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Abstract: Among various low-angle tracking methods, the three-dimensional beamspace domain maximum likelihood (3-D
BDML) estimation proposed by Zoltowski is a computationally attractive and optimal method that can be processed in the
reduced beamspace domain. However, the estimation performance of 3-D BDML deteriorates in the presence of interference
or an additional target, especially at low altitudes, because the dimension of the signal and noise exceeds the dimension
provided by the three beams. This study proposes a new low-angle tracking method for two objects in a 3-D beamspace
domain using a linearly constrained adaptive array. The increased signal dimension owing to the interference or the additional
target is reduced in the beamspace domain by using the beamforming weight that is designed to remove the largest principal
component in the covariance matrix. Numerical simulation results are provided to show the estimation performance of the
proposed method.
1 Introduction

Low-angle tracking used to track a target flying at a low altitude
has attracted a lot of interest for radar researchers. Generally, in
low-angle tracking, two or more echoes return to the radar via
direct and reflected paths [1] and the reflected echoes consist of
specular and diffuse components [2]. If the grazing angle is
small and the reflecting surface is smooth, the specular
component dominates, which makes the low-angle tracking a
complicated problem because of the following reasons: (i)
two echoes (the direct and the specular echoes) are basically
the same signal except that only the phase and the amplitude
of the specular echo are different in fixed amounts from
those of the direct echo; that is, they are coherent; (ii) the two
echoes lie within the beamwidth, and hence, the angular
separation between the two is small [3]; (iii) the two echoes
are superpositioned in time, because the two echoes travel
almost the same path length, and therefore the range
difference between the two echoes are less than the range
resolution of the radar [4]. In addition to the specular
component, although it may be small, the diffuse component
also complicates the low-angle tracking by adding incoherent
interference to the received data [5].

In order to solve the low-angle tracking problem, various
methods with different approaches have been proposed,
which can be classified into three main families; that is, the
mono-pulse methods, the parametric estimations and the
subspace-based methods [4, 6]. Firstly, the mono-pulse
methods utilise the ratio of the sum channel to the difference
channel, and hence, they are computationally the simplest
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[7]. However, they have a limit in that they cannot track an
elevation angle of less than one-fourth of the beamwidth [8].
Secondly, the parametric estimations are generally based on
the maximum likelihood (ML) estimator. They are less
sensitive to signal coherence and usually have lower
Cramér–Rao bounds than those of the other methods [9].
However, they require statistical information about signals,
and a lot of computations are needed in performing a
multidimensional grid search [6]. Thirdly, the subspace-
based methods, such as the multiple signal classification
(MUSIC) [10], estimate the direction of arrival (DOA) by
solving a spectrum-like function related to the orthogonality
between the signal subspace and the noise subspace of the
covariance matrix, and therefore, the subspace-based
methods are computationally more attractive than parametric
methods [6]. However, the accuracy of the subspace-based
methods is inferior to that of the parametric methods
especially when the signals are coherent. This performance
degradation due to the signal coherence can be alleviated by
the use of spatial smoothing or generalised covariance
differencing along with the MUSIC method [11–13].
However, an estimation bias is inevitable in those methods.

In the subspace-based methods, the array output is
transformed from elementspace to beamspace with the pre-
multiplication by the beamforming weight, and it is often
advantageous to process the estimation in the beamspace
domain than in the elementspace domain [14]. By the
beamspace processing, the spatial domain is divided into
several spatial bands. The spatial band spotlighted by
beams is termed as in-band, and the other spatial band is
9
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termed as out-of-band [15]. Since signals are coming from a
low angle, it is possible to accentuate the in-band signal of
interest by steering beams to low angle and performing the
estimation in the beamspace domain. Therefore the
beamspace processing provides more accurate localisation
of the in-band signal than the elementspace processing
especially when there exists a dispersed interference such as
diffuse reflection or clutter return in the out-of-band (see
Fig. 1). Furthermore, the computational complexity can be
reduced because there exists a closed-form solution that can
be found without a search process [16, 17]. Among the
beamspace domain methods, a number of methods
employing three beams have been proposed for low-angle
tracking [18, 19]. Note that under ideal assumptions, the
estimation performance in the 3-D beamspace domain does
not degrade, because a 3-D observation vector is enough to
distinguish three different spaces, two for the signals (direct
and specular echoes) and one for the noise. The most
notable work on 3-D beamspace domain estimation is the
3-D beamspace domain maximum likelihood (3-D BDML)
estimation for its simplicity [20]. In the 3-D BDML
estimation, three M-dimensional orthogonal beamforming
weights which have (M–3) common nulls are used, where
M denotes the number of array elements. Therefore any
combination of these three beamforming weights has the
same nulls as the aforementioned (M–3) common nulls.
Since (M–1) nulls exist in total, the two remaining nulls
can be used to find the two echoes. With this feature, 3-D
BDML offers closed-form solutions for the two echo
angles, and thus it is extremely simple in computational
complexity.

On the other hand, the 3-D BDML method is susceptible to
deviations from the ideal assumptions. In particular, in the
presence of a point interference from low altitudes, such as
a jammer, as well as the two echoes from the target, the
dimension of the subspace to be distinguished increases
[21]; hence, the estimation performance of the 3-D BDML
method degrades severely. This is owing to the number of
dimensions provided by the 3-D beamspace observation
being not enough to distinguish more than three
components (two from a target and one from the noise)
[22]. The same problem arises in the presence of an
additional low-angle target [As a point interference and a
secondary target has the same effect, henceforth, we will
use the term ‘secondary object’ for both. On the other hand,
the term ‘primary object’ will be used to denote the original
target.]. To tackle this problem, we may naively increase
the dimensionality of the beamspace by using more beams.
However, the additional beams used to procure more
dimensions are placed beside the original three beams,
facing out of the boresight. Therefore the suppressed out-of-

Fig. 1 Three beams used for the low-angle tracking
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band interference can enter the in-band region of the
additional beams, as shown in Fig. 1. Moreover, if the out-
of-band interference is dispersed, then it cannot be localised
with the addition of beams. Therefore the estimation error is
increased.

