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Abstract—In this paper, we utilize deep Convolutional Neural
Networks (CNNs) [1] to classify handwritten music symbols in
HOMUS [2] data set. HOMUS data set is made up of various
types of strokes which contain time information and it is expected
that online techniques are more appropriate for classification.
However, experimental results show that CNN which does not
use time information achieved classification accuracy around
94.6% which is way higher than 82% of dynamic time warping
(DTW) [3], the prior state-of-the-art online technique. Finally,
we achieved the best accuracy around 95.6% with the ensemble
of CNNs.

I. INTRODUCTION

Information technology has been drastically advanced in

the last two decades so that digitization is deeply related to

various fields of music such as preservation, duplication and

distribution [4]. Also in composition and songwriting areas, a

lot of music experts use digital devices and computer softwares

nowadays. Most of those programs provide the function of

making and editing music scores by musical instruments

and computer input devices. Nonetheless, pen and paper still

occupy an important position among various composition

tools. For this reason, it is required to automatically recognize

handwritten musical symbols. In particular, the recent wide use

of pen-based digital devices such as smartphones and tablet

PCs increases the demand more and more.

However, since 2000s, only a small number of related

studies such as [5], [6], [7] have been presented in the

literature. Recently, a large data set for handwritten music

symbol recognition, which is named HOMUS, was released

and typical methods for the problem were evaluated on the

data set in [2]. Although the authors of the paper verified

both online and offline techniques, they did not consider deep

network-based algorithms. However, deep convolutional neural

networks (CNNs) have been shown to be very effective in

many applications such as large scale image classification [8].

In this paper, we utilize deep CNNs to classify handwritten

music symbols in HOMUS data set. To our best knowledge,

this is the first trial to use CNN to recognize music notations.

Experimental results show that a CNN can reduce classifi-

cation error by more than 10% compared to dynamic time
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warping (DTW) [3], which provided the best performance

in [2]. In addition, ensemble of CNNs leads another 1% of

accuracy on HOMUS data set compared to the single CNN.

This agrees with the fact that deep CNN is a very useful tool

for image classification.

This paper is organized as follow. Related works are briefly

reviewed in Sec. II. In Section III, the database and methods

are described. Then, experimental results are shown in Sec.

IV and the paper is concluded in Sec. V

II. RELATED WORK

There are mainly two types of music symbol data, the

strokes and the images. The former data which contains time

information of the strokes are normally collected by digital

pens in smart devices such as smartphones and tablet PCs.

On the other hand, the latter is relatively easier to acquire but

does not contain any time information, thus is considered more

challenging to classify.

While there have been many techniques suggested for

music symbol classification, different methods are needed for

classification of online stroke data and offline image data. The

online techniques try to classify musical symbols by utilizing

time information made by the pen strokes. In this case, the

number of points generated by a stroke vary according to the

pace of user’s pen stroke. For this kind of stroke data sets,

DTW [3] [9] [10] and hidden Markov models (HMM) [11]

are used as online techniques.

On the other hand, offline techniques are for the image-

type music symbol data which include general classification

algorithms to classify an image into a category. The well-

known classifiers such as k-nearest neighbor (k-NN) [4], multi-

layer Perceptron (MLP) [5], support vector machines (SVM)

[12] [13], and ensemble Neural Networks [14] can all be used

to classify an image-type music symbol.

III. DATA AND METHODS

In this paper, deep CNNs and ensemble of CNNs are

compared with more shallow networks such as MLP and

ensemble MLP. We also show that CNNs [1] not only perform

well for the image-type data as in [15] or [16], but also are

highly efficient for the stroke-type data compared to the state-

of-the-art DTW algorithm using time information.



A. Database

For all classification experiments performed in this paper,

we use the Handwritten Online Musical Symbols (HOMUS)

dataset [2]. The HOMUS dataset was collected from 100

musicians whose data are divided in the corresponding 100

folders. There are 32 classes and 15,200 sample images in

total. In [2], classification performance was measured using

10-fold cross validation. In other words, among the 100

folders, 90 folders are used for training while the other 10

folders are used as a test set. In this paper, we also use the

same strategy to report the performance of each method.

