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Nonlinear Projection Trick in kernel methods: An
alternative to the Kernel Trick

Nojun Kwak, Member, IEEE,

Abstract—In kernel methods such as kernel PCA and support
vector machines, the so called kernel trick is used to avoid direct
calculations in a high (virtually infinite) dimensional kernel space.
In this paper, based on the fact that the effective dimensionality
of a kernel space is less than the number of training samples, we
propose an alternative to the kernel trick that explicitly maps the
input data into a reduced dimensional kernel space. This is easily
obtained by the eigenvalue decomposition of the kernel matrix.
The proposed method is named as the nonlinear projection trick in
contrast to the kernel trick. With this technique, the applicability
of the kernel methods is widened to arbitrary algorithms that do
not utilize the dot product. The equivalence between the kernel
trick and the nonlinear projection trick is shown for several
conventional kernel methods. In addition, we extend PCA-L1,
which utilizes L1-norm instead of L2-norm (or dot product),
into a kernel version and show the effectiveness of the proposed
approach.

Index Terms—Kernel methods, nonlinear projection trick,
KPCA, Support vector machines, KPCA-L1, dimensionality re-
duction.

I. INTRODUCTION

In pattern recognition and machine learning societies, ker-
nel methods have started to gain attention since mid-1990s
and have been successfully applied in pattern classification,
dimensionality reduction, regression problems and so on [1]
[2] [3] [4] [5] [6] [7] [8] [9] [10].

In kernel methods, the kernel trick is used to simplify the
optimization in a high dimensional feature space1 without an
explicit mapping of input data into the feature space. This
is done by introducing a kernel function of two elements
in the input space and regarding it as a dot product of
the corresponding two elements in the kernel space. If the
optimization problem contains the elements in the feature
space only in the form of the dot product, then the problem
can be solved without knowing the explicit mapping. The
dimension of the feature space, which is unmeasurable and
can be infinite, depends on the specific kernel function used.

Because the kernel trick takes care of the dot product in the
kernel space rather than the mapping itself, there has been little
attention on the mapping of the input data to the feature space.
However, there are many optimization problems that cannot be
formulated by the dot product only, thus could not be extended
to a kernel space by the kernel trick. In addition, without the
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1The terms feature space and kernel space are used interchangeably to
denote the high dimensional space defined by a kernel function.

knowledge of the mapped image in the feature space, it is
difficult to solve data reconstruction problem by the kernel
methods. Although, this pre-image problem in kernel PCA has
been tackled in [11] and [12], a direct mapping of the input
data to a vector in the feature space by kernel methods has
not been studied yet.

It is well known that the mapped images of the finite number
of training samples constitute a subspace of the possibly infi-
nite dimensional feature space [1]. In addition, most operations
in the kernel methods are performed in the training stage,
which are done on this finite dimensional subspace of the
possibly infinite dimensional feature space. Based on this idea,
in this paper, we doubt and answer the question “Can we find
a direct mapping of the input data to a vector in the feature
space by kernel methods?”

This paper proposes an alternative method to the kernel
trick which directly maps input samples into a reduced di-
mensional kernel space. The proposed approach is named as
the nonlinear projection trick in contrast to the kernel trick.
The proposed nonlinear kernel trick widens the applicability
of kernel methods to any algorithms (even if their formulation
does not rely only on the dot product) that are applicable in
the input space. We also show the equivalence between the
proposed nonlinear projection trick and the kernel trick by
some examples. As an application of the nonlinear kernel trick,
PCA-L1 [13], whose objective function is in L1-norm rather
than L2-norm, is extended to a kernel version, which would
not have been possible by the kernel trick.

The paper is organized as follows. In the next section,
the structure of a kernel space such as the bases and the
coordinates are studied. In section III, the proposed nonlinear
projection trick is formulated. The proposed approach is
applied to the conventional kernel methods such as KPCA [1],
KSVM (kernel support vector machine) [2] and KFD (kernel
fisher discriminant) [4] in Section IV to show the equivalence
between the kernel trick and the nonlinear projection trick.
In addition, a kernel version of PCA-L1 (KPCA-L1) which
could not have been derived from the conventional kernel trick
is derived by the nonlinear projection trick in this section.
Finally, conclusions follow in Section V.

