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Abstract—In this paper, we discuss the application of the
particle filter for the track-before-detect to detect the target in
a low SNR situation. We investigate how to find a target in
the range-doppler domain without using adaptive threshold level
by CFAR. To do this, we propose the modified particle filter
for simple calculation of particle weights. We design the radar
simulator that includes full radar signal processing for algorithm
verification. In spite of a low SNR situation where it is difficult to
detect a target, the proposed algorithm can estimate the optimal
position of a target. As the process of the particle filter is repeated,
the particles converge to the optimum position considered as the
estimated position of a target.
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I. INTRODUCTION

A conventional pulsed-Doppler radar uses the detect-
before-track (DBT) algorithm that is a popular technique to
track targets after detection process [1]. This method generally
includes CFAR (Constant False Alarm Rate) algorithm and
tracking filter. Tacking filter operates after detection by CFAR.
Typically, a radar uses CFAR algorithm having a relatively
high threshold level in order to maintain high detection prob-
ability and low false alarm rate. However, the problem is
that small RCS (Radar Cross Section) targets having low
Signal to Noise Ratio (SNR) can be removed by CFAR
process having high threshold level. In this situation, it is
hard that a radar detects and tracks a target effectively. To
overcome this problem, a radar designer should consider SNR
improvement by increasing RF output power, antenna gain,
and pulse integration time. However, in order to improve RF
output power and antenna gain, we should see problems related
to hardware implementation, physical characteristics, cost, and
efficiency. This design considerations may bring about im-
portant limitation of implementation. Likely, increasing pulse
integration time is considered as one of the solutions but
this approach leads to slow operation of search and tracking
function.

On the other hand, the track-before-detect (TBD) has been
widely researched as an important technology for detecting and
tracking weak targets in a low SNR situation where detection
is difficult due to environment with heavy clutter, small RCS
targets, and stealth targets [1-4]. Unlike DBT, tracking filter in
TBD is used to decide success or failure of detection. Detection
is confirmed according to the output of tracking filter. The

key idea of TBD is associated with eliminating or reducing
a threshold level of the detection process. In TBD process,
targets in low SNR are no longer removed by the radar signal
process. Instead, we should seriously consider unwanted clutter
noise that is not removed by CFAR, because these noises may
frequently generate false detection and false track.

The Hough transform, which detects the linear motion of
the target in heavy clutter environment [5], can be considered
as an efficient detector in the TBD environment. This approach
is known as one of approaches for solving the initialization
problem of tracking [6]. Also, a dynamic programming tech-
nique for the track-before-detect has been studied for a long
time and various papers have been reported until recently [7].
However, these two methods are known as a batch processing
which stores and processes received data within certain period
time. This means that several scan times are required for
making more accurate result. These approaches also have
weak point in detecting and tracking a maneuvering target. As
an alternative, the recursive particle filter for TBD has been
studied[1-4][8-9]. Kalman filter is known to linearize nonlinear
problems through Gaussian approximation. In a situation with
good SNR, Kalman filter can provide efficient and optimal
estimates. However, if non-linearity of a model and noise is
increased, Gaussian approximation of Kalman filter has lim-
itation in accurately expressing state probability distribution.
However, it is possible that the particle filter reduces estimation
error because nonlinear probability distribution are described
relatively accurately through several particles.

TBD researches using the particle filter have been reported
in the various papers and many researches described TBD
processing in X-Y-Z domain. However, this means CFAR or
threshold processing is still used for eliminating unwanted
signals. However, in this paper, we investigate the TBD
processing in the range-doppler domain to remove CFAR
processing. Also, unlike generating raw-data directly on the
range-doppler domain for simulation, this research reflects the
whole radar signal processing for generating virtual raw data.
It means to design the waveform considering the radar system
parameters, reflect the loss due to the channel loss and the
fluctuation of the target, and apply the matched filter (Pulse
compression) and Doppler filtering. Lastly, we also consider
quantizing the particles into the range-doppler domain grid
for simple processing. Rounding off the value of the decimal
point without expressing the detailed values of the particle state
enable to provide more efficient and faster processing.



This paper is organized as follows. The section 2 describes
the theory of state dynamics and particle filters. The section 3
describes the radar simulator reflecting a general radar signal
processing. The section 4 describes our proposed algorithm
and we show the result of experiments. Finally, the section 5
presents our conclusions and discussions.

