analyze the performance [16].

III. MUTUAL INFORMATION FEATURE SELECTOR UNDER UNIFORM INFORMATION DISTRIBUTION
(MIFS-U)

In this section a new algorithm for input feature selection using mutual information is presented. At
first, the problem under consideration will be presented.

1Bach row and column of a Latin square has no duplicate element with equal sum.
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A. The FRn-k Problem

In the process of selecting input features, it is desirable to reduce the number of input features by
excluding irrelevant or redundant features among the ones that are extracted from raw data. This concept
is formalized as selecting the most relevant k features from a set of n features, and Battiti named it as a
“feature reduction” problem [1]:

[FRn-k] : Given an initial set of n features, find the subset with k¥ < n features that is “maximally

informative” about the class.

As reviewed in the preceding section, the mutual information between two random variables measures
the amount of information commonly found in these variables. The problem of selecting input features
which contain the relevant information about the output can be solved by computing the mutual infor-
mation between input features and output classes. If the mutual information between input features and

output classes could be obtained accurately, the FRn-k problem could be reformulated as follows:

[FRn-k] : Given an initial set F' with n features and C set of all output classes, find the subset S C F'
with k features that minimizes H(C|S), i.e., that maximizes the mutual information I(C;.S).

Three key strategies for solving this FRn-k problem can be presented for consideration. Firstly, the
“generate and test” strategy. All the feature subsets S are generated and their H(C|S) are compared.
Potentially, this can find the optimal subset but it is almost impossible due to the large number of
combinations. Secondly, there is the “backward elimination” strategy. In this strategy, from the full
feature set F' that contains n elements, we eliminate the worst feature one-by-one until k£ elements remain.
This method also has many drawbacks in computing H(C|S) 2. The final strategy is “greedy selection”.
In this method, starting from the empty set of selected features, we add the best available input feature to
the selected feature set one by one till the size of the set reaches k. This ideal greedy selection algorithm

using mutual information is realized as follows:

1. (Initialization) set F' <— ‘initial set of n features’, S +— ‘empty set.’

2. (Computation of the MI with the output class) Vf; € F, compute I(C; f;).

3. (Selection of the first feature) find the feature that maximizes I(C; f;), set F «— F\ {fi;} ., S +—
{fi}.

4. (Greedy selection) repeat until desired number of features are selected.
(a) (Computation of the joint MI between variables) Vf; € F, compute I(C; f;,S).
(b) (Selection of the next feature) choose the feature f; € F' that maximizes I(C; f;,.S), and set F' +—
F\{f}, S« {f}.

5. Output the set S containing the selected features.

2The number of memory cells needed to compute H(C|S) is K. x II"™ | P; which can be very huge, where K is the number

of classes, P; is the number of partitions for i-th input feature space, and m is the number or elements in S
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To compute the mutual information we must know the pdfs of variables, but this is difficult in practice,
so the best we can do is to use a histogram of the data.

In selecting k features, if the output classes are composed of K. classes and we divide the j — th
input feature space into P; partitions to get the histogram, there must be K. x H;?:le cells to compute
I(C; fi,.S). In this case, even for a simple problem of selecting ten important features, K. x 101° memories
are needed if each feature space is divided into ten partitions. Therefore realization of the ideal greedy
selection algorithm is practically impossible. To overcome this practical obstacle an alternative method

of computing I(C; f;,S) has to be devised.

B. MIFS and its Limitation

The MIFS algorithm is the same as the ideal greedy selection algorithm except for Step 4. Instead
of calculating I(C; f;, S), the mutual information between a candidate for newly selected feature f; plus
already selected features in S and output classes in C, Battiti [1] used only I(C; f;) and I(f;; f;). To be
selected, a feature which cannot be predictable from the already selected features in S, must be informative

regarding the class. In the MIFS, Step 4 in ideal greedy selection algorithm was replaced as follows [1]:

4. (Greedy selection) repeat until desired number of features are selected.

(a) (Computation of the MI between variables) for all couples of variables (f;, fs) with f; € F, f; € S
compute I(f;; fs), if it is not yet available.

(b) (Selection of the next feature) choose the feature f; € F' that maximizes I(C; f;)—0 Zfses I(fi; fs);
set F'«— F\{fi}, S +— {fi}.

Here f is the redundancy parameter which is used in considering the redundancy among input features.
If 8 = 0, the mutual information among input features is not taken into consideration and the algorithm
selects features in the order of the mutual information between input features and output classes, the
redundancy between input features is never reflected. As 8 grows, the mutual informations between input
features begin to influence the selection procedure and the redundancy becomes reduced. But in the case
where (3 is too large, the algorithm only considers the relation between inputs and does not reflect the
input-output relation well.

The relation between input features and output classes can be represented as shown in Fig. 2. The ideal
greedy feature selection algorithm using the mutual information chooses the feature f; that maximizes
joint mutual information I(C; f;, fs) which is the area 2,3, and 4, represented by the dashed area in Fig.
2. Because I(C; fs) (area 2 and 4) is common for all the unselected features f; in computing the joint
mutual information I(C; f;, fs), the ideal greedy algorithm selects the feature f; that maximizes the area
3 in Fig. 2. On the other hand, the MIFS selects the feature that maximizes I(C; f;) — BI(fi; fs). For

B =1, it corresponds to area 3 subtracted by area 1 in Fig. 2.
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Therefore if a feature is closely related to the already selected feature fs, the area 1 in Fig. 2 is large
and this can degrade the performance of MIFS. For this reason, the MIFS does not work well in nonlinear
problems such as the following example.

Ezample 1: Each of the random variables X and Y is uniformly distributed on [-0.5,0.5], and assume

that there are 3 input features X, X —Y and Y2. The output belongs to class Z

0 if X+02Y <0
1 if X+4+02Y>0.