In this paper, we propose a low-angle tracking algorithm
for two objects (primary and secondary) in the three-
dimensional (3-D) beamspace domain to minimise the
estimation error. We design the three beams so that, out of
total (M–1) nulls, they have (M–5) nulls fixed in common,
and leave the other four variable nulls to find a pair of
coherent signals while nullifying the other pair of coherent
signals; for example, two echoes through the direct and
specular paths owing to a jamming signal from other ship.
In the proposed method, one of the two objects (a jammer
or a target) is removed in the beamspace domain data by
designing the beamforming weights to eliminate the largest
principal component (LPC) of the covariance matrix
utilising variable nulls. Therefore only a pair of coherent
signal components from two directions remain in the
beamspace domain data, which can be distinguished with
three beams. Furthermore, the two DOAs of the removed
object can also be estimated in the end, by utilising the
properties of the beamforming weights. Therefore, all the
DOAs from the two objects are finally estimated. The
proposed algorithm shows a better estimation accuracy than
the conventional methods such as the 3-D BDML
estimation and the beamspace root-MUSIC method [17] in
the presence of a secondary object along with dispersed
out-of-band interference.

This paper is organised as follows: In Section 2, the signal
model and the estimation procedure found in the conventional
3-D BDML method are described. In Section 3, the signal
model of two objects are provided and the shortcomings of
the conventional 3-D BDML method are also presented.
Then, the proposed method is described. Firstly, the
proposed beamforming process which is used to generate
the desired beamforming weights is described. Secondly,
the procedure to estimate the DOA is provided. The
numerical simulation results as well as the comparison with
the conventional methods are provided in Section
4. Finally, we summarise and conclude this paper in
Section 5.

2 Conventional 3-D BDML method

To ensure the completeness of the paper, the overall
procedure of the 3-D BDML method is briefly reviewed.
First, let us examine the low-angle tracking signal model. In
the 3-D BDML method, they consider a uniform linear
array (ULA) of M elements in the presence of two echoes
from a primary object. Here, we assume that the direct echo
is incoming from u1 and the specular echo is incoming
from u2, as depicted in Fig. 1. The diffuse component is
neglected in the 3-D BDML method because the smooth
sea surface and low grazing angle are assumed. The nth
snapshot of the total N samples of received data is denoted
by M-dimensional complex vector, x, which can be
expressed as

x(n) = s1(n)a(f1) + s2(n)a(f2) + n(n)

= A(f)s(n) + n(n), n = 1, . . . , N (1)

where the two elements of s(n) W [s1(n) s2(n)]T are the
complex envelopes of a direct and a specular echo signal,
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respectively, at the sample sequence n. These two signals are
coherent because one is a reflection of the other, that is,
s2(n) = r1ejDc12s1(n), where r1 is the magnitude of the
reflection coefficient and Dc12 is the phase difference
between s1(n) and s2(n). Furthermore, the unmeasurable
additive noise is denoted by n(n) and assumed to be white
Gaussian. The ith column vector of the M × 2 matrix
A(f ) W [a(f1) a(f2)] is an array response vector of the
ith element of A(f) W [a · · · and f W], which can be
expressed as

a(fi) = [e−j(M/2−1/2)fi , e−j(M/2−3/2)fi , . . . , ej(M/2−3/2)fi ,

ej(M/2−1/2)fi ]T (2)

Here, fi ¼ 2p(L0/l) sin ui, where L0 is the distance between
the array elements and l is the wavelength. Note that the array
response vector is defined with the assumption that the phase
of the centre of the array is zero. Therefore the array response
vector is conjugate centro-symmetric; that is, each element of
the array response vector is the complex conjugate of the
element symmetric with respect to the centre of the array.
The conjugate centro-symmetric property is necessary to
localise coherent signals, and this statement is examined
thoroughly later in this section.

From the received data vector x, the beamspace data xB are
obtained by multiplying the predefined beamforming weight
matrix W as follows

xB(n) = W H x(n) = D(f)s(n) + W H n(n) (3)

Here, W W [w1 w2 w3] is an M × 3 matrix, whose column
represents the individual beamforming weight of the three
beams and ()H denotes the conjugate transpose. In addition,
we define a 3 × 2 matrix, D(f) as
D(f) W [d(f1) d(f2)] = W H A(f) for the sake of
simplicity. Even though the size of received data increases
in proportion to the array size M, that of the beamspace
data remains three because three beams are employed.

The least square estimations of f1, f2 and s(1), . . . , s(N )
can be formulated as

min
f1,f2,s(1),...,s(N )

∑N

n=1

‖xB − D(f)s(n)‖2 (4)

In the 3-D BDML method, the discrete Fourier transform
(DFT) beamforming weights are employed, which can be
expressed as

W = a − 2p

M

( )
a(0) a

2p

M

( )[ ]
(5)

where a(f) is defined in (2). As the noise n(n) is assumed to
be white Gaussian, (4) also corresponds to the ML estimation
because the beamforming weights are mutually orthogonal.
For the purpose of estimating f1 and f2, we first estimate
s(n) and then estimate D(f) utilising the separability
property of s(n) and f. Regardless of f, the least square
solution for s(n) is ŝLS = [DH (f)D(f)]−1DH (f)xB.
Substituting this for s(n) in (4), we obtain

min
f1,f2

∑N

n=1

xH
B (n)P(f)xB(n) (6)
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where

P(f) = I3 − D(f)[DH (f)D(f)]−1DH (f) (7)

Here, I is the 3-D identity matrix. Note that P (f) is the
orthogonal projector of xB(n) onto the 1 2 D noise
subspace orthogonal to the span of D(f). Hence, the 1 2 D
projector can be modelled as

P(f) = v(f)vH (f)

vH (f)v(f)
(8)

where v(f) is a 3 × 1 vector that satisfies

vH (f)D(f) = 0 (9)

At this point, we consider the condition of the beamforming
weight. Recall that the array response vector in (2) is given
to be conjugate centro-symmetric. Therefore if each
beamforming weight in W is also designed to be conjugate
centro-symmetric, all the elements of D(f), P (f) and
v(f) become real valued. After substituting P (f) in (6)
with (8), we can convert (6) from the optimisation problem
over f to an optimisation problem over the real-valued
vector v(f) by the following manipulation

min
v(f)

S
N
n=1xH

B (n)v(f)v(f)TxB(n)

v(f)Tv(f)

= min
v(f)

S
N
n=1Re[xH

B (n)v(f)v(f)TxB(n)]

v(f)Tv(f)

= min
v(f)

S
N
n=1Re[v(f)TxB(n)xH

B (n)v(f)]

v(f)Tv(f)

= min
v(f)

N
v(f)T Re [R̂bb]v(f)

v(f)Tv(f)
(10)

In the last line, R̂bb denotes the beamspace domain sample
covariance matrix; that is

R̂bb = 1

N

∑N

n=1

xBxH
B (11)

The solution of (10) for v(f) is the eigenvector associated
with the smallest eigenvalue of Re[R̂bb]. The 3-D BDML
uses Re[R̂bb] because, in the presence of a pair of coherent
signals, 1 2 D noise subspace can be distinguished by the
eigendecomposition of Re[R̂bb] rather than that of R̂bb [20].
Note here that the equality in the last line of (10) holds
because the projection vector v(f) is a real vector, which
follows from the fact that the beamforming weight is
conjugate centro-symmetric. Therefore it should be noted
that the use of the conjugate centro-symmetric beamforming
weight is important to localise coherent signals.