II. PARTICLE FILTER [10][11]

To define the problem of tracking, we consider the form
of the state {xk, k ∈ N} of a target given by

xk = fk(xk−1,vk−1) (1)

where fk : Rnx × Rnv → Rnx is a possibly nonlinear
function of the state xk−1, {vk−1, k ∈ N} is an i.i.d. process
noise sequence, nx,nv are dimensions of the state and process
noise vectors, respectively, and N is the set of natural numbers.

The objective of tracking is to recursively estimate xk from
measurements

zk = hk(xk,nk−1) (2)

where hk : Rnx × Rnn → Rnz is a possibly nonlinear
function, {nk, k ∈ N} is an i.i.d. measurement noise sequence,
nz ,nn are dimensions of the measurement and measurement
noise vectors, respectively. In particular, we seek filtered
estimates of xk based on the set of all available measurements
z1:k = {zi, i = 1, 2..., k} up to time k

From Bayesian perspective, the tracking problem is to
recursively calculate some degree of belief in the state xk at
time k, taking different values, given the data z1:k up to time
k. Thus, it is required to construct the pdf p(xk|z1:k). The
pdf p(xk|z1:k) may be obtained, recursively, in two stages:
prediction and update.

At time step k, a measurement zk becomes available, and
this may be used to update the prior (update stage) via Bayes’
rule

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(3)

where the normalizing constant

p(zk|z1:k−1) =

∫
p(zk|xk)p(xk|z1:k−1)dxk (4)

depends on the likelihood function p(zk|xk) defined by the
measurement model and the known statistics of nk. In the
update stage, the measurement zk is used to modify the prior
density to obtain the required posterior density of the current
state. The recurrence relations (3) and (4) form the basis for
the optimal Bayesian solution. This recursive propagation of
the posterior density is only a conceptual solution on that
in general, it cannot be determined analytically. The particle
filters approximate the optimal Bayesian solution.

The posterior filtered density p(xk|z1:k) of the particle
filter can be approximated as the equation (1) and the weight
are defined in the equation (2).

p(xk|z1:k) ≈
Ns∑
i=1

wikδ(xk − xik) (5)

wik ∝ wik−1

p(zk|xik)p(xik|xik)

q(xik|xik, zk)
(6)

It can be shown that as Ns → ∞, the approximation
(1) approaches the true posterior density p(xk|z1:k). The
sequential importance sampling (SIS) algorithm consists of
recursive propagation of the weights and support points as each
is measurement received sequentially.

It is known that a common problem with the SIS particle
filter is the degeneracy phenomenon. This is related to the
phenomenon that, when the SIS is iterated several times, only
certain weights are selected repeatedly. To avoid this, we need
a suitable measure of degeneracy of the algorithm that is
defined as the effective sample size Neff that is shown in
the equation (7). However

Neff =
Ns

1 + Var(ω∗i
k )

(7)

where, since we can not know the actual weight ω∗i
k accurately,

we use the estimate N̂eff of Neff as the following equation
(8).

N̂eff =
1∑i=1

Ns
(ωik)2

(8)

where ωik is the normalized weight obtained using (6). A small
Neff indicated severe degeneracy. Clearly, the degeneracy
problem is an undesirable effect in particle filters. Therefore,
we rely on use of re-sampling to overcome this problem.
Resampling works when Neff is below some threshold NT .
Resampling eliminates particles having small weight and
evenly splits particles having large weight. The new particle set
{xi∗k }

Ns
i=1 is generated by resampling of the updated {xik}

Ns
i=1.

In general, after resampling, the total number of particles Ns
is not changed and the new weight set {wi∗k }

Ns
i=1 of particles

is reset to 1/Ns uniform division. The generic form of the
particle filter is shown in the algorithm 1.

