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ABSTRACT

In this paper, a novel optical flow algorithm which is robust
to illumination variation is proposed. HSL color space is
adopted to decouple illumination and chromaticity informa-
tion. The chromaticity component is normalized by chroma
and transformed to the cartesian coordinate. Then, the de-
coupled distance is defined using both illumination and chro-
maticity. Cost function for the optical flow is formulated us-
ing {1 norm of the decoupled distance with Huber norm reg-
ularization term. The cost function is efficiently minimized
by utilizing Legendre-Fenchel transform. Optical flow field
is further refined via weighted median filter whose weight is
also based on the decoupled distance. Experimental results
show that the proposed method works robustly even in the
presence of severe illumination variation.

Index Terms— Optical flow, HSL color space, illumina-
tion robust

1. INTRODUCTION

Estimating motion densely in the consecutive image frames
has been studied for more than 30 years. In contrast to the
first algorithm of Horn and Schunck [1] which exploited [,
distance for designing the cost, TV-L1 optical flow [2, 3] used
{1 distance which is more robust to outliers than /5 distance.
Both aforementioned methods and most optical flow algo-
rithms are based on the intensity consistency or the gradient
consistency assumption. However, the assumption does not
hold when there is a severe intensity change in the consecutive
image. There are a couple of attempts to overcome this prob-
lem. Mileva et al. [4] proposed the data cost using photomet-
ric invariants such as hue from HSV color space, normalized
RGB, and spherical transform of RGB coordinates. However,
information from intensity can be lost when considering only
photometric invariants. Recently, Kumar et al. [5] achieved
robustness by decoupling illumination and reflectance from
the grayscale image.

In this paper, we propose a novel optical flow estima-
tion algorithm which is robust to illumination variation. HSL
color space is adopted to separate the luminance and the chro-
maticity component. Weighted /; distance of illumination and

chromaticity are used as a data term of the optical flow cost
to achieve the robustness on the illumination variation. Hu-
ber norm penalizer with edge-preserving weight is used as a
regularization term. The optical flow is further refined us-
ing weighted median filter whose weight is also calculated
from difference of colors. Based on the work of Chambolle
and Pock [6], the proposed cost function can be efficiently
minimized. Experiments are conducted on the MPI Sintel
dataset [7] which contains severe illumination variation and
on the real images with specular objects. The result shows
that the proposed algorithm is not only robust to illumina-
tion changes, but it also preserves discontinuity of optical flow
over boundary regions of the image.

2. ILLUMINATION-CHROMATICITY DECOUPLING
USING HSL COLOR SPACE

HSL color space consists of three components, hue, satura-
tion, and lightness. Therefore, illumination and chromaticity
component can be easily decoupled by separating HSL space
into L and HS. HS space is exploited in many applications to
achieve the robustness to illumination change [8, 9]. We ex-
ploit chroma as a radial dimension of a color space instead of
saturation which is defined as

C =max (R,G,B) —min (R, G, B). €}

Hue-chroma-lightness color model is a bi-conic shape. Col-
ors near the tip of the bi-conic has smaller radius. Thus, the
chroma should be normalized using the lightness component.
First, lightness is shifted so that the center of the bi-cone is lo-
cated at the origin. Then, the normalized chroma is calculated
as

A Lmaw - |L|
C= C Craz 2)

where C' and L are chroma and lightness of a color respec-
tively, and C),, 4 and Ly, 4, are the maximum value of chroma
and lightness respectively. For our implementation, value of
HSL components are scaled and translated so that the light-
ness is between —100 ~ 100 and the maximum chroma is
100. As a consequence, colors on the HSL space is projected
onto the chromatic plane shown in Fig 1(a). An example
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Fig. 1. (a) Chromatic plane. Cartesian coordinate of this
plane is used as a chromaticity component. (b) RGB image.
(c) Visualization of chromaticity component after chroma
normalization. Shading and speculation effects are removed.

of chroma normalization is shown in Fig 1(c). Shading and
specular effects are removed compared to the original image.
Since utilizing only hue component cannot fully represent the
chromaticity of a color, Cartesian coordinate on the chromatic
plane is used as a chromaticity component which will be de-
noted as (a, b) in this paper.