Let us denote the solution found in (10) as v, then, from (9)
we obtain

vTd(fi) = vTW H a(fi) = 0, i = 1, 2 (12)

Substituting ejfi in a(fi), which is defined in (2), with zi, we
get an (M–1)th degree polynomial equation of zi. We can
estimate fi by solving this polynomial equation. In the 3-D
11
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BDML method, (M–3) common nulls exist in each column of
W. These common nulls can be factored out, and hence, we
have only to solve the remaining second-order polynomial.
With this feature, 3-D BDML offers closed-form solutions
for the two echo angles. Therefore 3-D BDML is extremely
simple in computational complexity. In summary, the
overall procedure of the conventional 3-D BDML is
depicted in Fig. 2.

3 Proposed estimation method

The estimation performance of the 3-D BDML method
degrades severely, in the presence of a secondary object at
low altitude. In this section, we propose an estimation
method based on three beams, which performs nicely in the
presence of a secondary object. First, the signal model of
the two objects is represented in the next subsection. The
performance degradation of 3-D BDML in the presence of
two objects is also examined. Then, we describe each step
of the proposed method in detail. The beamforming and the
estimation of the proposed method are examined in the
subsequent subsections.

3.1 Signal model of two objects

In the presence of a secondary object such as a point
interference or an additional target, the spatially correlated
component [23] is added to the signal model of 3-D
BDML, and hence, the number of signals increases from
two to four. Therefore the signal model (1) is modified to

x(n) = s1(n)a(f1) + s2(n)a(f2) + s3(n)a(f3)

+ s4(n)a(f4) + n(n)

= A(f)s(n) + n(n), n = 1, . . . , N (13)

Here, s(n) is modified to

s(n) W [s1(n) s2(n) s3(n) s4(n)]T (14)

where s3(n) and s4(n) are the complex envelope of the direct
and specular echoes of the secondary object, respectively.
Thus, s4(n) = r3ejDc34 s3(n) where r3 is the magnitude of the
reflection coefficient related to the secondary object and
Dc34 is the phase difference between s3(n) and s4(n).
Similarly, the number of columns in A(f) also increases
from two to four. Hence, we obtain

A(f) = [a(f1) a(f2) a(f3) a(f4)] (15)

where a(fk), k ¼ 1, . . . ,4, is the array response vector of fk.
This model holds for both cases of r3 ¼ 0 and r3 = 0. The
former is the case of no reflection from the secondary

Fig. 2 Overall procedure in the conventional 3-D BDML method
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object, while the latter is the case where there exists a
specular reflection from the secondary object.

Now, we investigate the shortcomings of the 3-D BDML in
the presence of two objects. First, in order to find the 1-D
projector orthogonal to the signal subspace (see Fig. 2), we
obtain the real part of the beamspace sample covariance
matrix, which can be expressed as

Re[R̂bb] = Re[W H R̂xxW ] (16)

where R̂xx, the sample covariance matrix of x(n), is expressed
as R̂xx = (1/N )SN

i=1x(n)xH (n). Taking the expected value of
R̂xx, the covariance matrix Rxx can be expressed as

Rxx W E{R̂xx} = A(f)Rss(n)AH (f) + s2
nIM (17)

where E{}̇ denotes the expectation, s2
n is the noise variance,

IM is the M × M identity matrix and Rss(n) is the covariance
matrix of s(n); that is

Rss(n) W E{s(n)sH (n)}

= E{[s1(n) r1ejDc12 s1(n) s3(n) r3ejDc34s3(n)]T

× [s∗1(n) r1e−jDc12s∗1(n) s∗3(n) r3e−jDc34s∗3(n)]}

(18)

where ()∗ denotes the complex conjugate. Here, direct echoes
of s(n) can be represented by

si(n) = ai(n)ejvitsn+zi , i = 1, 3 (19)

where ai(n) is the amplitude of the nth snapshot, vi is the
angular frequency which is the sum of the transmit and
doppler frequencies, ts is the sampling interval, and zi is the
initial phase [24]. We assume that ai(n) is a random
variable whose distribution is defined according to the
object models in [25], and zi is a random variable
uniformly distributed over [2p, p]. Therefore, from (19),
we obtain

E{s1(n)s∗1(n)} = E{a2
1(n)} = s2

1 (20)

E{s3(n)s∗3(n)} = E{a2
3(n)} = s2

3 (21)

where s2
1 and s2

3 is the variance of s1(n) and s3(n),
respectively, and we also obtain

E{s1(n)s∗3(n)} = E{a1(n)a3(n)ej(v1−v3)tsn+z1−z3 } = 0 (22)

E{s3(n)s∗1(n)} = E{a1(n)a3(n)ej(v3−v1)tsn+z3−z1 } = 0 (23)

where we assumed v1 = v3. From (18)–(23), we have

Rss(n)=

s2
1 s2

1r1e−jDc12 0 0

s2
1r1ejDc12 s2

1r
2
1 0 0

0 0 s2
3 s2

3r3e−jDc34

0 0 s2
3r3ejDc34 s2

3r
2
3

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

(24)
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Rss =s2
1

1

r1ejDc12

0

0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ 1 r1ejDc12 0 0
[ ]H

+s2
3

0

0

1

r3ejDc34

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ 0 0 1 r3ejDc34
[ ]H

(25)

Therefore the rank of Rss is two, even though there are four
signals in s(n). This rank reduction is caused because two
pairs of signals are coherent. Hence, the signal subspace of
Rxx, which is the first term of the right-hand side of (17) is
also of rank two [This implies that the dimension of the
signal subspace is reduced from 4 to 2 by their coherent
property. Therefore all DOAs of the four signals
intermingle in the rank-two signal subspace and cannot be
estimated by the eigendecomposition of Rxx.]. However, the
rank of Re[Rss], which can be expressed as (see (26))

is larger than 2 unless both cos2(Dc12) and cos2(Dc34) are
equal to one [This implies that the reduced dimension of
the signal subspace can be restored by taking the real part
of Rss. This is allowed because the 1-D projector defined in
(8) and (10) is real valued when the beamforming weight is
conjugate centro-symmetric. Thus, the conjugate centro-
symmetry is an essential property in determining the
beamforming weight.]. Finally, replacing Rxx in (16) with
(17), we obtain

Re[Rbb]=Re[W H (A(f)RssA
H (f)+snIM )W ]

=W H A(f)Re[Rss]A
H (f)W +snW H W (27)

The second equality follows from the fact that
D(f) ¼ WHA(f) is real-valued when W is conjugate
centro-symmetric. Incidentally, if the rank of WHA(f) is
three, WHA(f)Re[Rss]A

H(f)W in (27) becomes a full-rank
matrix. Therefore the dimension of the beamspace domain
is not sufficient to distinguish signals from one another,
which results in an increased estimation error. This situation
also applies when there is no reflection from the secondary
object (r3 ¼ 0) because WHA(f)Re[Rss]A

H(f)W is full
rank.