II. THE STRUCTURE OF A KERNEL SPACE

In this section, the structure, such as the bases and the corre-
sponding coordinates, of a kernel space with finite number of
training samples is studied. Before going on, in the following
subsection, we briefly define the notations and variables that
will be used in this paper.
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Fig. 1. Projections in the feature space.

A. Notations

• X , [x1, · · · , xn] ∈ Rd×n : the training data matrix
where d is the dimension of the input space and n is the
number of training samples.

• Φ(X) , [ϕ(x1), · · · , ϕ(xn)] ∈ Rf×n : the mapped
training data in the f -dimensional feature space after the
mapping ϕ(·). We consider ϕ(xi) as a vector with respect
to a countable orthornormal basis of the respective RKHS
(reproducing kernel Hilbert space). Φ(X) is assumed to
have zero mean, i.e.,

∑n
i=1 ϕ(xi) = 0. Note that f can

be infinite.
• k(x, y) , ⟨ϕ(x), ϕ(y)⟩ = ϕ(x)Tϕ(y) ∈ R: a kernel

function of any two inputs x, y ∈ Rd.
• K , Φ(X)TΦ(X) = [k(xi, xj)] ∈ Rn×n: a kernel

matrix of the training data. The rank of K is r. It becomes
r ≤ n− 1 because Φ(X) is assumed to be centered.

• k(x) , Φ(X)Tϕ(x) ∈ Rn: a kernel vector of any x ∈
Rd.

• P : an r-dimensional subspace of the feature space formed
by the mapped training samples Φ(X).

• ϕP (x): the projection of ϕ(x) onto P . If x lies on P
(e.g., one of the training samples), ϕP (x) = ϕ(x).

• ϕw(x): the projection of ϕ(x) onto a one-dimensional
vector space formed by a vector w ∈ Rf . In most cases,
the vector w is restricted to reside in the subspace P , i.e.,
w = Φ(X)α for some α ∈ Rn.

The relationship among ϕ(x), ϕP (x) and ϕw(x) is illus-
trated in Fig. 1. Note that if w resides in P as in the figure,
then wTϕ(x) = wTϕP (x).

B. The bases and the coordinates of a kernel space

It is well known that the effective dimensionality 2 of the
feature space defined by the kernel function k(·, ·) given a
finite number of training samples X is finite [1]. In this
subsection, the bases of the subspace spanned by the mapped
training data Φ(X), as well as the coordinate of the mapping
ϕ(x) of an unseen data x ∈ Rd are specified.

Lemma 1: (Bases of P ) Let r be the rank of K and
K = UΛUT be an eigenvalue decomposition of K com-
posed of only the nonzero eigenvalues of K where U =

2The term intrinsic dimensionality is defined and widely used in the ma-
chine learning society [14]. Because projecting methods based on eigenvalue
decomposition tends to overestimate the intrinsic dimensionality [15], the
effective dimensionality can be interpreted as an upper bound on intrinsic
dimensionality of a kernel space.

[u1, · · · , ur] ∈ Rn×r whose columns are orthonormal and
Λ = diag(λ1, · · · , λr) ∈ Rr×r. Then, the columns of Π ,
Φ(X)UΛ− 1

2 = [π1, · · · , πr] ∈ Rf×r constitute orthonormal
bases of P .

Proof: Because K is the outer product of Φ(X) and itself,
it is obvious that r, the rank of K, is the dimension of the
subspace spanned by Φ(X). By utilizing the orthonormality of
U (UTU = Ir) and the definition of K (K = Φ(X)TΦ(X)),
it is easy to check that ΠTΠ = Ir and Π becomes orthonormal
bases of P .

From the above lemma, πi = Φ(X)uiλ
− 1

2
i , (1 ≤ i ≤ r)

becomes the i-th basis vector of P , where ui and λi are the
i-th unit eigenvector and eigenvalue of K respectively.