7 =

When we take 1,000 samples and partition each input feature space into ten, the mutual information
between each input feature and the output classes and those between input features are shown in Table
II. The order of selection by the MIFS(8 = 1) is X,Y?2, and X — Y in that order.

As shown in Table II(c) the MIFS selects Y2 rather than the more important feature X — Y as the
second choice 3.

This is due to the relatively large 3, and is a good example showing a case where the relations between

inputs are weighted too much. The MIFS handles redundancy at the expense of classifying performance.

C. Proposed Algorithm (MIFS-U)

A feature selection algorithm that is closer to the ideal one than the MIFS is now proposed. The ideal

greedy algorithm tries to maximize I(C; f;, fs) (area 2, 3, and 4 in Fig. 2) and this can be rewritten as

I(C; fi, fs) = I(C; fs) + 1(C; fil fs)- (8)

Here I(C; fi| fs) represents the remaining mutual information between the output class C' and the feature
fi for a given fs. This is shown as area 3 in Fig. 2, whereas the area 2 plus area 4 represents I(C; f5). Since
I(C; fs) is common for all the candidate features to be selected in the ideal feature selection algorithm,
there is no need to compute this. So the ideal greedy algorithm now tries to find the feature that
maximizes I(C; f;|fs) (area 3 in Fig. 2). However, calculating I(C; fi|fs) requires as much work as
calculating H(f;, fs,C).

So we will approximate I(C; fi|fs) with I(fs; f;) and I(C; f;), which are relatively easy to calculate.

The conditional mutual information I(C; f;|fs) can be represented as
I(C; fil fs) = 1(C; fi) = {I(fs; fi) = 1(fs; filC)}- 9)

Here I(fs; fi) corresponds to area 1 and 4 and I(fs; f;|C') corresponds to area 1. So the term I(fs; fi) —

I(fs; fi|C) corresponds to area 4 in Fig. 2. The term I(fs; fi|C) means the mutual information between

3Y can be calculated exactly by a linear combination of X and X — Y. Because the output class Z can be computed
exactly by X and X — Y, we can say X — Y rather than Y? is more informative about the Z for a given X. We trained
neural networks and compared the classification rates later in section V. As expected, the results are 99.8% when X and
X — Y are selected, and 93.4% when X and Y2 are selected.
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the already selected feature f; and the candidate feature f; for a given class C. If conditioning by the
class C' does not change the ratio of the entropy of fs and the mutual information between fs and f;, i.e.,

if the following relation holds,

H(fs|C) I(fs;fi|0)

H(f) ~ 1Usf) (10
I(fs: fi|C) can be represented as
10 £10) = 11, (11)
Using the equation above and (9)
HCifin) = 105 - (= T g
— 103 5) - ) (12)

If we assume that each region in Fig. 2 corresponds to its corresponding information, condition (10) is
hard to satisfied when information is concentrated on one of the four regions in Fig. 2, i.e., H(fs|fi, C),
I(fs; £:1C), I(C; fs|fi), or I(C; fs; fi). It is more likely that the condition (10) holds when information
is distributed uniformly throughout the region of H(f,) in Fig. 2. Because of this, we will refer to the
algorithm, which will be proposed shortly, as the MIFS-U. We computed (10) for Ezample 1 and the
values of several pieces of mutual information are shown in Table III. It shows that the relation (10) holds
with less than 10% of error.

With this formula, we revise Step 4 in the ideal greedy selection algorithm as follows:

4. (Greedy selection) repeat until desired number of features are selected.

(a) (Computation of entropy) Vfs € S, compute H(f,) if it is not already available.

(b) (Computation of the MI between variables) for all couples of variables (f;, fs) with f; € F, fs € S,
compute I(fs; fi), if it is not yet available.

(c) (Selection of the next feature) choose a feature f € F' that maximizes I(C; ;)= s I;IC(ff)) I(fi; fs);
set F'«— F\{fi}, S +— {fi}-

Here the entropy H(fs) can be computed in the process of computing the mutual information with
output class C, so there is little change in computational load with respect to the MIFS. In the calculation
of mutual informations and entropies, there are two mainly used approaches of partitioning the continuous
feature space: equi-distance partitioning [1] and equi-probable partitioning [21]. In this paper, we used
equi-probable partitioning method as in [1] *.

Parameter 3 offers flexibility to the algorithm as in the MIFS. If we set 8 zero, the proposed algorithm
chooses features in the order of the mutual information with the output. As 8 grows, it excludes the

41f the distribution of the values in a variable f; is not known a priori, we computed its mean y and standard deviation o
and cut the interval [ — 20, u + 20] into p; equally spaced segments. The points falling outside are assigned to the extreme

left (right) segment.
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redundant features more efficiently. In general we can set § = 1 in compliance with (12). For all the
experiments to be discussed later we set § = 1 if there is no comment.

In computing mutual information I(fs; f;), a second order joint probability distribution which can be
computed from a joint histogram of variables fs and f; is required. Therefore, if there are n features and
each feature space is divided into p partitions to get a histogram, we need p? memories for each of (g)
histograms to use MIFS-U. The computational effort therefore increases in the order of n? as the number
of features increases for given numbers of examples and partitions. This implies that MIFS-U can be

applied to large problems without excessive computational efforts.

IV. TacucHI METHOD IN FEATURE SELECTION

Including the algorithm proposed in the previous section, the greedy algorithms using mutual informa-
tion for input feature selection problems always select the feature that has the largest mutual information
as the most important one. This method generally works well. However, if the algorithm selects a poor
feature as the first candidate, the final feature set may give poor performance. This situation may occur
if two or more combined features, instead of a dominant one, influence the classification procedure. To
cope with this problem, we propose an algorithm using the Taguchi method which can be used together

with the greedy algorithms described in the previous section.

