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Object detection framework using multimodal sensors
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Abstract: Object detection methods using RGB images have been studied a lot. However, there may
be some problems when there are limitations in illumination, such as at night, or when there are
limitations in the field of view due to smoke or fog, etc. In order to overcome these limitations, we
propose a framework of using multimodal sensor images that contain a variety of information that
RGB does not have. To use the multimodal sensor image, we design a Multimodal Attention Network
that focuses on the regions useful for object detection in multimodal sensor images. Through
qualitative and quantitative experiments, we show the effectiveness of using multimodal sensor
images and the performance can be improved by using the Multimodal Attention Network.
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[Fig. 1] Fire situation simulation. The left column shows RGB
images, and the right column shows thermal images and the
object detection results using the thermal images. Unlike in
RGB images, where the field of view is limited due to the
smoke, thus humans are not visible, in thermal images, the
shape of humans are relatively well revealed.
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[Fig. 2] Schematic of the multimodal object detector framework.
The multimodal sensor images can be configured in various
ways such as RGB, thermal image and foreground separation
result. Yolov4 is used as the object detector.
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[Fig. 3] Detailed schematic of the multimodal attention network.
Using this structure, it is possible to focus on the regions useful
for object detection in the multimodal sensor image data.
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[Fig. 4] Qualitative results. The left column shows the detection
results using RGB images, and the right column shows the
results using RGB and Nightvision together. Note that using
only RGB at night leads to missing objects (yellow rectangles).
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[Table 1] Quantitative results in MPD dataset. Unit : Average
Precision (AP)

Day Night
RGB Unimodal 61 45
Multimodal Without 63 62
Multimodal Attention network
Multimodal With Multimodal
. 65 64
Attention network
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