Theorem 2: (Coordinate of ϕP (x)) For any x ∈ Rd, the
projection ϕP (x) of ϕ(x) onto P is obtained by ϕP (x) =
Πy where y = Λ− 1

2UT k(x), which can be regarded as the
coordinate of ϕP (x) in the cartesian coordinate system whose
orthonormal bases are Π.

Proof: Because ϕP (x) is in P , ϕP (x) = Πy for some
y ∈ Rr. If ϕP (x) is a projection of ϕ(x) onto P whose bases
are Π, it should minimize ||ϕ(x) − ϕP (x)||2. Therefore, the
optimal y should satisfy the following.

y⋆ = argmin
y
||ϕ(x)−Πy||22

= argmin
y
||ϕ(x)||22 − 2ϕ(x)TΠy + yTΠTΠy

= argmin
y

yT y − 2ϕ(x)TΠy

(1)

The solution of the quadratic problem is y = ΠTϕ(x) =
Λ− 1

2UT k(x).
Note that ϕP (x) can be regarded as a nonlinear mapping of

x onto the r-dimensional subspace spanned by Π. From the
above theorem, this mapping can further be thought of as a
direct mapping of x to y = Λ− 1

2UT k(x).
Corollary 3: (Coordinates of the mapped training data)

The coordinate of Φ(X) is Y = Λ
1
2UT .

Proof: It is easy to show that the training data X is
mapped to Y = Λ− 1

2UTK = Λ− 1
2UTUΛUT = Λ

1
2UT . Note

that K = UΛUT = Y TY 3.
Lemma 4: (Mean of the mapped training data) The mapped

training data Y = Λ
1
2UT are centered, i.e.,

∑n
i=1 yi = 0.

Proof: From Theorem 2, yi = Λ− 1
2UT k(xi)

and it becomes
∑n

i=1 yi = Λ− 1
2UT

∑n
i=1 k(xi) =

Λ− 1
2UTΦ(X)T

∑n
i=1 ϕ(xi) = 0.

Lemma 5: (Coordinate of the residual) For any x ∈ Rd,
let X ′ , [X,x] ∈ Rd×(n+1) and Φ(X ′) , [Φ(X), ϕ(x)] ∈
Rf×(n+1). Let δϕP (x) , ϕ(x)−ϕP (x) be the residual vector
of ϕ(x) with respect to P . If δϕP (x) ̸= 0, Φ(X ′) lies in a
(r + 1)-dimensional subspace containing P . Furthermore, the
coordinate of the mapped training data Φ(X) is [Y T , 0]T ∈
R(r+1)×n while the coordinate of ϕ(x) becomes [yT , yr+1]

T ∈
Rr+1 where yr+1 =

√
k(x, x)− yT y.

Proof: It is obvious that δϕP (x) is orthogonal to P
because ϕP (x) is the projection of ϕ(x) onto P . Furthermore,

3Note that K can be directly decomposed into K = Y ′TY ′ by Cholesky
decomposition. In this case, Y ′ is a unique upper triangle matrix. The singular
value decomposition of Y ′ is Y ′ = V Λ

1
2 UT = V Y for some unitary matrix

V . Therefore, Y ′ can be interpreted as a rotation of Y .
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if the residual vector δϕP (x) ̸= 0, δϕP (x) adds one dimension
to ϕ(x), thus Φ(X ′)(= [Φ(X), ϕ(x)]) lies in a (r + 1)-
dimensional subspace P ′ of the f -dimensional feature space
which contains P .

If we retain the bases Π(= [π1, · · · , πr]) of P as the r bases
of P ′, then the new bases Π′ of P ′ becomes Π′ = [Π, πr+1]

where πr+1 = δϕP (x)
||δϕP (x)||2 .

In the coordinate system of Π′, the first r coordinates of the
mapped training data Φ(X) are unchanged with the (r+1)-st
coordinate being identically 0. Likewise, the first r coordinates
of ϕ(x) are identical to the coordinate of ϕP (x), i.e., y, while
the (r + 1)-th coordinate becomes the length (norm) of the
residual vector δϕP (x).