A. Limitation of the Greedy Selection Algorithms using Mutual Information

Consider the following example for the case where the greedy selection algorithms using mutual infor-
mation does not work properly.
Ezample 2: Each of the random variables X and Y are uniformly distributed on [-1,1] and assume that

there are three input features X,Y and X2Y. The output belongs to class Z

0 if XY <0
1 if XY >o.

7 =

As can be seen, this is a variation of the typical XOR problem. When we take 1,000 samples and
partition each input feature space into ten, the mutual information between the input and the output as
well as the order of selection using greedy algorithms are shown in Table IV.

As in Table IV, both the MIFS and the MIFS-U select X2Y as the most important feature rather
than X or Y. This phenomenon occurs frequently when we employ the greedy selection algorithms with
mutual information. This is difficult to avoid as long as only mutual information is used. In the following

subsection, the Taguchi method is applied to deal with this kind of limitation.

B. Input Feature Selection by the Taguchi Method

In selecting input features, methods such as training neural networks for many different combinations

of input features can be contrived, in addition to the methods using mutual information. This kind of
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method such as Setiono’s [9], however, needs many different runs of training.

To reduce the number of trainings, we adopt the orthogonal array as an input feature selection method,
which is initially motivated from the idea of reducing the number of experiments in experimental design.
The orthogonal array, as mentioned in Section II.B, is used to find the sub-optimal solution by changing
control variables (input features in this problem) systemically. To adopt the orthogonal array in selecting
input features, we must first think of a way to determine the levels of each variable. The input feature
selection problem can be considered as a problem of finding the combination of input features that performs
best in classification. If there are N input features and the levels of each input feature are determined by
whether the feature is included in the feature set (level-1) or not (level-2), then there are two levels for
each variable. Thus, there are 2%V different points in the search space, and the optimal solution will be
one of these points.

The next issue to be considered is how close the solution obtained by the orthogonal array method can
be to the optimal one. To obtain an optimal solution for this case, the output should be in the form of a
linear combination of input features. This is unrealistic. In general, the Taguchi method provides better
results when the interactions between control variables are relatively small. We can mitigate this condition
if the output, with other input variables fixed, is a monotonic function of each input variable, and in this
case we can get quite good analysis on the system [16]. In the training of neural networks, if a feature is
a salient one, in general terms, the performance of training using it is supposed to be better than when it
is not used. That is, for a given selected feature set, the inclusion of one of the remaining features would
increase the performance of the classifying system if it were a salient one. Therefore, we can consider the
output as a monotonic function of each salient feature, with other variables fixed. Consequently, if the
orthogonal array is applied to this problem, good performance with a relatively small number of trainings
can be expected.

The following is a short explanation of how to apply the Taguchi method to the input feature selection
problem (Table V). First we make an orthogonal array and let each column correspond to each input
feature. Each row corresponds to one training of the neural network with input features set to level-1 or
level-2 in that row. After all of the rows are trained, we compare the average performance with a specific
feature in the input vector and that without the feature. Then, we choose features which gives better
average improvement in performance . In this algorithm when there are N inputs, we need 2"1°82 N+1"
trainings °. As we need O(N) experiments, we conclude that if we choose inputs in this way, we can
get good input features with a relatively small number of trainings. The computational effort increases
linearly with the number of features. Therefore the method can be applied with effect to large problems
without excessive computational effort as in MIFS-U. A demonstration as to how to use the orthogonal
array for the input feature selection problem will be given with the example of Table V. There are three

input features (F'1 ~ F'3) and we used the OA of L4 as shown in Table V(a).

5r.7 denotes smallest integer greater than or equal to the number enclosed within.
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In Table V(b), the first row of OA represents that all the three features are selected as the input
features. The neural network with these features are trained to give 90% of the classification rate (in
this case the performance measure is the classification rate). The second row of the table shows that
the network trained solely with F'1 gives 30% of the classification rate. In this way after all the four
trainings listed in the OA has been finished, the average performance using each feature and without it
is calculated. For example, for F'1 the average performance using this feature is 60% ((90 + 30)/2), and
that without it is 50% ((40 + 60)/2), and so on. With this average performance, the improvement of the
average performance for each feature is evaluated. It is 10% for F'1, 20% for F'2, while F'3 shows a 40%
improvement. This means that F'3 has the most influence on the performance of the network, and can be
regarded as the most salient feature. So we selected features F'3, F2, and F'1 in that order.

For most orthogonal arrays, the first row has a series of 1s and the others have 1s less than half the
number of columns. If we use level-1 for the inclusion and level-2 for the exclusion of features, the training
corresponding to the first row will always include all the features. Such an unbalance in the number of
included features between the runs can degrade the performance of the selection procedure.

To avoid this problem, we train the neural network all over again with input vectors replacing level-1
(level-2) by level-2 (level-1) in Table V(b). With this additional training, we can select better features.

A relavant question to ask is what if there are hundreds of features that can make the size of OA
extremely large. In such cases, we can use the Taguchi method after reducing the features by other
selection algorithms such as the greedy selection algorithms described in the previous section, and in
doing so, better performance can be expected. The feature selection algorithm using the Taguchi method

is summarized as follows:
Taguchi Method in Feature Selection (TMFS)

1. (Filtering) If there are too many features, reduce the number of features to twice the number we want
to select by using some algorithm such as the MIFS-U.

2. (Obtaining the orthogonal array) Obtain the orthogonal array corresponding to the number of features
which are filtered in Step 1.

3. Repeat the following steps with i = 1,2.
(a) (Form an input feature vector for NN) For each row of the OA, form an input feature vector with
features whose values are ¢ in the OA.
(b) (Training the NN) For each row, train the NN with the training data and store the performance
for the test data.
(c) (Analysis of the Mean) Calculate the average performance of each feature for its inclusion and
exclusion in the input feature vector. Then, for each feature, evaluate the performance increment for
its inclusion case over the exclusion case.