Algorithm 1 Particle Filter

1: function PF( {xik−1, w
i
k−1}

Ns
i=1, zk)

2: for i← 1 to Ns do
3: prediction: xik = fk(xik−1,v

i
k−1);

4: weight update: wik = weight(xik, zk);
5: end for
6: {wik}

Ns
i=1 = normalization({wik}

Ns
i=1);

7: N̂eff = 1/
∑i=1
Ns

(ωik)2

8: if N̂eff < Nth then
9: {x∗i

k , w
∗i
k }

Ns
i=1 = resampling({xik, wik}

Ns
i=1);

10: {xik, wik}
Ns
i=1 = {x∗i

k , w
∗i
k }

Ns
i=1;

11: end if
12: return {xik, wik}

Ns
i=1

13: end function



III. RADAR SIMULATOR

A. Signal generation and receiving

Fig. 1: LFM waveform generated by the transmitter: (Left) the
complex signal in the time domain, (Right) LFM spectrum in
the frequency domain

The figure 1 shows LFM (Linear frequency modulated)
waveform generated. The transmitted signal has attenuation
and gain according to the radar equation and it reaches the
input of the receiver. In order to reflect target fluctuation, we
added Swerling model into the radar equation. Noise signal by
the receiver noise figure is added to the reached signal at the
receiver input.

B. Pulse Compression and Doppler filtering

Fig. 2: Pulse compression result: we considered the beam-
forming of N by N at the receiver. After the beamforming,
the beamforming gain was added. The result processed by
the pulse compression (matched filtering) after beamforming
is shown in the right figure.

Pulse compression is the essential signal processing of
a radar to increase the range resolution as well as SNR.
This is processed by correlating the received signal and the
transmitted signal. The figure 2 shows the output processed
by Pulse compression. Doppler filtering improves SNR and
helps to distinguish signals on the range-doppler domain. The
radar transmits and receives N repeated pulses, and Doppler
filtering processes the N sample signals in the each range-bin
through Fast Fourier Transform. The figure 3 shows Doppler
filtering results of (a) high SNR and (b) low SNR. In the high
SNR situation, the desired signal can be easily distinguished
from the background noise, and CFAR will detect the desired
signal excellently. Conversely, in the low SNR situation, CFAR
with high-level threshold may be not effective to detect weak

(a) High SNR situation

(b) Low SNR situation

Fig. 3: The results of Doppler filtering (Normalized ampli-
tude): In the low SNR situation, we can see that it is difficult
to clearly find the position of the target

signals. If a threshold value is lowered to solve this problem,
many false alarms may occur.

C. CFAR in the low SNR situation

CFAR is the technique for adaptively changing the thresh-
old level according to noise in order to maintain constant
false alarm rate. If we use a high CFAR threshold level, a
radar cannot detect a small RCS target in a long-range region
(low SNR environment). After a target is close enough to
a radar, a radar finally detect a target. This means that the
maximum detection range of a radar is reduced. On the other
hand, in the case of using a lowered threshold level, we can
increase a probability to detect the target in a long range
region, but we also should regard an increase of a false alarm
probability as a significant problem. Therefore, in order to
solve this problem, we eliminate the threshold-based CFAR
processing and propose the method using the particle filter to
detect a small RCS target in the range-doppler domain. This
is described in the next section.

IV. TRACKING ALGORITHM IN R-D DOMAIN

The state vector for the model is defined as

x = [r, vr]
T (9)

where r is the range and vr = − fdc2f0
is the radial direction

velocity. The vr is calculated from fd = − 2
λ
dr
dt = − 2vr

λ , where
fd is Doppler frequency of a target, c is the light velocity,
and λ is wavelength. The state is quite simple because it
has only two components. The equation (10) shows the state
transition matrix related to the target dynamics, where ∆t is
a measurement update time between a previous scan and a
current scan.



(a) Approximate the position of the predicated particle to
overlap with the measurement value.

(b) Weight update, resampling and new prediction

Fig. 4: The algorithm concept proposed in this paper

F =

[
1 ∆t
0 1

]
(10)

The equation (1) can be expressed as combination of
several particles as shown in the following equation (11).
As the particle number increases, it is similar to the actual
probability distribution. The vk can be understood as the sum
of uncorrelated variables as random noise at the current time
k. We define vk as the equation (12), where X is defined as
the uncorrelated noise variables and these are the process noise
of x, y, z direction of a target.

{xik}
Ns
i=1 = F{xik}

Ns
i=1 + {vk}Ns

i=1 (11)

vk =

√√√√ n∑
i=1

Var(Xi) (12)

When it comes to the weight update, weights of particles
can be updated by using Euclidean or Mahalanobis distance
between particles and measurements. These approaches will
be valid approach when the number of measurements in the
track gate is small. On the other hand, if we have large number
of measurements to process, we need to think of a different
approach. For example, this problem is related to how we
handle complex observation data like the figure 3-(b), which
has a lot of measurements or raw-data. In this case, since it is
very difficult to designate the wanted signal that is considered
to be a target, the nearest neighbor filter is not a good solution.
Also, algorithm calculating weights between measurements
and particles like the probability data association filter is going
to be a complex approach.