Finally, because ϕ(x) = ϕP (x) + δϕP (x) and
ϕP (x)⊥δϕP (x), it becomes

||δϕP (x)||22 = ||ϕ(x)||22 − ||ϕP (x)||22
= k(x, x)− yT y

(2)

by Pythagorean trigonometric identity.

Lemma 6: (Coordinate of a vector w) If a vector w in P
can be written in the form of w = Φ(X)α, then it can also
be written as w = Πβ where β = Y α.

Proof: Because Π is an orthonormal bases of P , any
vector w in P can be written as w = ΠΠTw. Therefore,

w = ΠΛ− 1
2UTΦ(X)TΦ(X)α = ΠΛ− 1

2UTKα

= ΠY α = Πβ.
(3)

Note that β = Y α is the coordinate of w in P .
Corollary 7: (Coordinate of ϕw(x)) The projection ϕw(x)

of ϕ(x) onto w can be obtained by ϕw(x) = Πγ where γ =
ββT

βT β
y.
Proof: Let w′ = w

||w||2 be a unit vector. Then

ϕw(x) = w′(w′Tϕ(x)) = w′w′T (ϕP (x) + δϕP (x))

= w′w′TϕP (x) = w′w′TΠΛ− 1
2UT k(x)

=
1

βTβ
ΠββTΠTΠΛ− 1

2UT k(x)

= Π
ββT

βTβ
Λ− 1

2UT k(x) = Π
ββT

βTβ
y = Πγ.

(4)

In the second equality, δϕP (x) is orthogonal to P , thus also
orthogonal to w which lies in P . Note that if ||w||2 = 1, it
becomes ||β||2 = 1 and γ = ββT y.

III. THE PROPOSED METHOD

In this section, by using the results in the previous section,
we give a new interpretation of kernel methods that any
kernel method is equivalent to applying the corresponding
conventional method applicable in the input space to the data
with the new coordinates. Before doing that, we deal with the
problem of centerization in the feature space.

A. Centerization

In the previous section, the training data Φ(X) are assumed
to be centered in the feature space, i.e.,

∑n
i=1 ϕ(xi) = 0. If

this condition is not satisfied, P which is made up of {p : p =∑n
i=1 αiϕ(xi), αi ∈ R} is not a subspace but a manifold in

the feature space, i.e., 0 /∈ P . Therefore, the centerization is
a necessary step in practical application of the proposed idea
on kernel methods.

Let Ψ(X) , [ψ(x1), · · · , ψ(xn)] ∈ Rf×n be the uncen-
tered data in the feature space and ψ̄ , 1

n

∑n
i=1 ψ(xi) =

1
nΨ(X)1n ∈ Rf be the mean of Ψ(X). Here, 1n ,
[1, · · · , 1]T ∈ Rn is a vector whose components are identically
1. By subtracting the mean ψ̄ from the uncentered data Ψ(X),
the centered data Φ(X) can be obtained as

Φ(X) = Ψ(X)− ψ̄1T
n = Ψ(X)(In −

1

n
1n1

T
n )

= Ψ(X)(In − En).
(5)

where In is the n×n identity matrix and En , 1
n1n1

T
n is an

n× n matrix whose components are identically 1
n .

Consider an uncentered kernel function κ(a, b) ,
ψ(a)Tψ(b). Given this kernel function and the training data
X , the uncentered kernel matrix K is defined as K ,
[κ(xi, xj)] ∈ Rn×n. Writing K in matrix form, it becomes
K = Ψ(X)TΨ(X). Then, from (5), the centered positive
definite kernel matrix K can be obtained as

K = Φ(X)TΦ(X) = (In − En)K(In − En) (6)

Once a test data x ∈ Rd is presented, an uncentered
kernel vector κ(x) , [κ(x1, x), · · · , κ(xn, x)]T ∈ Rn can be
computed. Because κ(xi, x) = ψ(xi)

Tψ(x), if we subtract the
mean ψ̄ from both ψ(xi) and ψ(x), we can get the centered
kernel vector k(x) from the uncentered kernel vector κ(x) as
follows:

k(x) = Φ(X)Tϕ(x)

= [Ψ(X)(In − En)]
T (ψ(x)− ψ̄)

= (In − En)Ψ(X)T (ψ(x)− 1

n
Ψ(X)1n)

= (In − En)[κ(x)−
1

n
K1n].