4. (Selecting the input features) For each feature, average out the two increments in performance for
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1 =1 and 7 = 2 cases in Step 3, and select input features by the order of these averaged terms.

V. EXPERIMENTAL RESULTS

In this section we will present some experimental results which show the characteristics of the proposed
algorithms.

In using the TMFS, to clarify the terminologies, we use the term ‘method I’ when we compose the input
feature set with elements corresponding to level-1, and ‘method II’ for that with elements corresponding
to level-2. The multilayer perceptrons (MLP) used have one hidden layer and the BP (back-propagation)
algorithm is used to train the network. If the target value for an input pattern is 0 (1), the classification
is assumed to be correct when the network’s output is below 0.3 (above 0.7). Otherwise, the classification
is considered incorrect. In the training of NN, all the classification rates are for the test data except for
the experiment A.8), and the meta-parameters of the NNs were set appropriately by performing several
experiments. All the inputs were normalized on [0,1].

In the Process of TMFS, we could have used different network structures as the number of features
vary, but we kept them fixed because most number of features in each run is about half the number of

columns for a given OA as described in Section II.

A. Simple Problems

1) MIFS-U vs. MIFS

For Example 1 in Section III.B, we compared the MIFS-U with the MIFS for several different values
of 8, and these results are shown in Table VI. The data consisted of 1,000 patterns and the entropies
and the mutual information are calculated by dividing each input feature space into ten partitions. To
verify that X — Y is a more important feature than Y2, we trained neural networks with (X,X —Y) and
(X,Y?) as input features respectively. The correct classification rates on the test data set were 99.8% for
the first, and 93.4% for the second network.b The neural networks were trained with sets of 200 training
data and the classification rates are on the test data of 800 patterns. Two hidden nodes were used with
a learning rate of 2.0 and momentum of 0.1. The number of epochs at the time of termination was 200.

The result shows that when using the MIFS with 5 = 0.5 ~ 1 as Battiti suggested [1], the results are
unsatisfactory. The reason can be found in the characteristic of the problem. After the first selection
of the feature X that has the greatest mutual information with the output, the mutual information of
other inputs with X influences the selection of the second feature too much, as shown in Table II(c). The

MIFS-U performs well for all values of £ including the suggested value 1.
2) TMFS vs. Greedy Selection Algorithms (Case 1)

For Example 2 in Section IV, we compared the greedy selection algorithms and the TMFS. The result
of applying the TMFS to Ezample 2 is illustrated in Table VII.
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In each training of TMFS, the MLP has two hidden nodes, the learning rate and the momentum are
2.0, 0.1 respectively. We divided the data into sets of 200 training data and 800 test data. The number of
training epochs was set to 300. One simulation was conducted for each row in Table VII to output TMFS
result. From Table VII we select input features in the order of X,Y, and X2Y. As shown in Fzample 2
the greedy selection algorithms, like the MIFS and the MIFS-U, cannot select the correct input features
in this problem, while the TMFS solves this problem correctly.

3) TMFS vs. Greedy Selection Algorithms (Case 2)

The example we are going to consider was constructed by Elder [23] as a counterexample to the CART

[12], one of the greedy optimization algorithms. The dataset is given as follows [24]:

o

= = 2 O = O = O]9
o = = OO O O

Y
0
0
1
1
1
1
0
0

o= OO = = O O

Here the output y is a function of inputs a, b, and c. As one can see from the data, the important features
are b and ¢, because the output y can be exactly represented as y = b & c.

The mutual information between each input feature and output are I(a;y) = 0.0488, I(b;y) = 0, and
I(c;y) = 0 respectively. The MIFS and the MIFS-U select a as the most important feature, because the
mutual information I(a;y) is greater than I(b;y) and I(c;y).

When we apply the TMFS to this dataset, it identifies b and ¢ as the salient features. The order of
selected features is shown in Table VIII.

The MLP has two hidden nodes and the learning rate and the momentum are 2.0 and 0.1 respectively.
The terminating number of epochs was 200. One simulation was conducted for each row in Table VIII.

In the training and testing, we used whole eight examples.
4) Monk3 dataset

The monk3 dataset [25] is an artificial one in which robots are defined by different attributes. It has
binary classes and six discrete attributes (F'1,--- , F6) among which only the second, fourth and fifth are
relevant to the target concept: (F5=3NF4=1)U(F5# 4N F2# 3) where N and U denote logical and
and or, respectively.

We used 1,000 patterns in which the attributes are generated randomly and the output classes are
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decided according to the target concept. For a more realistic situation, we applied the feature selection
algorithms to three monk3 datasets, where none, 5% and 10% of data are noise (misclassified) respectively.

In the process of TMFS, we divided the data into 200 training data set and 800 test data set. The MLP
has 4 hidden nodes as in [25] and the learning rate and the momentum are 0.01 and 0.9 respectively. The
number of trainings was set to 10,000 epochs. One simulation was performed for TMFS. Filtering was
not used and a L8 orthogonal array was used. In Table IX we showed the result of feature selection. The
bold faced features are relevant ones.

The results show that the three algorithms performed well when the monk3 dataset had zero and 5%
of noise. For cases with 10% of noise, the MIFS-U performed best while the MIFS selected F4 last and
the TMFS selected it fourth.

B. IBM datasets

These datasets were generated by Agrawal et al. to test their data mining algorithm CDP [10], and
Setiono et al. also used it for testing the performance of their feature selector [9]. Each of the datasets has
nine attributes, which are salary, commission, age, education level, make of the car, zipcode of the town,
value of the house, years house owned, and total amount of the loan. The three classification functions
are shown in Table X.