Similar to the approach of [5], we decouple the illumi-
nation component and the color component. For two colors
which have (a1, b1), (a2, b2) as a chromaticity component and
Ly, Ly as a lightness component respectively, we define the
decoupled difference between the two colors as follows.

Al[Ly = Lollx + [[(a1,b1) — (a2, b2)|[x 3)

where ||x||, denotes [, norm of a vector x and )\ is a constant.
Note that when k£ = 1, (3) is equal to

[[(AL1,a1,b1) — (AL, az, b2)||1- )

To make the framework robust to illumination, A will have a
small value less than 1. This weighted distance will be ex-
ploited as a core of our optical flow framework which will be
explained in the following section.

3. ILLUMINATION ROBUST OPTICAL FLOW

Armed with the decoupled color distance described in Sec-
tion 2, a novel illumination-robust optical flow framework is
proposed in this section. We will describe how the cost of
the data term and regularization cost is designed and how it is
optimized.

3.1. Cost design

Let Q C R? denote image domain and u = (uy, uz)” denote
the optical flow at x € 2. Then, we propose the cost function
of the optical flow to be minimized as

a/\|[1(x+u)ffo(x)||1dx+
@ Q)
/Q (92 (%) | Vatt ]« + gy ()| Vaiz] )

where I(x): Q = R? is a function that returns (AL, a, b) of

the image at position x and Vv = , /(92)2 + (g—f})?. 1y norm

is used for the data term to achieve robustness to outliers. To
avoid staircasing effect in TV-L1 regularization [10], Huber
penalty function is used as a regularization term which is de-

fined as )
_J 5 if|s| <e 6
5l { otherwise ©

where ¢ is a small positive constant. g(x) is the weight func-
tion which preserves discontinuity on the boundary region
following the approaches in [11, 12]. Unlike conventional
edge preserving functions, the decoupled distance is used to
define g, g, as follows.

9(a,b
12112 + NI 3211

92(x) = exp(—h(x) ) (D

Cg
The regularizer will have a small weight where there is a huge
difference of colors or illumination. Since the parameter A has
a value smaller than 1, the weight will be more sensitive to the
difference of color rather than the illumination variation. h(x)

is the function to deal with very small chromaticity, which is
defined as

(Lma.r - |L(X) ‘ )2
Ch

h(x) =1 —exp(— ). (8)
L(x) is the lightness at x, and ¢, is a constant that controls
the shape of exponential curve. As very dark or very bright
regions have unreliable a, b values, those regions will be regu-
larized even if the difference of color is large. g, is analogous
to g, except that the derivative is in y-direction.

3.2. Cost optimization

To minimize (5), we first separate the variable u into u and v
with the weight parameter 6. Then, the cost to be minimized
becomes

a/HIl(X—l—u)—Io(x)Hldx—i—/ %(u_v)de—i—
Q Q (9)
/Q (0 ()| V01|« + gy ()| Vo] Jdlx.

Optimization of u and v is based on the primal-dual algorithm
using Legendre-Fenchel transform. Chambolle and Pock [6]
proposed fast iterative algorithm for solving the primal-dual
problem, which can be directly applied to solve (9). First,
u is updated to minimize the cost with fixed v. Following
the conventional optical flow formulation, I(x) is linearized
at the current estimate ug. Then, the problem boils down to
solving the following point-wise minimization at every point
in €.