(7)

B. Kernel methods: nonlinear projection trick

Now, a new framework of kernel methods referred to as
nonlinear projection trick is presented in this part. Below, a
general kernel method is denoted as KM while its correspond-
ing method in the input space is denoted as M . As inputs
to KM , the training and test data X and x respectively, a
specific (uncentered) kernel function κ(·, ·) and a method M
are given. Here, M can be any feature extraction method such
as PCA, LDA and ICA as well as any classifier/regressor such
as SVM/SVR.

Algorithm: Kernel method KM (Input: X , x, κ(·, ·),
method M )

• Training phase
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1) Compute the uncentered kernel matrix K such that
Kij = κ(xi, xj).

2) Compute the centered kernel K by K = (In −
En)K(In − En).

3) Obtain the eigenvalue decomposition of K such that
K = UΛUT where Λ is composed of only the
nonzero eigenvalues of K and the columns of U
are the corresponding unit eigenvectors of K.

4) Compute Y , the coordinates of Φ(X), by Y =
Λ

1
2UT .

5) Apply the method M to Y , then it is equivalent
to applying the kernel method KM to X , i.e.,
M(Y ) ≡ KM(X).

• Test phase
1) Compute the uncentered kernel vector κ(x).
2) Compute the centered kernel vector k(x) by k(x) =

(In − En)[κ(x)− 1
nK1n].

3) Obtain y, the coordinate of ϕ(x), by y =
Λ− 1

2UT k(x).
4) Apply the method M to y, then it is equivalent to

applying the kernel method KM to x, i.e., M(y) ≡
KM(x).

IV. APPLICATIONS

In this section, the nonlinear kernel trick is applied to several
conventional kernel methods such as KPCA, KFD, Kernel
SVM and so on. In doing so, we show that different kernel
methods can be interpreted in the unified framework of apply-
ing conventional linear methods to the reduced dimensional
feature space. As a new contribution, we extend PCA-L1 [13]
to a kernel version.

A. Kernel PCA (KPCA)

1) Conventional derivation: In the conventional KPCA,
the objective is to find a projection vector w in the feature
space that minimizes the sum of squared error or equivalently
maximizes the variance along with the projection direction.
The problem becomes

w⋆ = argmax
w

||wTΦ(X)||22 = argmax
w

wTΦ(X)Φ(X)Tw

such that ||w||2 = 1.
(8)

The solution of (8) can be found by the eigenvalue de-
composition of Sf , Φ(X)Φ(X)T , the scatter matrix in the
feature space, i.e.,

Sfwi = λiwi, λ1 ≥ λ2 ≥ · · · ≥ λm. (9)

Using the fact that w lies in P , w can be written as w =
Φ(X)α, and (9) becomes

Φ(X)Kαi = λiΦ(X)αi, λ1 ≥ λ2 ≥ · · · ≥ λm. (10)

Left multiplying both sides with Φ(X)T , the problem
becomes finding {αi}mi=1 that satisfies K2αi = λiKαi, which
further reduces to finding {αi}mi=1 such that

Kαi = λiαi, λ1 ≥ λ2 ≥ · · · ≥ λm. (11)

with the constraint αT
i Kαi = 1. The solution {αi}mi=1 is the

eigenvectors of K corresponding to the m largest eigenvalues.
Now the i-th solution that satisfies αT

i Kαi = 1 becomes

αi = uiλ
− 1

2
i . (12)

Let W , [w1, · · · , wm] ∈ Rf×m, then the projection of
ϕ(x) onto W gives an m-dimensional vector z = WTϕ(x).
Because wi = Φ(X)αi, it further reduces to z = AT k(x)
where A , [α1, · · · , αm] ∈ Rn×m. From (12), it becomes

A = [u1λ
− 1

2
1 , · · · , umλ

− 1
2

m ] = UmΛ
− 1

2
m (13)

where Um , [u1, · · · , um] and Λm , diag(λ1, · · · , λm) and
finally the nonlinear projection of x becomes

z = Λ
− 1

2
m UT

mk(x). (14)