We generated 1,000 input-output patterns and each input space was divided into 10 partitions to com-
pute the entropies and the mutual information. For convenience, we will refer to three datasets generated
by using each function in Table X as IBM1, IBM2, IBM3 and nine input features as F1,F2,--- ,F9

respectively.
« MIFS-U

Fig. 3 shows the mutual information between each input feature and the output classes for IBM1,
IBM2, and IBM3 datasets. In Table XI, we compared the selected features by the MIFS-U and the MIFS
for the three datasets. For MIFS-U with 8 = 0, the order of selection was exactly the same as the order of
the mutual information with the output shown in Fig. 3. The features used in the classification functions
are written in bold face in Table XI.

As shown in Table XI, both the MIFS and the MIFS-U selected the desired features for the IBM1 and
IBM2 datasets. Note that for IBM2, when § = 0, F'4 was selected as the eighth important one, while it
was selected as the third for both the MIFS and the MIFS-U with 8 = 1. This shows that both the MIFS
and the MIFS-U have the ability of effectively eliminating the redundant features.

For IBM3 dataset the classification is determined by four features, i.e., salary(F'1), commission(F'2),
elevel(F'4), and loan(F'9) as shown in Table X. So these four features must be chosen as salient features by
good feature selectors. Table XI shows that the MIFS selects F'1, F'4, and F'9 in the first three selection,

but F2 is selected at the ninth with # = 1. This is an example of a case where too much weight is
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put on the mutual information between input features. As noted in Section IIT the method of excluding
redundant features by MIFS may result in poor performance. For IBM3 we see that the MIFS-U selects
the four features successfully. Table XII shows the selection results of IBM3 for various values of 5. Note
the change in the order of selection for F2 over 8 in the MIFS case. Even for relatively small values of
B, the MIFS regards F2 as an unimportant feature, while the MIFS-U does not. This shows that the
MIFS-U performs consistently better than MIFS for different values of 3.

« TMFS

For IBM datasets we also tested the performance of the TMFS. To show the effectiveness of the filtering
process, we compared the TMFS with and without the filtering process. For the filtering, we used the
MIFS-U with g = 1.0. We filtered four and six features out of nine for IBM1 and IBM2 respectively. An
OA of L8 was used for these datasets. We did not conduct the experiment with filtering step for IBM3
dataset, because the number of the relavant features are four whose double is close to the number of the
full features. For all the experiments without the filtering step, we used an OA of L12. All the input
features were assigned to the corresponding columns of the orthogonal array.

The MLP has ten hidden nodes and the learning rate and the momentum are 0.01 and 0.9, respectively.
The NNs were trained with 500 training data and the performances were evaluated on the remaining test
data. The number of epochs in training is 10,000. One simulation is performed for each dataset.

Table XIII shows the process of feature selection for the IBM1 dataset with full features. The last
two columns in the table denote the classification rates on the test data set using method I and method
II, respectively, and the second row from the last shows the difference in the average classification rate
between the inclusion and the exclusion of each feature in the input feature vector, namely the average
improvement of the classification rate. The last row shows the order of selection.

Fig. 4 shows the average improvement of the classification rates for each input feature by using the
TMFS without filtering process. The features are selected by the order of the magnitude of the graph.
We show the selection orders of TMFS with and without filtering process in the bottom of the Table XI

For IBM1 dataset F'1 and F3 are selected successfully. Also for IBM3, we can see that the features
F1,F2,F4, and F9 are selected successfully. In IBM2 dataset, the important features are F'1, F'3, and F4,
while the TMFS without filtering process selects F'1, F'3 and F6. In Fig. 4 we see that F'4 is considered
as the second least important feature. This result shows some resemblance to that of the greedy selection
algorithm with 8 = 0 (see Fig. 3). We can see in Table XTI that this failure is resolved through the filtering
process in the algorithm. We can say that the chance of selecting important features by the TMFS are

high if the average improvement of correct classification for the input features are high.
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C. Sonar target dataset

This dataset was constructed to discriminate between the sonar returns bounced off a metal cylinder
and those bounced off a rock, and it was used by Battiti to test the MIFS’s performance [1]. The raw
data is from UC-Irvine machine learning database [26]. It consists of 208 patterns including 104 training
and testing patterns each. It has 60 input features and two output classes, metal/rock. As in [1], we
normalized the input features to have the values in [0,1] and allotted one node per each output class for
the classification. We divided each input feature space into ten partitions to calculate the entropies and
mutual information. Unlike the IBM datasets, we do not know which features are important a priori, so
we selected 3 ~ 12 features (top 5% ~ 20%) among the 60 features, and trained the neural network with
the set of training patterns using these input features. We compared the classification rates of MIFS and
MIFS-U. Then, we selected features by the TMFS. In the filtering process of the TMFS, we used both the
MIFS and the MIFS-U and compared the results. Multilayer perceptrons with one hidden layer were used
and the hidden layer had three nodes as in [1]. The conventional back-propagation learning algorithm
was used with the momentum of 0.0 and learning rate of 2.0. We trained the network for 300 epochs in
all cases as Battiti did [1].

Fig. 5 shows the results of selection by the MIFS and the MIFS-U. In the figure, the x-axis denotes 60
features and the y-axis corresponds to the selection order. The feature that has a value of 60 is selected
first, the feature with 59 is selected second, and so on.

Using the TMFS, we also selected 3 ~ 9 features from among twice the number of candidates produced
through the filtering process. The orthogonal arrays used were L8 for the selection of three features,
L12 for four, L16 for six, and L24 for nine respectively. In Table XIV, we compare the performances of
MIFS, MIFS-U, and TMFS filtered by either MIFS or MIFS-U for the test set. The classification rates
for various numbers of selected features are compared. For comparison, we also conducted the stepwise
regression [13] and Best-first search algorithm [14] with Correlation-based subset evaluator [27]. In the
stepwise regression, we set confidence level « to 0.1 and all the regression steps were set identical to those
in [13]. It selected six features and the performance with these were 76.12%. The Best-first algorithm
reported 75.96% classification rate with 19 features. In the table, all the resultant classification rates are
the average values of ten experiments.