We may increase the beamspace dimension by using more
beams and exploit naively the beamspace root-MUSIC
method by using the real part of the covariance matrix [17].
However, this method is not suitable for the following
reasons. Firstly, the additional beams used to procure more
dimensions are placed beside the original three beams and
are facing out of the boresight. Therefore the in-band region
is broaden and an out-of-band interference of the original
three beams can be located in the in-band region of the
additional beams. This makes the estimation susceptible to
IET Radar Sonar Navig., 2012, Vol. 6, Iss. 1, pp. 9–20
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out-of-band interference. Secondly, the additional beams
increase numerical instability. In the beamspace root-
MUSIC method, a transformation matrix is defined such
that a column of which represents the remaining nulls of
each beamforming weight after removing nulls in common.
This matrix is transformed to the beamspace root-MUSIC
polynomial [17]. However, the transformation matrix
becomes ill conditioned as the number of beams increases
[15], which results in an increase in the estimation error.
Therefore in order to solve the dimension deficiency
problem, we focus on designing three beamforming weights
to remove one of the signal components. This removal
reduces the rank of WHA(f) to less than three.

3.2 Proposed method of beamforming

The proposed beamforming weights need to have the
following three properties: (i) The beamforming weights
need to reduce the dimension of signal subspace from 4 to
2 by eliminating one of the two objects in the sample
covariance matrix. However, the directions of the echoes
from the eliminated object also need to be estimated
because this object may be the primary object to localise;
(ii) The beamforming weights must have common nulls in
order that the polynomial induced from (12) can be reduced
to a polynomial of an order lower than five, thereby it has
closed-form solutions; (iii) The beamforming weights need
to be conjugate centro-symmetric.

To achieve these three properties, we propose to employ
linearly constrained adaptive arrays in the form of the
generalised sidelobe canceller (GSC) [26] with a
modification. The modified GSC consists of the upper path
(quiescent path), which is derived from the linear
constraints C and generates the quiescent weight wq, and
the lower path (adaptation path), which generates the
adaptation weight wa, as depicted in Fig. 3. As the blocking
matrix B is the null space of the constraint matrix C, the
adaptation is performed in the null space of C, and hence,
the weight at the GSC output, which can be expressed as

wG = wq − Bwa (28)

still satisfies the constraint. In Fig. 3, the quiescent path is in
charge of setting up the beamforming weights with common
nulls, while the adaptation path is in charge of eliminating one
of the two signal components. In the sequel, the design of
each path is described.

Fig. 3 Block diagram of the modified GSC
Re[Rss] =
s2

1 s2
1r1 cos (Dc12) 0 0

s2
1r1 cos (Dc12) s2

1r
2
1 0 0

0 0 s2
3 s2

3r3 cos (Dc34)
0 0 s2

3r3 cos (Dc34) s2
3r

2
3

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (26)
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3.2.1 Design of the Quiescent path: The quiescent path
is designed for the purpose of setting up the three quiescent
weights wqi that have common nulls. The constraint
equation for each quiescent weight is expressed as

CH
i wqi = f , i = 1, 2, 3 (29)

where Ci is the constraint matrix, a column of which represents
each linear constraint and i denotes the beam index [upper
beam (i ¼ 1), centre beam (i ¼ 2) and lower beam (i ¼ 3),
respectively]. Each element of f denotes the response of the
constraint. We propose that the number of constraints should
be M–2. Therefore the constraint matrix Ci has the rank
deficiency of two and we can define the blocking matrix Bi

(rank of two) for the adaptive beamforming. On the other
hand, the conventional 3-D BDML method utilises M
constraints in constructing the orthogonal DFT beams.
Therefore it is impossible to set up an adaptation path in the
conventional 3-D BDML. We also propose that the jth
column of all constraint matrices cj should be an array
response vector of wj that can be expressed as

cj = a(wj)

= [e−j(M/2−1/2)wj , e−j(M/2−3/2)wj , . . . , ej(M/2−3/2)wj ,

ej(M/2−1/2)wj ]T (30)

where wj is the phase of the signal to be nulled or steered. Note
that cj is also conjugate centro-symmetric.

We propose to use the (M–2)-dimensional constraint
response vector as f ¼ [1, 0, . . . ,0]T. Then, the first element
of f is the single unity gain to be applied in the steering
direction, and the other elements correspond to the
nullifying direction. As for the centre beam (i ¼ 2), we
propose to locate the phases of the signals to be nulled
uniformly as

wj =
2p

M
j, j = 2, 3, . . . , M − 2 (31)

where wj is the phase of the jth constraint, and to steer the
beam to the boresight (w1 ¼ 0). Next, we propose to space
out the adjacent beams (upper beam and lower beam) with
the amount of 2p/M, and hence, we obtain C1 and C3.
From (29) and [27], the quiescent weight of each beam is
represented as

wqi = C i(C
H
i C i)

−1f , i = 1, 2, 3 (32)

There are M–5 common out-of-band nulls in each
beamforming weight which are exploited to reduce the
order of the polynomial equation for the estimation.
Figs. 4a–c show the phases of the signals to be nulled and
steered for each beam and Fig. 4d shows the common nulls,
when M is set to 24.