2) New derivation: In the new interpretation of kernel
methods presented in the previous section, the coordinates
of mapped training data Φ(X) are firstly computed as Y =
Λ

1
2UT ∈ Rr×n from Theorem 2. Then, the problem becomes

finding maximum variance direction vector in Rr. It is easy
to show that the scatter matrix of Y becomes Y Y T = Λ
because the mapped training data Y are centered (Lemma
2) and ei becomes the i-th eigenvector of the scatter matrix
and therefore, the i-th principal vector. Here, ei ∈ Rr is a
column vector whose elements are identically zero except the
i-th element which is one.

Once a new data x is presented, by Theorem 2, it is projected
to y = Λ

1
2UT k(x) and the i-th projection of y becomes

zi = eTi y = eTi Λ
− 1

2UT k(x) = λ
− 1

2
i uTi k(x). (15)

Now z , [z1, · · · , zm]T , the m-dimensional nonlinear projec-
tion of x, becomes

z = Λ
− 1

2
m UT

mk(x). (16)

Note that (16) is identical to (14) and we can see that the
new interpretation of KPCA is equivalent to the conventional
derivation. However, by the new interpretation, we can obtain
the exact coordinates of Φ(X) and the corresponding princi-
pal vectors, while conventional derivation cannot find those
coordinates.

B. Kernel SVM (KSVM)

1) Conventional derivation: Given some training data
{(xi, ci)}ni=1 where xi ∈ Rd and ci ∈ {−1, 1}, the kernel
SVM tries to solve the optimization problem:

(w⋆, b⋆) = argmin
(w,b)

1

2
||w||22

subject to ci(w
Tϕ(xi) + b) ≥ 1 ∀i = 1, · · · , n

(17)

By introducing Lagrange multipliers {αi}ni=1, the above
constrained problem can be expressed as the dual form:

α⋆ = argmax
α

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjcicjk(xi, xj)

subject to
n∑

i=1

αici = 0 and αi ≥ 0 ∀i = 1, · · · , n
(18)
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Once we solve the above dual problem, w can be computed
thanks to α terms as w =

∑n
i=1 αiciϕ(xi) and b can be

computed so that it meets the KKT condition αi[ci(w
Tϕ(xi)+

b)− 1] = 0 for all i = 1, · · · , n.
Once a test sample x is presented, it can be classified as

sgn(wTϕ(x)+b). Note that wTϕ(x) =
∑n

i=1 αicik(xi, x) and
we do not have to find an explicit expression for w in both
the training and the test phase.

2) New derivation: In the new derivation, given the training
data {(xi, ci)}ni=1, X = [x1, · · · , xn] is firstly mapped to Y =
Λ

1
2UT = [y1, · · · , yn] and then a linear SVM is solved for
{yi, ci}ni=1.

The primal problem becomes

(v⋆, d⋆) = argmin
(v,d)

1

2
||v||22

subject to ci(v
T yi + d) ≥ 1 ∀i = 1, · · · , n

(19)

and the corresponding dual problem is

β⋆ = argmax
β

n∑
i=1

βi −
1

2

n∑
i,j=1

βiβjcicjy
T
i yj

subject to
n∑

i=1

βici = 0 and βi ≥ 0 ∀i = 1, · · · , n
(20)

Note that because k(xi, xj) = yTi yj , (18) and (20) are
exactly the same problem and it becomes β = α and d = b.
In this case, v can be explicitly found as v =

∑n
i=1 βiciyi.

Once a test sample x is presented, it is firstly mapped to
y = Λ− 1

2UT k(x) and then classified as sgn(vT y + d).