HOMUS data set is basically for online techniques because

each sample of a dataset contains the strokes consisting of a

set of points. For visualization, we transformed strokes into

images using MATLAB codes. Figure 1 shows some example

strokes. These are sample datasets of 3 different musicians

for 32 classes. The images in Figure 1 are obtained by firstly

connecting original points of a stroke with a line of one

pixel wide, then applying a square dilation kernel of 4×4

pixels. As can be seen in this figure, sample images include a

considerable amount of deviation.

B. Compared Methods

Dynamic time warping (DTW) is a technique for measuring

the dissimilarity between two timed samples which may be

of different durations. Simply, it is composed of Euclidean

distance between two points. The details can be found in [3]

[9] [10].

Multi-layer perceptron (MLP) is the most typical type of

conventional neural networks. MLP typically have one or two

hidden layers. This kind of networks can be trained with the

backpropagation algorithm [17].

Ensemble neural network is made up of several neural

networks. Each network is trained independently and once a

test sample is inserted, the outputs of different networks are

merged to predict the final class. Typically, majority vote is

used as a combination method. More details are in [14].

Convolutional neural network (CNN) is an algorithm for

learning by using a larger and deeper neural network architec-

ture [1]. CNN has achieved great success for various image-

based machine learning problems [18]. Because music symbol

is a kind of image, we expect that CNN will be successfully

applied to music symbol classification, too. In this paper, we

implemented CNN architecture of CifarNet [19], AlexNet[15],

and GoogleNet[16].

CifarNet uses 3 layers with input size of 32×32×3. In our

application, because the stroke image is binary, we modified

the network with input size of 32×32. In addition, because

various input sizes are tested for CifarNet, the tunable param-

eters such as number of padding, convolution filter size and

strides are tuned appropriately as will be described in Section

IV. Alexnet and GoogleNet use 8 layers with input size of

227×227×3 and 22 layers with input size of 224×224×3,

respectively. In the same manner as CifarNet, the parameters

are tuned appropriately.

In this paper, as an objective function of MLPs and CNNs,

cross entropy which is based on softmax probability is used

with regularization as follows.
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Here, θ is the parameter to be learned, (x(i), y(i)) is the i-

th training sample with input x(i) and target y(i), n and K

are the number of samples and classes respectively, and 1(·)
denotes the indicator function.

The regulation factor (λ) was obtained by parameter tuning

through many comparative experiments on other data sets.

Additionally, we verified that activation function in the form

of Rectified linear unit (ReLU) shows better performance than

sigmoid through many comparative experiments on other data

sets. As a result, we use ReLU and set λ = 0.35 in all the

experiments with MLP. For the experiments with CNNs, the

default value of λ for each network was used, which are 0.004,

0.0005, and 0.0002 for CifarNet, AlexNet, and GoogleNet,

respectively.

IV. EXPERIMENTAL RESULTS

A. Conventional Methods

We studied prior state-of-the-art techniques for HOMUS

data and executed comparative experiments. DTW is used for

an online classification, while MLP, ensemble neural networks

are used as offline classifiers.

1) DTW: For comparison, we performed 10 fold cross

validation for HOMUS data set. The classification accuracies

on the test data of the 10 different cross validation trials

are in between the lowest accuracy of 77.83% and highest

accuracy of 85.46%. The average accuracy is 82.73% Since

we implemented DTW similar to that of [2], the mean accuracy

of our implementation of DTW is very similar to that of [2]

which is around 82%.

2) MLP: In [2], DTW performed the best, while MLP

showed relatively poor accuracy of around 62%. But according

to the recent researches, there are many ways to achieve better

performance in learning neural networks [18], [20]. Therefore,

as a baseline of CNN, we implemented new MLP networks

for HOMUS dataset by changing the size of the input image

(square, thin, and fat), number of layers (1 and 2), number of

hidden nodes (1000, 2000, and 3000) based on [18] and [20].