3.2.2 Design of the adaptation path: The adaptation
path is designed for the purpose of reducing the dimension
of the signal space by eliminating one of the two objects
from the sample covariance matrix, and hence, the two
echoes from the remaining object can be localised with
three beams. After forming the quiescent weight with the
constraint matrix, two nulls among the four remaining nulls,
which have indeterminate locations in the constraint, are
14
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employed for the elimination. First, the blocking matrices
Bi’s for the three beams are determined according to the
corresponding constraint matrix as follows [27]

B1 = a(0) a
4p

M

( )[ ]
[ null(C1) (33)

B2 = a − 2p

M

( )
a

2p

M

( )[ ]
[ null(C2) (34)

B3 = a − 4p

M

( )
a(0)

[ ]
[ null(C3) (35)

Rewriting (28), the beamforming weight at the GSC output
for each beam can be expressed as

wGi = wqi − Biwai, i = 1, 2, 3 (36)

where i denotes the beam index.
Now, we design the adaptation weights. Note that the

location of the nulls defined in (31) does not change with
these adaptation weights because this adaptation is
accomplished in the null space of C. In the proposed
method, the adaptation weights are designed to extract and
eliminate the LPC of the data covariance matrix; that is, the
covariance matrix of the data received by the array
elements. Therefore the extraction block in Fig. 3 is added
to modify the original GSC. Since there are two
independent signal components, the data covariance matrix
Rxx can be expressed as

Rxx = [u1 u2 . . .]

l1

l2

. .
.

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

uH
1

uH
2

..

.

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (37)

Fig. 4 Location of the phases to be nulled (8) and steered (†) at
each beam and the common nulls

a Lower beam
b Centre beam
c Upper beam
d Common nulls
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where l1 and l2 are the first and the second largest
eigenvalues and u1 and u2 are eigenvectors associated with
l1 and l2, respectively. Then, the beamspace data
covariance matrix Rbb can be expressed as

Rbb = W H
G [u1 u2 . . .]

l1

l2

. .
.

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

uH
1

uH
2

..

.

⎡
⎢⎢⎣

⎤
⎥⎥⎦W G (38)

where W G = [wG1 wG2 wG3] [ C
M×3. We propose to

design WG to reduce the dimension of the signal subspace
as follows

Rbb = W H
G [u2 . . .]

l2

. .
.

[ ]
uH

2

..

.

[ ]
W G (39)

The equality holds if uH
1 W G = 0. Therefore the adaptation

weight of each beam is determined from the following
minimisation problem

min
wGi

‖uH
1 wGi‖2 = min

wGi

wH
GiP1wGi (40)

= min
wai

[wqi − Biwai]
H P1[wqi − Biwai],

i = 1, 2, 3 (41)

where P1 is the LPC of the data covariance matrix and can be
expressed as

P1 = l1u1uH
1 (42)

In order to obtain P1, we use the sample covariance matrix of
the received data R̂xx = (1/N )SN

n=1x(n)xH (n) because the
ensemble covariance matrix Rxx is unknown. The largest
eigenvalue can be obtained by the power method or
Lanczos method which requires a much lower
computational load than full eigendecomposition [28] [We
advise the readers to use the Lanczos method (or its
variations for faster implementation [29]) because the
computational load of the power method is increased if the
initial point for the eigenvector is inadequate or l2 is close
to l1. The Lanczos method exhibits a faster convergence
rate than the power method [28].].

The minimisation problem in (41) is a convex optimisation
problem. Taking the differentiation to the objective function
(41), we obtain

[BH
i P1Bi]wai = BH

i P1wqi, i = 1, 2, 3 (43)

While determining the adaptation weights by solving (43),
one more constraint should be considered. This constraint is
that the beamforming weights need to be conjugate centro-
symmetric to localise coherent signals [17]. Here, the
solution of (43) with this constraint is denoted by wo

ai,
which can be expressed as

wo
ai =

Re{BH
i P1Bi}

Im{BH
i P1Bi}

[ ]†
Re{BH

i P1wqi}

Im{BH
i P1wqi}

[ ]
, i = 1, 2, 3

(44)
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where ()† denotes the pseudo inverse. The proof is presented
in Appendix 7.1.

From (43), the following equality holds

BH
i P1(wqi −Biwai)= l1BH

i u1uH
1 wGi = [0 0]T, i= 1, 2, 3

(45)

Since the two columns in Bi are the array response vectors
from different directions, BH

i u1 is not zero, and hence, we
obtain

uH
1 [wG1 wG2 wG3]= uH

1 W G = 0 (46)

which implies that the LPC is eliminated in the beamspace
domain.

The remaining signal component is divided into two in the
real part of Rbb as shown in Section 3.1, and hence, Re[Rbb]
can be expressed as

Re[Rbb] = W H
G [u2a u2b . . .]

l2a

l2b

. .
.

⎡
⎢⎣

⎤
⎥⎦

uH
2a

uH
2b

..

.

⎡
⎢⎢⎣

⎤
⎥⎥⎦W G

(47)

where u2a, u2b, l2a and l2b denote the eigenvectors and the
eigenvalues, respectively, of the real part of the remaining
component, l2 u2 u2

H.

3.2.3 Orthogonalisation of the beamforming
weights: After building the beamforming weights such
that they have the three properties, the orthogonalisation
procedure should be followed for the estimation in (4) to be
the ML estimation. If the eigenvalue decomposition of
W H

G W G yields

W H
G W G = VSV H (48)

the orthogonalised beamforming weight can be expressed as

W = W GVS
−(1/2) (49)

From (46) and (49), it is apparent that the orthogonalised
beamforming weight also eliminates the LPC as

uH
1 W = 0 (50)

Since WG is conjugate centro-symmetric, W H
G W G is a real

matrix, and hence, V also becomes a real matrix. The
orthogonalisation maintains the conjugate centro-symmetric

property because W ∗ = W ∗
GVS

−(1/2) = TW , where the
superscript ∗ of the matrix W and WG denotes the
elementwise complex conjugate and T is the M × M reverse
permutation matrix (see Appendix 7.1). Furthermore, if wj

is one of the common nulls in WG; that is, W H
G a(wj) = 0,

wj is also a common null of W as

W H a(wi) = S
−(1/2)V H W H

G a(wj) = 0 (51)

This implies that the common nulls that have already been
fixed before the orthogonalisation are not changed. The
eliminated component u1 is also removed by the

www.ietdl.org
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orthogonalised beamforming weight, which can be shown in
a similar way. Therefore we can use the orthogonalised
beamforming weight in the estimation process.

The procedure of the proposed method is shown along with
that of the conventional 3-D BDML method in Fig. 5. The
designing stage of the proposed beamforming weights is
highlighted in a shaded box. Each step of the proposed
method is represented in a small box, and then, the
proposed beamforming weights substitute the weights of
the 3-D BDML. The estimation stage is similar to that of
the conventional 3-D BDML except for some points. The
subsequent subsection is dedicated to the description of the
proposed estimation stage, focusing on the difference from
the estimation stage of the 3-D BDML.