In the table, we can see that the proposed algorithms produced better performances than the Best-first
algorithm with smaller number of features. In addition, the results show that the MIFS-U performed
better than the MIFS by 10% in classification rate for the 3 ~ 4 selected features. In the other cases, the
MIFS-U also worked better. In all cases, the TMFS performed better than the greedy algorithms used
in the filtering process. The best performance was achieved when we used the TMFS filtered with the
MIFS-U. In all the cases, the TMFS/MIFS-U algorithm performed better than the TMFS/MIFS.

To show the statistical significance of the improvements, we have performed the two-tailed T-test using

July 5, 2001



18

Table XIV for the following four null hypotheses.

o There is no difference between the performances of MIFS and MIFS-U.

e There is no difference between the performances of MIFS and TMFS with MIFS.

e There is no difference between the performances of MIFS-U and TMFS with MIFS-U.

o There is no difference between the performances of TMFS with MIFS and TMFS with MIFS-U.
For each of the above hypotheses, the degree of freedom is 18(10 + 10 — 2), since the average is over ten
experiments. For 18 degree of freedom, the significance levels corresponding 1% and 5% are 2.878 and
2.101 respectively. The threshold ratio ¢ is computed as in Table XV. Since all the threshold ratios are
well over 2.878, all the null hypotheses are rejected at the confidence level of 99%. Thus, we can say
that MIFS-U is better than MIFS, TMFS with MIFS (MIFS-U) is better than MIFS (MIFS-U) and so
on. This suggests that the combined TMFS and MIFS-U algorithm can be used effectively for feature

selection problems.

D. Ionosphere dataset

This Johns Hopkins University Ionosphere database [26] consists of 34 continuous valued attributes
with a binary class. There are 351 instances and we compared the performance of the proposed feature
selection algorithms with the conventional MIFS with various fs,Best-first with Correlation-based subset
evaluator, stepwise regression, and One-R feature selector [28].

In training the dataset, we used MLP with three hidden nodes, momentum of 0.1, learning rate of
1.0, and 300 terminating epochs. Table XVT is the result of the experiments. Among 34 features, we
selected 3 ~ 20 features. Ten-fold cross validation was performed ten times for each experiments. The
classification rates are the average of the ten experiments and standard deviations are provided in the
parentheses. In performing TMFS, we preselected (filtered) 15 features with MIFS-U and used L16 OA.

In the table, we can see that the full 34 features do not produce best performance. Using MIFS-U or
TMFS with MIFS-U, we can get 3% ~ 4% performance improvement with only 10% of its features.

The result shows the proposed algorithm performs better than the conventional feature selection meth-

ods especially when the small number of features are selected.

VI. CONCLUSION

In this paper, we have proposed two input feature selection algorithms for classification problems.
Algorithms, such as the MIFS, based on the information theory have strong advantages because they
require relatively small computational effort. But these algorithms handle redundancy at the expense
of classifying performance. We have analysed the limitations of the MIFS, and proposed the MIFS-U
for overcoming this limitation. The MIFS-U can provide the performance of the ideal greedy selection
algorithm when the information is distributed uniformly and its computational complexity is almost the

same as that of the MIFS.
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We have also applied the Taguchi method, which has been successfully used in many experimental design
problems, to the feature selection problems and proposed the TMFS. Though it takes more computational
effort than the algorithms based on the information theory, it can supplement the greedy selection algo-
rithms. We have tested the TMFS with several examples and the results showed that it can be a valuable
tool.

When the number of input features are large, combining the MIFS-U with TMFS are expected to deliver
a significant improvement in performance, especially when the number of selected input features has to be
kept small. Because these methods do not require excessive computational effort, we can also apply these
methods to large problems. We have used neural networks as the classifying system, but these methods

can be applied to other classifying systems as well.
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TABLE 1

EXAMPLE OF THE ORTHOGONAL ARRAY (OA)

Run A B C D E F G
1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2
4 1 2 2 2 2 1 1
5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2
TABLE II

FEATURE SELECTION BY MIFS FORrR FEzample 1

(a) MI between input and output classes (I(fi; Z))
X X-Y Y?
0.8459  0.2621  0.0170

(b) MI between input features (I(f;; fj))

X X-Y Y?
X - 0.6168  0.0610

X —-Y | 0.6168 - 0.5624
Yy? 0.0610  0.5624 -

(©) I(fi;2) — I(fis fs)
X-Y I(X-Y;Z)-I(X-Y;X)=-0.3537
Y? I(Y?%,Z) - I(Y?; X) = —0.0439

(d) Order of Selection
X X-Y Y2

Ideal Greedy 1 2 3
MIFS (8 = 1) 1 3 2
TABLE III

VALIDATION OF (10) FOR Ezample 1

H(fs|C)/H(fs)

H(X) 3.3181

H(X|Z) 2.4723
H(X|Z)/H(X)  0.745

I(fs?fi|c)/l(fs§fi)

I(X -Y;X) 0.6168 I(YZ; X) 0.0610
I(X -Y;X|Z) 0.4379 (Y% X1|2) 0.0491

I(X -Y;X|2)/I(X —Y;X) 0.709 |[(Y2; X)/I(Y?; X|Z) 0.805

July 5, 2001



22

TABLE IV

ORDER OF SELECTION FOR Ezample 2 USING GREEDY SELECTION ALGORITHMS

Input Feature X Y X%y

MI with Output 0.0089 0.0073 0.0111

Order of Selection

1
(MIFS(8 = 1)) 3 2
Order of Selection
3 2 1
(MIFS-U(8 = 1))
TABLE V

EXAMPLE OF INPUT FEATURE SELECTION WITH OA

(a) Orthogonal Array (L4)