C. Kernel Fisher discriminant (KFD)

1) Conventional derivation: In the conventional KFD,
which is a kernel extension of LDA (linear discriminant
analysis), the objective is to find a projection vector w in the
feature space such that the ratio of the between-class variance
and the within-class variance after the projection is maximized.
Given C class training data {(xi, ci)}ni=1 where xi ∈ Rd and
ci ∈ {1, · · · , C}, the problem becomes

w⋆ = argmax
w

wTSΦ
Bw

wTSΦ
Ww

. (21)

Here

SΦ
B ,

n∑
i=1

(ϕ(xi)− ϕ̄)(ϕ(xi)− ϕ̄)T ∈ Rf×f (22)

and

SΦ
W ,

n∑
i=1

(ϕ(xi)− ϕ̄ci)(ϕ(xi)− ϕ̄ci)T ∈ Rf×f (23)

are the between scatter and the within scatter matrices in the
feature space respectively, where ϕ̄ =

∑n
i=1 ϕ(xi) and ϕ̄c ,

1
nc

∑
i∈{j|cj=c} ϕ(xi) are the total mean and class mean in the

feature space respectively. The term nc denotes the number of
training samples whose class identity is c. As in the previous
section, without loss of generality, we assume that Φ(X) is
centerized, i.e., ϕ̄ = 0 and the between scatter matrix becomes

SΦ
B = Φ(X)Φ(X)T . Note that SΦ

B in (22) can also be written
as SΦ

B =
∑C

c=1 nc(ϕ̄c − ϕ̄)(ϕ̄c − ϕ̄)T .
Restricting w in P , w can be written as w = Φ(X)α and

it becomes wTϕ(xi) = αT k(xi). Using this, (21) becomes

α⋆ = argmax
α

αTSK
B α

αTSK
Wα

(24)

where
SK
B = K2 ∈ Rn×n (25)

and

SK
W =

n∑
i=1

(k(xi)− k̄ci)(k(xi)− k̄ci)T ∈ Rn×n. (26)

Here, k̄ci , 1
nc

∑
i∈{j|cj=c} k(xi).

The solution of (24) can be obtained by solving the follow-
ing generalized eigenvalue decomposition problem

SK
B αi = λSK

Wαi, λ1 ≥ λ2 ≥ · · · ≥ λm. (27)

Once obtaining {αi}mi=1, for a given sample x, an m-
dimensional nonlinear feature vector z ∈ Rm is obtained by
the dot product of W , [w1, · · · , wm] = Φ(X)[α1, · · · , αm]
and ϕ(x), i.e., z = WTϕ(x) = AT k(x), where A ,
[α1, · · · , αm] ∈ Rn×m.

2) New derivation: In the new derivation of KFD, for given
training data X , a (centerized) kernel matrix K is computed,
then its eigenvalue decomposition K = UΛUT is utilized to
get the nonlinear mapping Y = Λ

1
2UT . Then, its within scatter

and between scatter matrices are computed as

SY
W =

n∑
i=1

(yi − ȳci)(yi − ȳci)T ∈ Rr×r (28)

and

SY
B =

C∑
c=1

nc(ȳc − ȳ)(ȳc − ȳ)T =

n∑
i=1

yiy
T
i = Y Y T ∈ Rr×r

(29)
respectively, where ȳ and ȳc are the total mean and the class
mean of Y . Recall that ȳ = 0 from Lemma 3.

Applying LDA directly to Y , the objective becomes finding
β ∈ Rr such that

β⋆ = argmax
β

βTSY
Bβ

βTSY
Wβ

. (30)

Noting that yi = Λ− 1
2UT k(xi) (from Theorem 2), the numer-

ator becomes

βTSY
Bβ = βTΛ− 1

2UTKKUΛ− 1
2 β = αTK2α (31)

where α = UΛ− 1
2 β. Likewise the denominator becomes

βTSY
Wβ = αT

(
n∑

i=1

(k(xi)− k̄ci)(k(xi)− k̄ci)T
)
α (32)

Replacing (31) and (32) into (30), we can see the problem
becomes identical to (24). Furthermore, because α = UΛ− 1

2β,
if we multiply both sides with Λ

1
2UT to the left, β =

Λ
1
2UTα = Y α holds, which was anticipated in Lemma 5.
After obtaining {βi}mi=1, z, the nonlinear projection of x

can be obtained by the dot product of B , [β1, · · · , βm] and
y = Λ− 1

2UT k(x). Then z = BTΛ− 1
2UT k(x) = AT k(x).
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D. Kernel PCA-L1 (KPCA-L1)

Until now, we presented examples of application of the new
kernel interpretation to the existing kernel methods such as
KPCA, KSVM and KFD. In this subsection, we show that this
interpretation of kernel methods is applicable to algorithms
which do not rely on the dot product, thus to which kernel
trick is not applicable.