3.3 DOA estimation of four signals

Before describing the DOA estimation process, the relations
between the eigenvectors u1, u2 in (37) and array response
vectors a(fi), i ¼ 1, . . . , 4 are examined. Since the four
signals intermingle in the 2-D signal subspace of Rxx as
described in Section 3.1, the two signal components in Rxx

contain all four array response vectors in noiseless
condition; that is, u1 and u2 can be represented by the span
of a(fi), i ¼ 1, . . . , 4. Here, for a conceptual explanation,
we assume that a(fi), i ¼ 1, . . . ,4 are mutually orthogonal.
Then, one of u1 and u2 can be represented by the span of
a(f1) and a(f2), and the other can be represented by the
span of a(f3) and a(f4). Here, u1 is eliminated in Rxx by
the beamforming weights. If, for example, u1 corresponds to
a(f1) and a(f2), a(f3) and a(f4) can be estimated by the
3-D BDML with Rxx–P1. In addition, since the nulls in the
beamforming weights are formed such that u1 is eliminated,
a(f1) and a(f2) are also estimated by the 3-D BDML with
P1. However, a(fi), i ¼ 1, . . . , 4 are not orthogonal in
general, and hence, 3-D BDML with Rxx or Rxx–P1 does
not works, which will be shown in Section 4. The
derivation for the solution in a general case is given below.

First, remind that the 1-D projection vector is denoted by v
as in (12). By the definition in (7) and (8), v is orthogonal to
the signal space in the 3-D beamspace domain. As signal
space is reduced to be 2-D as in (47), there exists a vector
which is orthogonal to the signal space in the 3-D
beamspace domain, and hence, v can be obtained.
Moreover, v is orthogonal to the product of the
beamforming weight and the array response vectors for all

Fig. 5 Overall procedure of the conventional and proposed
methods (l1: the largest eigenvalue of R̂xx, u1: eigenvector
associated with l1, v: eigenvector associated with the largest
eigenvalue of Re[R̂bb])
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the four directions; that is

vTW H a(fi) = 0, i = 1, 2, 3, 4 (52)

The proof of (52) is provided in Appendix 7.2. This indicates
that the orthogonality between v and the span of the four
beamspace array response vectors, WHa(fi), is preserved in
spite of the elimination of the LPC. Therefore all the four
DOAs of the signals are estimated by solving (52).

Specifically, with the substitution of v ¼ [v1, v2, v3] in (52)
and some manipulations, we obtain

e−j(M/2−1/2)fi(v1wH
1 z(zi) + v2wH

2 z(zi) + v3wH
3 z(zi)) = 0,

i = 1, 2, 3, 4 (53)

where w1, w2 and w3 are the columns of W which represent
the beamforming weights of the lower, centre, and upper
beams, respectively, and i represents the index of the
DOAs. The M × 1 complex vector z(zi) is represented as

z(zi) = [1, zi, z2
i , . . . , zM−1

i ]T (54)

with

zi = ejfi , i = 1, 2, 3, 4 (55)

Then, zi’s are the four roots of the (M–1)th order polynomial,
e(z), which is defined as

e(z) W v1wH
1 z(z) + v2wH

2 z(z) + v3wH
3 z(z) (56)

Since we have designed the beamforming weights to have
(M–5) common nulls, each term of (56) still has the
common roots corresponding to the common nulls, and
hence, (56) can be represented as

e(z) =
∏M−5

k=1

(z − rk )

[ ]
q(z) (57)

W d(z)q(z) (58)

where d(z) is an (M–5)th order polynomial that represents the
product of the common root term. Furthermore, q(z) is a
quotient term which is a quartic polynomial because there
are four uncommon nulls. Thus, we can estimate the DOAs
by solving q(z) ¼ 0. The way to obtain the coefficients of
q(z) is provided in Appendix 7.3. After finding out the
coefficients, the equation, q(z) ¼ 0 can be solved using
Ferrari’s method, and the solutions represent the estimated
DOAs of the two objects.

4 Simulations

In this section, we compare the performance of the proposed
method to those of the conventional methods by numerical
simulations. In all the following simulations, a ULA with
M ¼ 24 element was considered in the presence of two
objects with N ¼ 10 snapshots. In the beamspace domain
estimation, the accuracy depends on the DOAs of the
signals [17]. Therefore in the first simulation, we
demonstrate the averaged estimation error over the varying
DOAs of the two objects to compare the overall
performances. The estimation error is calculated as the
IET Radar Sonar Navig., 2012, Vol. 6, Iss. 1, pp. 9–20
doi: 10.1049/iet-rsn.2010.0163



www.ietdl.org
difference between the true DOA and the estimated DOA of
the primary object through the direct path.

The direct echoes from the two objects were assumed to
have DOAs varying from u1 ¼ 18 to u1 ¼ 58 with a 18 step,
and the DOAs of the specular echoes were assumed to be the
negative value of the direct DOAs. With this DOA setting,
the angular separation between the direct and specular echoes
of the each object varies approximately from 0.42 to 2.1
times the nominal 3-dB beamwidth. The angular separation
between the two objects varies from 0.21 bandwidths to 0.84
bandwidths. This DOA setting is exactly the same as that in
[20]. In addition, the primary object was assumed to be a
target, which corresponds to the Swerling model II [25].
Therefore a1, the amplitude of direct echo in (19), was
assumed to be a Rayleigh random variable. The second
object was assumed to be a jammer, the direct echo of which
had a constant amplitude for all snapshots [30].

In the first simulation, we assumed a smooth sea for the
reflecting surface. The magnitudes of the reflection
coefficients r1 and r3 were chosen to be 0.9 that is a
practical value for the smooth sea surface in a radar system
[31]. The diffuse reflection can be neglected in such an
environment. Table 1 demonstrates the averaged root mean
square (RMS) error with respect to the phase difference
between the direct and specular echoes using various
methods. The signal-to-noise ratio (SNR) for the direct echo
of the primary object and the jammer-to-noise ratio (JNR)
for the direct echo of the secondary object was assumed to
be 20 dB. The two phase differences (Dc12 and Dc34) were
assumed to be the same. The RMS was computed from the
results of 10 000 independent trials. The conventional
methods considered in this simulation result are the
conventional 3-D BDML, the beamspace root-MUSIC with
five DFT beams (BR-MUSIC 5), and the 3-D BDML with
P1 (or Rxx–P1). The third method is included to show that
the four array response vectors are not mutually orthogonal,
and thus, the estimation cannot be accomplished by the 3-D
BDML with P1 or Rxx–P1. Table 2 shows the results of the
similar numerical simulation, when the dispersed out-of-
band interference was added to the above simulation
environment. The dispersed interference is assumed to
approach from the varying DOA between 168 and 188 for
every sample. The INR of the out-of-band interference was
assumed to be 5 dB. When the out-of-band interference
IET Radar Sonar Navig., 2012, Vol. 6, Iss. 1, pp. 9–20
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does not exist, the proposed method exhibits the minimum
RMS error for the most phase differences values, as can be
seen from Table 1. When phase difference is 108, the
performance of the proposed method was slightly worse
than that of the BR-MUSIC 5 but the difference is very
small. It can be seen from Table 2 that, if the out-of-band
interference exists, the differences between the RMS errors
of the proposed method and those of the conventional
methods become larger compared to the case in Table 1.
With the addition of the out-of-band interference, the RMS
error of the conventional BR-MUSIC 5 is increased by 30
to 40%. However, the RMS error of the proposed method is
increased 25 to 35%, and eventually, exhibits an RMS error
decreased by 2 to 7% compared to that of the conventional
BR-MUSIC 5.