Run F1 F2 F3

N = N =

1
2
2
1

N N = =

1
2
3
4

(b) Input Feature Selection ( O : select, — : do not select )

NN Training F1 F2 F3|Performance(%)
1 O O O 90
2 o - - 30
3 - 0 - 40
4 - - 0 60

Average Performance(select) (%) 60 65 75 -
Average Performance(not select) (%) |50 45 35 -
Avg. Improvement of Performance(%) |10 20 40 -

Order of Selection 3 2 1 -

TABLE VI

COMPARISON OF MIFS AND MIFS-U FoR Ezample 1 (F1 = X, F2 = X —Y, F3 = Y2 ; F1 AND F2 ARE SALIENT FEATURES)

(a) Results for MIFS
B8 0.0 0.2 04 0.6 0.8 1.0 1.2 1.4
First Selection |F1 F1 F1 F1 F1 F1 F1 F1
Second Selection | F2 F2 F2 F3 F3 F3 F3 F3
Third Selection |F3 F3 F3 F2 F2 F2 F2 F2

(b) Results for MIFS-U
B 0.0 0.2 04 0.6 0.8 1.0 1.2 1.4
First Selection |F1 F1 F1 F1 F1 F1 F1 F1
Second Selection | F2 F2 F2 F2 F2 F2 F2 F2
Third Selection |F3 F3 F3 F3 F3 F3 F3 F3
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TABLE VII

ORDER OF SELECTION WHEN TMFS IS APPLIED TO THE EXAMPLE OF CASE 1

Run X Y  X?Y |Performance (%)
Method T 1 O O O [89.0
2 O - - 0.0
3 - O - 0.0
4 - - O 0.0
Improvement (%) | 44.5 44.5 44.5 -
Method II 1 - - - 0.0
2 - O O 1.8
3 (0] - O |82.4
4 O O - |91.7
Improvement (%) |86.15 5.55 -3.75 -
Avg. Improv. of Performance | 65.33 25.03 20.38 -
Order of Selection 1 2 3 -
TABLE VIII

ORDER OF SELECTION WHEN TMFS IS APPLIED TO THE EXAMPLE OF CASE 2

Run a b ¢ | Performance (%)
Method I 1 (@] (@] O [100.0
2 O - - 25.0
3 - (0] - 0.0
4 - - (0] 0.0
Improvement (%) | 62.5 37.5 37.5 -
Method II 1 - - - 0.0
2 - 0 0O |100.0
3 (@] - (@] 37.5
4 (@] (@] - 37.5
Improvement (%) |-12.5 50.0 50.0 -
Avg. Improv. of Performance | 25.0 43.75 43.75 -
Order of Selection 3 1 1 -
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TABLE IX

ORDER OF SELECTION FOR MONK3 DATASET

F1 F2 F3 F4 F5 F6

Noiseless case
MIFS 6 2 4 3 1 5
MIFS-U 6 2
TMFS 6 1 4 3 2 5

o~
ot

5% of noise case
MIFS 5 1
MIFS-U 6 1
TMFS 6 1 4 3 2 5

B~
w W
[S23e>)

10% of noise case

MIFS 5 2 4 6 1 3

MIFS-U 4 2 6 3 5
TMFS 6 1 3 2 5
TABLE X

IBM CLASSIFICATION FUNCTIONS

Function 1
Group A: ((age < 40) A (50000 < salary < 100000)) Vv
((40 < age < 60) A (75000 < salary < 125000)) V
((age > 60) A (25000 < salary < 75000)).
Group B: Otherwise.

Function 2
Group A: ((age < 40) A
(((elevel € [0...2] ? (25000 < salary < 75000)) : (50000 < salary < 100000))))V
((40 < age < 60) A
(((elevel € [1...3] 7 (50000 < salary < 100000)) : (75000 < salary < 125000))))V
((age > 60) A
(((elevel € [2...4] ? (50000 < salary < 100000)) : (25000 < salary < 75000)))) .
Group B: Otherwise.

Function 3

Group A: disposable > 0, where

disposable = (0.67 x (salary 4+ commission) — 5000 X elevel — 0.2 x loan— 10000).

Group B: Otherwise.
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TABLE XI

FEATURE SELECTION FOR IBM DATASETS. THE BOLD FACED FEATURES ARE THE RELEVANT ONES IN THE CLASSIFICATION.

IBM 1
[F1 F2 F3 F4 F5 F6 F7 F8 F9
MIFS / MIFS-U

(5—0) 1 3 2 8 7 9 6 4 5

MIFS (8 = 1) 1 2 3 5 4 8 6

MIFS-U (8 = 1) 1 2 3 6 74
TMFS (without filtering)| 1 5 2 8 7 3 4 9 6
TMFS (with filtering) i - 2 3 - - - 4 -

IBM 2

MIFS / MIFS-U
(8=0)

MIFS (8 = 1)
MIFS-U (8 = 1)
TMFS (without filtering)
TMFS (with filtering)

[ Ol )
| w © ©
[CR Ry
w o W w
o O Ot Ut
NN NS
| [=2 TN B o)
| =~ 0o O
[SES TN

IBM 3

|[F1 F2 F3 F4 F5 F6 F7 F8 F9

MIFS / MIFS-U
2 3 6 4 8 9 7 5 1

(B=0)
MIFS (8 = 1) 2 9 7 3 5 4 8 6 1
MIFS-U (8 = 1) 2 3 5 4 8 7 9
TMFS 2 4 8 3 7 9 5
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TABLE XII

ORDER OF FEATURE SELECTION FOR VARIOUS VALUES OF (3 (IBM3)