In&n 04||Au+b||1+%(ufv)2 (10)
where A is the 3 x 2 Jacobian of [; at X +ug, and b =
I (x +ug) — Aug — Ip(x). Similar to [12, 13], (10) can be



minimized using Algorithm 2 of [6]. u can be calculated by
the iteration of following primal-dual update.

y™ ) = I(y™ + ao, (ATG™ +b)

0 ThV
ey _ 0 Tn (n) _ 1 ATy (n+D)
1 o, 1D
Pn = — == T(n+1) = PnTn; on+1)= ?
1+ 5 !

gt = i+ | pn(u("H) _ u(n))
with u(®) initialized from the previous iteration and @(?) =
ul®, y(o) =0,719 =09 = ﬁ where B4 is the maximum
norm of A. y is the dual variable which is a 3-dimensional
vector. I is the function that projects a vector inside the unit
ball which is defined as

S

Ii(s) = (12)

max(L, |[s||2)’

Second, v is updated with fixed u. The minimization
problem has the following form:

i 1
mm/ (%(u —v)? 4 g.(x)| Vo1 + gy(x)| Vs |c)dx.
Q

v
(13)
The components of a vector v can be updated individually by
applying Algorithm 3 of [6]. The iterative update scheme on
the element v; becomes

p™ + U\Vv‘l(”)|
gz (X) + o€

n+1 0 T n . n
(" = 79—1—7(5 + o™ — rdiv(p )

U—l(nJrl) — 2v§n+1) _ vgn)

p(n+1) = gy (X)H(

(14)

where Ugo) is initialized from the previous iteration and the
dual variable p is a 2-dimensional vector initialized to p(®) =

0, 0;0 = U%o)’ T = w/%, and o0 = ,/8%. v can be opti-

mized using the same procedure as (14) where g, is replaced
with g,,.

3.3. Weighted median filtering

In coarse to fine optical flow framework, median filter is often
used to remove outliers of flow vectors. Sun et al. [14, 15] re-
vealed the underlying principle of the median filter, and they
proposed the weighted median filter to effectively filter out-
liers near the boundary of objects. Adopting this concept, we
design the weighted median filter whose weight is determined
by the difference of colors:

[1(a, b) = (o, b)[[5 + AL — L'||3

Cm

)
s)

wj 3,5 = h(i, j)exp(—

where Iy(i,j) = (L,a,b) and Iy(¢,5") = (L',ad’,V'). As
in [14], we follow the solution of [16] to solve the weighted
median. Filter size is varied from 3 x 3 to 9 x 9 in accordance
with the size of image.

3.4. Implementation details

The optimization scheme explained in Section 3.2 will be in-
corporated to coarse to fine framework with additional warp-
ing steps. The whole procedure is explained in Algorithm 1.
To ensure convergence, 30 inner iteration and 10 outer itera-
tions are performed with 5 warping steps for each scale. Scale
factor for image pyramid is set to n = 0.75. For our ex-
periment, parameters are set to A = 0.2, = 1072, ¢, =
102, ¢y = 10,¢;, = 10, and € = 10~'. The parameter 6 is
initialized to 0.3 and multiply by 1 = 0.9 for every outer loop
in order to force convergence.

Algorithm 1 [llumination robust optical flow framework

Input: Two images Img and Im;

Output: Optical flow u from Img to Imy
Initialize image pyramids, u <— 0,v < 0
for s = 1 to number of image levels do

for i = 1 to number of warps do
Ug < u.
for 7 = 1 to number of outer loop do
for & = 1 to number of inner loop do
Update u via iterating (11).
end for
for & = 1 to number of inner loop do
Update v via iterating (14).
end for
0 < b
end for
Weighted median filtering on u and v
end for
Upsample u, v for next pyramid level
end for