In order to process particles in the range-doppler domain,
we should first understand the characteristics of the mea-
surement data (likelihood). For example, the likelihood of

Algorithm 2 Modified Particle Filter

1: function PF( {xik−1, w
i
k−1}

Ns
i=1,Zk)

2: for i← 1 to Ns do
3: xik = Fxik−1 + vik ; % Time update
4: rind = r

∆r , find = fd
∆f ; % Index calculation

5: xik,ind = {rind, find}ik ; % Index scale
6: xik,ind ← round(xik,ind) ; % Quantizing
7: end for
8: Zk ← Doppler filtering output ;
9: for i← 1 to Ns do

10: [rind, find]← xik,ind ;
11: wik ← Z(rind, find)k ;
12: end for
13: {wik}

Ns
i=1 = normalization({wik}

Ns
i=1);

14: N̂eff = 1/
∑i=1
Ns

(ωik)2

15: if N̂eff < Nth then
16: {xik,ind, wik}

Ns
i=1 ← Resampling {xik,ind, wik}

Ns
i=1;

17: end if
18: {xik, wik}

Ns
i=1 ← {xik,ind, wik}

Ns
i=1;

19: return {xik, wik}
Ns
i=1

20: end function

the measurement shown in the figure 3 looks a continuous
appearance, but it is data having actually discontinuous values.
If we approximate particles to the closest range-doppler bin of
the given measurement data, we can devise the simple weight
update method without calculating distance vectors. Our idea
is to quantize and approximate the positions of the given
particles. The concept is shown in the figure 5.

After the predicted particles are computed and the process-
ing noise are added in the actual position xik = {r, vr}ik (Time
update or prediction step), the index number of the range-
doppler domain are calculated. And, this index is approximated
to have the same index form like the measurement. In this
way, we can align the positions of the predicted particles
and the current measurement in the same units and grid.
The weights of particles are updated at the overlapped parts
(Measurement update) and the weights of the remaining parts
are set to zero. And the resampling is processed according
to this weight information. After the resampling, in the next
prediction step, the particles are predicted and approximated to
the new positions. The modified algorithm is described in the
algorithm 2. The figure 5 shows the processing results of the
modified particle filter in the very low SNR. As the number
N of processing repetitions increases, the particles converge
to the specific position and this position is understood as the
optimal value.

Clustering is a useful technique to be able to group
related particles together. Density-based spatial clustering of
applications with noise (DBSCAN) is known as a data clus-
tering algorithm that does not require the number of clusters.
DBSCAN requires two parameters: ε (eps) and the minimum
number of points (minPts). The figure 6 show the processing
result of DBSCAN after the particle filter. Some of the particles
are discarded as noise, and the particles that satisfy conditions
(eps, minPts) are included in the cluster. The center of these
clustered particles is considered as the optimal position. Figure
6-(b) shows the tracking result for a target with constant



(a) N=5 (b) N=10

(c) N=15 (d) N=20

(e) N=25 (f) N=30

(g) N=35 (h) N=40

Fig. 5: Simulation result of proposed algorithm. As processing
is repeated, it can be seen that the particles converge to the
specific position.

velocity change.

V. CONCLUSION

This paper dealt with the application of the particle filter
for the track-before-detect to detect a weak target in a low
SNR situation. Unlike a conventional approach of extracting
plot data through CFAR of a adaptive threshold level and
detecting the target in XYZ domain, we investigated how to
find the target in the range-doppler domain without CFAR. To
do this, we proposed and designed the modified particle filter
for simple calculation of particle weights. We also designed the

(a) After DBSCAN (b) Tracking result

Fig. 6: The simulation result processed by DBSCAN after the
particle filter (eps=3, minPts=50) and the final tracking result

radar simulator that includes the whole radar signal processing
for algorithm verification.

In a low SNR situation where it is difficult to detect a target
by CFAR, the proposed algorithm can provide the optimally
estimated position of the target. As the processing of the
particle filter is repeated, the particles converge to the optimal
position to be considered the location of the target. On the
other hand, in a high SNR situation, particles converge very
quickly to a high measurement signal that is the most reliable
information, which is caused by a target.
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