MIFS

B

Order of Selection

0.0
0.1
0.2
0.5
0.7
1.0
1.2
1.5

F9
F9
F9
F9
F9
F9
F9
F9

F1
F1
F1
F1
F1
F1
F1
F1

F2
F4
F4
F4
F4
F4
F4
F4

F4
F8
F6
F6
F6
Fé6
Fé6
F6

F8
F3
F8
F5
F5
F5
F5
F5

F3 F7
F6 F5
F5 F3
F8 F3
F8 F3
F8 F3
F8 F3
F8 F3

F5
F2
F7
F7
F7
F7
F7
F7

F6
F7
F2
F2
F2
F2
F2
F2

MIFS-U

Order of Selection

0.0
0.1
0.2
0.5
0.7
1.0
1.2
1.5

F9
F9
F9
F9
F9
F9
F9
F9

F1
F1
F1
F1
F1
F1
F1
F1

F2
F2
F2
F2
F2
F2
F2
F2

F4
F4
F4
F4
F4
F4
F4
F4

F8
F8
F8
F8
F8
F3
F3
F3

F3 F7
F3 F7
F3 F7
F3 F6
F3 F6
F8 F6
F8 F6
F6 F8

F5
F5
F5
F5
F5
F5
F5
F5

F6
F6
F6
F7
F7
F7
F7
F7

TABLE XIII

FEATURE SELECTION FOR IBM1 UsING TMFS (L12 1s USED).

Run F1 F2 F3 F4 F5 F6 F7 F8 F9 - —|Performance|Performance
(Method I) | (Method II)
1 1 1 1 1 1 1 1 1 1 11 99.8 0.0
2 1 1 1 1 1 2 2 2 2 22 98.3 74.6
3 1 1 2 2 2 1 1 1 2 22 69.5 65.2
4 1 2 1 2 2 1 2 2 1 1 2 98.0 65.8
5 1 2 2 1 2 2 1 2 1 21 71.2 76.1
6 1 2 2 2 1 2 2 1 2 11 70.4 78.8
7 2 1 2 2 1 1 2 2 1 21 71.3 99.0
8 2 1 2 1 2 2 2 1 1 1 2 67.4 98.8
9 2 1 1 2 2 2 1 2 2 11 75.2 78.0
10 2 2 2 1 1 1 1 2 2 1 2 76.0 98.5
11 2 2 1 2 1 2 1 1 1 2 2 65.0 70.9
12 2 2 1 1 2 1 2 1 2 21 63.4 71.8
Avg. Impro. of Performance [ 40.9 13.9 38.1 10.7 11.6 17.9 14.6 8.6 12.7 — — - -
Order of Selection 1 5 2 8 7 3 4 9 6 - - - -

July 5, 2001
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TABLE XIV
CLASSIFICATION RATES WITH DIFFERENT NUMBERS OF FEATURES FOR SONAR DATASET (%) (THE NUMBERS IN THE

PARENTHESES ARE THE STANDARD DEVIATIONS OF TEN EXPERIMENTS EACH)

Number of MIFS MIFS-U TMFS with TMFS with  Stepwise Best-first
features MIFS MIFS-U regression
3 51.71 (2.1)  65.23 (1.6)  65.19 (0.7) 71.22 (1.3) - -
4 59.77 (1.3)  68.38 (3.1)  68.01 (1.7) 75.55 (2.4) - -
6 74.81 (1.4) 77.03 (0.4)  77.47 (1.9) 79.31 (0.3)  76.12(0.3) -
9 76.45 (2.4)  78.98 (0.7)  78.65 (1.5) 81.70 (1.2) - -
12 78.12 (1.8)  81.51 (0.4) - -
19 - - - - 75.96(1.2)
All (60) | 87.92 (0.2)
TABLE XV
THRESHOLD RATIO ¢ FOR THE NULL HYPOTHESES
Number of | MIFS vs. MIFS vs. MIFS-U vs. TMFS with MIFS vs.
features MIFS-U  TMFS with MIFS TMFS with MIFS-U  TMFS with MIFS-U
3 36.646 36.538 24.342 24.504
4 15.370 23.102 10.973 15.382
6 9.148 6.762 27.360 5.739
9 6.072 4.664 11.747 9.527
12 11.031 - - -

TABLE XVI
CLASSIFICATION RATES WITH DIFFERENT NUMBERS OF FEATURES FOR IONOSPHERE DATASET (%) (THE NUMBERS IN THE

PARENTHESES ARE THE STANDARD DEVIATIONS OF TEN EXPERIMENTS EACH)

Number of | One-R MIFS MIFS MIFS MIFS MIFS-U TMFS with Stepwise Best-First
features (=0.0) (B=0.5) (=07 (B=1.0) (8=1.00) MIFS-U regression

3 84.04(0.1) 89.74(0.5) 88.60(0.2) 88.88(0.5) 88.88(0.5) 91.45(0.3) 92.88(0.6) - -

5 85.75(0.5) 90.02(0.7) 89.17(0.3) 88.31(1.1) 88.60(0.3) 91.18(0.5) 92.88(0.3) - -

10 90.59(1.2) 91.73(0.2) 90.02(0.4) 88.31(1.3) 88.03(0.7) 92.02(0.4) 92.13(0.7) - -

12 - - - - - 88.60(0.9) -

14 - - - - - - - 90.31(0.3)

15 90.59(0.2) 89.17(0.4) 89.45(0.7) 91.45(1.0) 89.45(0.3) 91.16(0.7) - - -

20 89.17(0.3) 90.88(0.7) 90.31(0.4) 90.31(0.8) 90.31(0.1) 90.88(0.2) - - -

All (34) | 88.31 (0.2)
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Fig. 1.

H(X,Y)

H(X) ()

The relation between the mutual information and the entropy

Fig. 2. The relation between input features and output classes
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Fig. 3. Mutual information between each feature and the output class for IBM datasets
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Fig. 4. Average improvement of the classification rates for IBM datasets by TMFS
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