We also used different sizes of dilation kernel in transforming

a stroke to an image (1x1 to 4x4). The detailed numbers can

be found in Table I. For all the experiments, ReLU [21] was

used with regularization factor of 0.35. The performances in

the table are the averages of 10 fold cross validation.

As a result, when we use 60×30 input size (thin), 4×4

dilation kernel, 1 layers with 3,000 nodes, the highest mean

accuracy of 79.43% is obtained. This is an improvement of

almost 20% compared to the result of MLP in [2]. Further-

more, this performance is comparable to that of DTW. If we

can run a network having bigger input size or more nodes and

layers, it can be expected that the accuracy would even more



Fig. 1. Examples of images in HOMUS data set.

TABLE I
MLP - EVALUATION WITH CHANGING ARCHITECTURES

Experiment Input Size
Number of Dilation

Accuracy
Nodes Kernel

Image Size
1 (Square)

28 × 28 1000 3× 3 0.7638

40 × 40 1000 3× 3 0.7782

60 × 60 1000 3× 3 0.7757

Image Size
2 (Thin)

35 × 20 1000 3× 3 0.7815

60 × 30 1000 3× 3 0.7817

Image Size
3 (Fat)

20 × 35 1000 3× 3 0.7153

30 × 60 1000 3× 3 0.7664

60 × 30 1000 3× 3 0.7817

Nodes 60 × 30 2000 3× 3 0.7865

60 × 30 3000 3× 3 0.7878

Layer
60 × 30 1000 3× 3 0.7817

60 × 30 1000,1000 3× 3 0.7726

60 × 30 1000 1× 1 0.6921

Dilation 60 × 30 1000 2× 2 0.7628

Kernel Size 60 × 30 1000 3× 3 0.7817

60 × 30 1000 4× 4 0.7918

best-MLP 60 × 30 3000 4× 4 0.7943

increase. This is one of the reasons why we have experimented

deep CNN. Also, thin input images result in more successful

performance. Perhaps, it is because most of the music symbols

have thin shapes rather than fat.

3) Ensemble Neural Network: In this part, we executed

experiments using ensemble neural networks with 3 MLPs

and 5 MLPs. Three different rules were used for combining

different networks. First, we used the classification results of

individual MLPs for majority vote. This method was already

suggested in [14]. The following two are what are newly

suggested in this paper. The second combining method is

based on the softmax output (class probability) of individual

TABLE II
ENSEMBLE NEURAL NETWORK - COMPARISON ON MONO-MLP AND TWO

VERSIONS OF ENSEMBLE NETWORKS WITH THREE DIFFERENT

COMBINATION METHODS

Experiment Accuracy

MLP1(60× 60) 0.7757

MLP2(35× 20) 0.7832

mono-MLP MLP3(60× 30) 0.7828

MLP4(20× 35) 0.7153

MLP5(30× 60) 0.7664

Ensemble of Combination Method 1 0.7995

3 MLP Combination Method 2 0.8006

(1,2,3) Combination Method 3 0.8020

Ensemble of Combination Method 1 0.7963

5 MLP Combination Method 2 0.7947

(1,2,3,4,5) Combination Method 3 0.8049

MLPs. That is, most high softmax output among different

networks was chosen as the class of the stroke in question.

Lastly, we used the sum of softmax outputs from different

MLPs for each class. That is, the highest sum of softmax

outputs of an individual class was chosen. For all experiments,

we fixed parameters to be λ = 0.35, 3×3 dilation kernel, 1

layer, 1000 nodes and ReLU. Then, we evaluated the mean of

10-fold cross validation for HOMUS data set. Table II shows

the results.

In the table, we can see that the ensemble neural networks

show slightly improved performances, especially third method

of combination is most successful.