Fig. 6 demonstrates the RMS error with respect to the SNR
for the direct echo of the primary object approaching from the
DOA of u1 ¼ 18. The direct echo of the secondary object was
assumed to have the DOA of u3 ¼ 38 with an JNR of 20 dB.
As for the phase difference, the performance of the beam-
space domain low angle tracking is the best when
Dc ¼ 908 and the worst when Dc ¼ 108 [20], which is in
line with the results shown in Tables 1–3. To cope with the
phase difference, the frequency diversity method [20] has
been proposed to overcome this problem. As for this
simulation, we assumed that Dc12 ¼ Dc34 ¼ 458. The RMS
error of proposed method and the conventional BR-MUSIC
5 are compared with each other in Fig. 6. The RMS error
levels of the other conventional methods are much higher
than that of the proposed methods (they are above 1.58),
and hence, is omitted. Fig. 7 shows the results of the
similar numerical simulation when the dispersed out-of-
band interference exists. The DOA and the INR of the
dispersed interference are the same as those in Table 2,
respectively. Comparing Figs. 6 and 7, we can see that the
proposed method is slightly better than the BR-MUSIC 5
when there is no out-of-band interference. However, when
the out-of-band interference exists, the difference between
the RMS error of the proposed method and those of the
conventional methods increases. The RMS error of
proposed method drops around 15% as the SNR is
increased from 20 to 25 dB.

Next, we assume the rougher sea surface by introducing the
diffuse components in the reflections from the two objects.
Table 1 Averaged RMS error with respect to the phase difference when out-of-band interference does not exist (smooth sea surface)

Phase difference, deg 10 30 50 70 90 110 130 150 170

3-D BDML 21.195 7.730 4.517 2.837 2.170 1.765 1.673 1.537 1.878

3-D BDML with P1 (or Rxx–P1) 2.429 1.948 1.663 1.480 1.317 1.118 0.954 0.816 0.924

BR-MUSIC 5 0.664 0.407 0.327 0.291 0.280 0.288 0.325 0.409 0.653

proposed 0.664 0.404 0.323 0.289 0.279 0.287 0.325 0.409 0.652

The smallest RMS is marked by italics characters (using the values before rounding)

Table 2 Averaged RMS error with respect to the phase difference when out-of-band interference exists (smooth sea surface)

Phase difference, deg 10 30 50 70 90 110 130 150 170

3-D BDML 21.302 7.717 4.499 2.861 2.132 1.884 1.710 1.544 1.912

3-D BDML with P1 (or Rxx–P1) 2.420 1.942 1.659 1.485 1.318 1.118 0.962 0.819 0.935

BR-MUSIC 5 0.838 0.569 0.450 0.390 0.368 0.375 0.427 0.567 0.861

proposed 0.844 0.547 0.425 0.369 0.352 0.367 0.423 0.553 0.826

The smallest RMS is marked by italics characters
17
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The magnitude of the reflection coefficients r1 and r3 was
assumed to be dropping to 0.8 due to the rougher surface.
The DOAs of the diffuse reflections from the two objects
were given under the assumption that the diffuse

Fig. 6 RMS error with respect to the SNR without out-of-band
interference (smooth sea surface)

Fig. 7 RMS error with respect to the SNR with out-of-band
interference (smooth sea surface)
18
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component was uniformly lying in the region between the
objects and the radar but excluding the first Fresnel zone
[32]. Here, simulation parameters are as follows: the height
of the L-band radar is 10 m, the ranges to the two objects
are both 10 km, and the RMS of the wave height is 2 m.
The other parameters were assumed to be the same as those
in the previous simulation. Table 3 exhibits the averaged
RMS error with respect to the phase difference between the
direct and the specular echoes using various methods.
Table 4 exhibits the results of the similar numerical
simulation, when the dispersed out-of-band interference
exists. Similar to the results when the smooth surface was
assumed, the proposed method shows the minimum RMS
error at most values of the phase difference regardless of
the out-of-band interference. Moreover, the performance
difference between the proposed method and the BR-
MUSIC 5 becomes noticeable when there is the out-of-band
interference. The RMS error of the proposed method is
decreased by up to 6% from that of the conventional BR-
MUSIC 5, especially when the phase difference is between
30 and 908.

Fig. 8 demonstrates the RMS error with respect to the SNR
with the same simulation environments as in Fig. 6 except
that the diffuse components are included. Fig. 9

Fig. 8 RMS of the averaged error with respect to the SNR without
out-of-band interference (rough sea surface)
Table 3 RMS of the averaged error with respect to the phase difference when out-of-band interference exists (rough sea surface)

Phase difference, deg 10 30 50 70 90 110 130 150 170

3-D BDML 25.341 7.294 3.939 2.620 1.984 2.555 2.275 1.922 2.538

3-D BDML with P1 (or Rxx–P1) 2.413 1.950 1.668 1.494 1.323 1.114 0.933 0.697 0.845

BR-MUSIC 5 0.719 0.438 0.369 0.342 0.344 0.366 0.407 0.493 0.766

proposed 0.716 0.435 0.367 0.340 0.343 0.366 0.408 0.492 0.762

The smallest RMS is marked by italics characters (using the values before rounding)

Table 4 RMS of the averaged error with respect to the phase difference when out-of-band interference exists (rough sea surface)

Phase difference, deg 10 30 50 70 90 110 130 150 170

3-D BDML 25.481 7.419 3.827 2.619 2.125 2.704 2.143 2.079 2.529

3-D BDML with P1 (or Rxx–P1) 2.407 1.949 1.668 1.493 1.323 1.116 0.940 0.702 1.108

BR-MUSIC 5 0.826 0.579 0.468 0.426 0.423 0.447 0.508 0.650 1.070

proposed 0.831 0.558 0.443 0.408 0.411 0.443 0.506 0.643 0.988

The smallest RMS is marked by italic characters
IET Radar Sonar Navig., 2012, Vol. 6, Iss. 1, pp. 9–20
doi: 10.1049/iet-rsn.2010.0163



www.ietdl.org
demonstrates the results when the dispersed out-of-band
interference exists. When the out-of-band interference does
not exist, the proposed method shows similar RMS error to
that by the BR-MUSIC 5. On the other hand, when the out-
of-band interference exists, the RMS error of proposed
method is decreased by up to 16% from that of the
conventional method.