In [13], PCA-L1, a robust version of PCA which maximizes
the dispersion of the projection was introduced. Given training
data X , the objective of PCA-L1 is to find a set of projection
vectors w’s that solve the following optimization problem:

w⋆ = argmax
w

||wTX||1 = argmax
w

n∑
i=1

|wTxi|

subject to ||w||2 = 1.

(33)

For information, the algorithm PCA-L1 is presented below.

Algorithm: PCA-L1 (Input: X)

1) Initialization: Pick any w(0). Set w(0) ←
w(0)/||w(0)||2 and t = 0.

2) Polarity check: For all i ∈ {1, · · · , n}, if wT (t)xi < 0,
pi(t) = −1, otherwise pi(t) = 1.

3) Flipping and maximization: Set t ← t + 1 and w(t) =∑n
i=1 pi(t− 1)xi. Set w(t)← w(t)/||w(t)||2.

4) Convergence check:
a. If w(t) ̸= w(t− 1), go to Step 2.
b. Else if there exists i such that wT (t)xi = 0, set

w(t) ← (w(t) + ∆w)/||w(t) + ∆w||2 and go
to Step 2. Here, ∆w is a small nonzero random
vector.

c. Otherwise, set w⋆ = w(t) and stop.

This problem formulation can be easily extended to a kernel
version by replacing X with Φ(X) and the problem becomes

w⋆ = argmax
w

||wTΦ(X)||1 = argmax
w

n∑
i=1

|wTϕ(xi)|

subject to ||w||2 = 1.

(34)

Note that the kernel trick cannot be applicable to the above
problem because the problem is not formulated based on L2-
norm.

By Lemma 1, w can be expressed using the bases Π as w =
Πβ and from Theorem 2 wTΦ(X) can be expressed as βTY .
Furthermore, the constraint ||w||2 = 1 becomes ||β||2 = 1
because the columns of Π are orthonormal. Therefore, (34)
becomes

β⋆ = argmax
β

||βTY ||1 subject to ||β||2 = 1. (35)

Because the form of (35) is exactly the same as (33), the
conventional PCA-L1 algorithm can directly be applied to Y
to obtain the KPCA-L1 algorithm.

Note that this is a simple example of making a kernel
version of an algorithm by using the nonlinear projection trick.
The point is that this trick can be applied to an arbitrary
method as shown in Section III.

V. CONCLUSIONS

This paper proposed a kernel method that directly maps the
input space to the feature space by deriving an exact coor-
dinates of the mapped input data. In the conventional kernel
methods, the kernel trick is used to avoid direct nonlinear map-
ping of input data onto a high (could be infinite) dimensional
feature space. Instead, the dot products of the mapped data
are converted to kernel functions in the problems to be solved,
making the problems solvable without ever having to explicitly
map the original input data into a kernel space. However, the
applicability of the kernel trick is restricted to problems where
the mapped data appear in the problem only in the form of
dot products. Therefore, arbitrary methods that do not utilize
the dot product (or L2-norm) could not be extended to kernel
methods.

In this paper, based on the fact that the effective dimen-
sionality of a kernel space is less than the number of training
samples, an explicit mapping of the input data into a reduced
kernel space is proposed. This is obtained by eigenvalue de-
composition of the kernel matrix. With the proposed nonlinear
projection trick, the applicability of the kernel methods is
widened to arbitrary methods that can be applied in the input
space. In other words, not only the conventional kernel meth-
ods based on L2-norm optimization such as KPCA and kernel
SVM, but the methods utilizing other objective functions can
also be extended to kernel versions. The equivalence between
the kernel trick and the nonlinear projection trick is shown in
several conventional kernel methods such as KPCA, KSVM
and KFD. In addition, we extend PCA-L1 that utilize L1-
norm into a kernel version and show the effectiveness of the
proposed approach.
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