B. Convolutional neural networks

From the result in Section IV-A3, we came to reason that

more sophisticated and deeper architecture will perform better.

In this chapter, we implemented various CNN networks such

as CifarNet, AlexNet, and GoogleNet with properly modified

input sizes. CAFFE was used as an implementation tool [22].



TABLE III
COMPARISON OF VARIOUS INPUT SIZES WITH CIFARNET

Network input size Filter Size Padding Stride Accuracy

CifarNet 32×32 5x5 2 1 0.8494

CifarNet 64×64 2x2 0 2 0.8807

CifarNet 224×224 7x7 0 7 0.8976

TABLE IV
COMPARISON OF DIFFERENT CNNS

Network input size Filter Size Padding Stride Accuracy

CifarNet 224×224 7x7 0 7 0.8976

AlexNet 224×224 8x8 0 4 0.9368

GoogleNet 224×224 7x7 3 2 0.9461

Firstly, we tested various input image sizes with simple

CifarNet. As Table III shows, larger input size results in higher

accuracy and input size of 224 × 224 performed best. Then,

various networks were tested with fixed input size. The first

three rows of Table IV shows that as the depth of the network

increases, the performance increases accordingly. Lastly, we

tested ensemble of CNNs made up of two different GoogleNets

with input image size of 224 × 224 (square) and 224 × 112
(thin), respectively. As a result, ensemble of CNNs achieved

best average accuracy of 95.55%. Table V shows that ensemble

of networks performs better than the two basic networks in

every 10 trials of cross validation. In this experiment, we used

the combination rule that chooses the highest sum of softmax

outputs of an individual class because this combination method

showed the best performance in Section IV-A3.

Figure 2 summarises the experimental results performed in

this Section. In Figure 2, ’best-MLP’ is the MLP showing the

best performance in Table I – 60×30 input size(thin), 0.35

TABLE V
ENSEMBLE OF CNNS

Cross GoogleNet-1 GoogleNet-2 Ensemble

Validation (224×224) (224×112) of 1, 2

1-10 0.9283 0.9322 0.9447

11-20 0.9539 0.9533 0.9645

21-30 0.9414 0.9368 0.9434

31-40 0.9467 0.9342 0.9493

41-50 0.9283 0.9211 0.9401

51-60 0.9461 0.9362 0.9553

61-70 0.9434 0.9224 0.9533

71-80 0.9566 0.9566 0.9678

81-90 0.9553 0.9507 0.9671

91-100 0.9605 0.9605 0.9691

Average 0.9461 0.9404 0.9555
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Fig. 2. Performance comparison

λ, 4×4 dilation kernel, 1 layer, 3000 nodes and ReLU. Also,

’best-ComNN’ is the Combined Neural Network showing the

best performance in Table II -using 5 MLP and third method

for majority vote.

V. CONCLUSIONS

In this work, we studied a handwritten music symbol

classification problem. HOMUS data set which consists of

online stroke information was used. For this dataset, prior

state-of-the-art techniques are DTW for online classification

and MLP and ensemble neural network are used for offline

classification. We implemented these algorithms and compared

these with further parameter tuning. In addition, CNN was also

used for the classification of this data set.

A comprehensive experiments with different versions of

MLPs, CNNs and ensemble networks were executed. As CNN

architectures, CifarNet, AlexNet, and GoogleNet were used.

Through the experiments, it was shown that larger inputs and

deeper architectures are more successful to this dataset. With

224×224 of input size, GoogleNet reached 94.61% average

accuracy. Finally, we achieved the best accuracy of 95.55%

with the ensemble of CNNs. As a conclusion, we verified that

CNN can be very successful in handwritten music symbol

classification problems.

For future works, we will study the ways to integrate

online and offline techinques for further improvement of the

classification accuracy. Because there are many pros and cons

between the online techniques and offline techniques, we think

that there can be a significant room for improvement in this

synergized data features.
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