5 Conclusions

This paper presents a low-angle tracking method of two
objects in the 3-D beamspace domain by using a linear
constraint adaptive array. The proposed method makes it
possible to estimate the four DOAs of the signals from two
low-angle objects without increasing the number of beams.
By the proposed method, a pair of coherent signal
components are removed in the beamspace domain
covariance matrix. Therefore, the remaining components
can be localised by using only three beams. Furthermore,
the DOAs of all the four signals are estimated at the end by
utilising the properties of the proposed beamforming
weights. A linearly constrained adaptive array in the form
of a modified GSC grants the necessary properties to the
beamforming weights. The common nulls in each
beamforming weight elicit a quartic equation that has a
closed-form solution. Various numerical simulations exhibit
that the proposed method estimates the DOAs more
accurately than the conventional methods, especially when
dispersed out-of-band interference exists.
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7 Appendix

7.1 Solution for the adaptation weight

If the weight is conjugate centro-symmetric, it should satisfy

w∗
Gi = TwGi, i = 1, 2, 3 (59)

where {}∗ denotes the matrix elementwise complex conjugate
and T is the M × M reverse permutation matrix which can be
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expressed as

T =

0 · · · 0 1
0 · · · 1 0

. .
.

1 · · · 0 0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (60)

As aforementioned, since each column of the constraint
matrix Ci is an array response vector, the constraint matrix
is conjugate centro-symmetric; that is, C∗

i = TCi and the
blocking matrix is also defined to be conjugate centro-
symmetric in (33)–(35); that is, B∗

i = TBi. The expression
of the quiescent weight (32) shows that wqi is also
conjugate centro-symmetric [29]. From (36) and (59), it
becomes

w∗
Gi = w∗

qi − B∗
i w∗

ai = Twqi − TBiw
∗
ai

= TwGi = Twqi − TBiwai (61)

which means that wai should be a real vector. Therefore the
way to obtain the adaptation weight is by solving

[BH
i P1Bi]wai = BH

i P1wqi s.t. wai [ RM (62)

Since the rank of P1 is one whereas [BH
i P1Bi] is a 2 × 2 matrix,

the inverse of [BH
i P1Bi] is not defined. However, (62) can be

solved by separating the real part from the imaginary part.
Then, the obtained solution, wo

ai can be expressed as

wo
ai =

Re{BH
i P1Bi}

Im{BH
i P1Bi}

[ ]† Re{BH
i P1wqi}

Im{BH
i P1wqi}

[ ]
, i = 1, 2, 3 (63)

where ()†denotes the pseudo inverse.

7.2 DOAs and the solution of the quartic equation

The data covariance matrix Rxx in a noiseless case can be
expressed as (17), which is rewritten by

Rxx = A(f)RssA
H (f) (64)

By definition in Section 3.1, s1(n) and s2(n) are coherent and
s3(n) and s4(n) are coherent. Therefore the rank of both Rss

and Rxx are two, and hence, Rxx can be expressed as

Rxx W l1u1uH
1 + l2u2uH

2 (65)

where l1 and l2 are the first and the second eigenvalue and
u1 and u2 are eigenvectors associated with l1 and l2,
respectively. With the equality in (46), the beamspace
covariance matrix can be expressed as

Rbb = W H RxxW

= W H (l1u1uH
1 + l2u2uH

2 )W

= W H (l2u2uH
2 )W (66)

which means that the rank of Rbb is one and Re[Rbb] cannot
be a full rank matrix. Therefore the smallest eigenvalue of
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Re[Rbb] is zero, that is

Re[Rbb]v = Re[W H A(f)RssA
H (f)W ]v = 0 (67)

where v is the eigenvector associated with smallest eigenvalue
0. Since v = 0, the above equation is equivalent to the
following equation

vTRe[W H A(f)RssA
H (f)W ]v = 0 (68)

and the conjugate centro-symmetric property of W and A
yields

vTW H A(f)Re[Rss]A
H (f)Wv = 0 (69)

Since Re[Rss] is full rank unless r3 is zero, vTWHA(f) ¼ 0 and
the four roots of this equation designate the DOAs from the
primary and the secondary objects. If r3 is zero, it can be shown
easily that the three DOAs from the two objects are included in
the four roots of vTWHA(f) ¼ 0. In the presence of the noise, v
is the projection to the signal space and the four roots
correspond to the least square estimation of the DOAs.

7.3 Coefficients of the quartic equation

We can find the coefficients of q(z) in (57) by polynomial
division and can express them as

q0 = e0 (70)

q1 = e1 − dM−6 · q0 (71)

q2 = e2 − dM−7 · q0 − dM−6 · q1 (72)

q4 = eM−1 (73)

q3 = eM−2 − dM−6 · q4 (74)

where qi, ei and di are the coefficients of the ith order term of
the z of q(z), e(z) and d(z), respectively. For (71), (72) and
(74), the (M–6)th coefficient and (M–7)th coefficient of
d(z) can be obtained by the definition of the d(z) found in
(58) and simple manipulation yields

dM−6 = −
∑M−3

i=3

ri (75)

dM−7 = − 1

2

∑M−3

i=3

ri

( )2

−
∑M−3

i=3

r2
i

⎛
⎝

⎞
⎠ (76)

where r3, r4, . . ., rM23 are the roots of d(z) if we order the
roots of e(z) in the phase order (from zero to 2p). The roots
of d(z) are the nulls defined in (31), and the sum and the
square sum of roots of d(z) can be expressed as follows via
simple manipulations

∑M−3

i=3

ri = − 1 + 2 cos
2p

M

( )
+ 4 cos

2p

M

( )( )
(77)

∑M−3

i=3

r2
i = − 1 + 2 cos

4p

M

( )
+ 4 cos

8p

M

( )( )
(78)
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