4. EXPERIMENTAL RESULTS

Experiments are performed on the publicly available MPI
Sintel dataset [7]. The dataset consists of the training set with
ground truth optical flow and the test set. Two sequences
(bamboo_2 and shaman_3) of the training set which contains
severe illumination variation is selected to measure the perfor-
mance of our method. Each scene consists of 50 consecutive
image frames with two different versions, clean and final. We
compared our method with three optical flow algorithms. The
first method is TV-L1 optical flow algorithm from [6] which
use grayscale image as input (TV-L1 gray). The method in-
volves additional illumination variation handling in its cost
function. Second, optical flow that exploits spherical RGB
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Fig. 2. First row: Qualitative result on bamboo_2 sequence. Optical flow of the specular region on the clothes and the shadow
on the head of Sintel is correctly estimated in our method. Also, the discontinuity of the flow field over the boundary region can
be observed. EPE for the frame is (d) 3.336, (e) 3.257, (f) 2.585. Second row: Qualitative result on shaman_3 sequence. Our

method shows robustness to shade variation. EPE for the frame is (d) 1.341, (e) 1.191, (f) 0.950.

L

(a) frame 1 (b) frame 2

(c) TV-L1 gray

(d) Spherical RGB (e) MDP-flow (f) Our method

Fig. 3. Illumination variation on real images. Specular regions are moved in opposite direction to the object. Our method
successfully smoothes out the effect of the speculation in the flow field.

TV-L1 |Spherical| MDP | Our
gray RGB flow |method

Clean bamboo 2| 1.295 | 1.134 | 0.883 | 1.018
shaman_3| 0.266 | 0.246 | 0.231 | 0.273

Final bamboo 2| 1.364 | 1.296 | 1.006 | 1.170
shaman_3| 0.581 | 0.819 | 0.564 | 0.743
Overall \0.876\ 0.874 \ 0.671 \ 0.801

Table 1. EPE on the clean and final dataset of bamboo_2 and
shaman_3 sequence from the MPI Sintel dataset.

coordinate is implemented (Spherical RGB). In [4], spherical
RGB coordinate showed superior result to HSV or normal-
ized RGB in terms of robustness to illumination changes.
Unlike original formulation of [4], [; distance of data term
and Huber norm regularization are used for implementation.
Number of iterations for TV-L1 gray and Spherical RGB
method is the same as our method. Lastly, MDP-flow [17] is
compared as a state-of-the-art optical flow method.

The performance is measured in terms of average end-
point error (EPE). The result is shown in Table 1. Our method
gives superior result to TV-L1 gray and Spherical RGB meth-
ods. Our method is inferior to the MDP-flow mainly due to
the lack of occlusion or large displacement handling. Though
the difference of EPE is not significant, our method performs
superior to all the other methods in the presence of a severe
illumination change. The examples of the results are illus-
trated in Fig. 2. Color coding scheme in [18] is used to vi-
sualize optical flow fields. As one can see in the first row of
Fig. 2, our method correctly estimates the optical flow at the
specular region of Sintel’s clothes and at the shaded region of

Sintel’s head while MDP-flow shows discontinuity over those
regions. Moreover, it can be observed at the hair of Sintel that
our method preserves discontinuity on the boundary regions
unlike Spherical RGB method. In the second row of 2, it is
observed that flow of moving shade is captured in the other
methods while our method almost completely smoothes out
the effect of the moving shade.

Lastly, we experimented on the real image that contains
specular objects. The result is shown in Fig. 3. Speculated re-
gion is moved in opposite direction to the direction of moving
objects. It can be observed that our method correctly estimate
the direction of the flow at the specular region.

5. CONCLUSION

In this paper, an optical flow algorithm that contains robust-
ness to illumination variation is proposed. The proposed
method easily decouple illumination and color information
using HSL color space. By exploiting the proposed decoupled
distance with chroma normalization step, both illumination
information and chromaticity information can be used for
optical flow estimation while maintaining robustness to illu-
mination variation. The decoupled color distance is used not
only for the data term of the cost function but for the weights
of regularization term and median filter. The experimental
results validate robustness of the proposed optical flow algo-
rithm in the presence of severe speculation or shade variation.
Adopting different color difference measure that is similar
to the human perception can be taken into consideration as a
future work.
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