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In this paper, we propose a robust principal component analysis (PCA) to overcome the problem that PCA
is prone to outliers included in the training set. Different from the other alternatives which commonly
replace L2-norm by other distance measures, the proposed method alleviates the negative effect of
outliers using the characteristic of the generalized mean keeping the use of the Euclidean distance. The
optimization problem based on the generalized mean is solved by a novel method. We also present a
generalized sample mean, which is a generalization of the sample mean, to estimate a robust mean in the
presence of outliers. The proposed method shows better or equivalent performance than the conven-
tional PCAs in various problems such as face reconstruction, clustering, and object categorization.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Dimensionality reduction [1] is a classical problem in pattern
recognition and machine learning societies, and numerous methods
have been proposed to reduce the data dimensionality. Principal
component analysis (PCA) [2] is one of the most popular unsu-
pervised dimensionality reduction methods which tries to find a
subspace where the average reconstruction error of the training
data is minimized. It is useful in representation of input data in a
low dimensional space and it has been successfully applied to face
recognition [3,4], visual tracking [5], clustering [6,7], and so on.

When automatically collecting a large data set, outliers may be
contained in the collected data since it is very difficult to examine
whether each sample of data is outlier or not [8]. It is well known
that, in this case, the conventional PCA is sensitive to outliers
because it minimizes the reconstruction errors of training data in
terms of the mean squared error and a few outliers with large errors
dominate the objective function. This problem has been addressed
in many studies [8–16]. Among them, some studies utilized L1-norm
instead of L2-norm in the formulation of optimization problem to
improve the robustness of PCA against outliers [9–11]. In [9], the
cost function for optimization was constructed based on L1-norm
and a convex programming was employed to solve the problem. R1-
PCA [10] was presented to obtain a solution with the rotational
invariance, which is a fundamental desirable property for learning
algorithms [17]. In [11], PCA-L1 was proposed, which maximizes an
L1 dispersion in the reduced space and an extension of PCA-L1 using
Lp-norm with arbitrary p was also proposed in [14]. Other method
Ltd. This is an open access article u
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utilizing Lp-norm was also presented in [15]. On the other hand,
some of robust PCAs were recently developed using information
theoretic measures [12,13]. He et al. [12] proposed MaxEnt-PCA
which finds a subspace where Renyi's quadratic entropy [18] is
maximized. Renyi's entropy was estimated by a non-parametric
Parzen window technique. In [13], HQ-PCA was developed based on
the maximum correntropy criterion [19].

In this paper, we propose a new robust PCA method based on
the power mean or the generalized mean [20], which can become
the arithmetic, geometric, and harmonic means depending on the
value of its parameter. The proposed method, PCA-GM, is a gen-
eralization of the conventional PCA by replacing the arithmetic
mean with the generalized mean. The proposed method can
effectively prevent outliers from dominating objective function by
controlling the parameter in the generalized mean. Moreover, it is
rotational invariant because it still uses the Euclidean distance as
the distance measure between data samples. In doing so, we also
propose a generalized sample mean, which is an enhancement of
the conventional algebraic sample mean against outliers to address
the problem that the sample mean is easily affected by outliers. It is
used in the proposed PCA-GM instead of the arithmetic mean. The
optimization problems based on the generalized mean are effi-
ciently solved using a mathematical property of the generalized
mean. Recently, Candés et al. proposed a robust PCA [21], which is
sometimes referred to as RPCA in the literature, where data matrix
is tried to be represented as a sum of a low rank matrix, which
corresponds to reconstructions of data, and a sparse matrix, which
corresponds to reconstruction errors different from the methods
mentioned above. It can model pixel-wise noise effectively using
the sparse matrix, thus it has been known that RPCA is useful in the
applications such as background modeling from surveillance video
and removing shadows and specularities from face images [21] by
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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using each element in the reconstruction error vector (the column
of the sparse matrix). On the other hand, in this paper, we will
utilize distance metric in removing the effect of outliers like the
previously mentioned methods, and an entire sample is considered
as an outlier if it has a large norm of the reconstruction error vector.

The remainder of this paper is organized as follows. Section 2
briefly introduces PCA and the state-of-the-art robust PCAs. The
proposed method is described in Section 3. It is demonstrated in
Section 4 that the proposed method gives better performances in
face reconstruction and clustering problems than other variants of
PCA. Finally, Section 5 concludes this paper.
2. PCA and robust PCAs

Let us consider a training set of N n-dimensional samples
lbracesupsubxi
� �N

i ¼ 1. Assuming that the samples have zero-mean,
PCA is to find an orthonormal projection matrix WARn�m ðm⪡nÞ
by which the projected samples yi ¼WTxi

n oN

i ¼ 1
have the max-

imum variance in the reduce space. It is formulated as follows:

WPCA ¼ arg max
W

trðWTSWÞ;

where S¼ 1
N

PN
i ¼ 1 xixT

i is a sample covariance matrix and trðAÞ is
the trace of a square matrix A. The projection matrix WPCA can be
also found from the viewpoint of projection errors, i.e., it mini-
mizes the average of the squared projection errors or reconstruc-
tion errors. Mathematically, it is represented as the optimization
problem minimizing the following cost function:

JL2 ðWÞ ¼ 1
N

XN
i ¼ 1

Jxi�WWTxi J22;

where JxJ2 is the L2-norm of a vector x. The two optimization
problems are equivalent and easily solved by obtaining the m
eigenvectors associated with the m largest eigenvalues of S.
Although PCA is simple and powerful, it is prone to outliers [8,9]
because JL2 ðWÞ is based on the mean squared reconstruction error.
To learn a subspace robust to outliers, Ke and Kanade [9] proposed
to minimize an L1-norm based objective function as follows:

JL1 ðWÞ ¼ 1
N

XN
i ¼ 1

Jxi�WWTxi J1;

where JxJ1 is the L1-norm of a vector x. They also present an
iterative method to obtain the solution for minimizing JL1 ðWÞ.

Although L1-PCA minimizing JL1 ðWÞ can relieve the negative
effect of outliers, it is not invariant to rotations. In [10], Ding et al.
proposed R1-PCA, which is rotational invariant, at the same time is
robust to outliers. It is to minimize the following objective func-
tion:

JR1
ðWÞ ¼

XN
i ¼ 1

ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xT
i xi�xT

i WWTxi

q� �
;

where ρð�Þ is a generic loss function and the Cauchy function or
Huber's M-estimator [22] was used for ρð�Þ in [10]. Huber's M-
estimator ρHðsÞ is defined as

ρHðsÞ ¼
s2 if j sjrc;

2cj sj �c2 otherwise

(
ð1Þ

where c is the cutoff parameter that controls the regularization
effect of weights in a weighted covariance matrix. Note that ρHðsÞ
becomes a quadratic or a linear function of j sj depending on the
value of s. The solution for minimizing JR1

ðWÞ was obtained by
performing a subspace iteration algorithm [23].

On the other hand, PCA-L1 was developed in [11] motivated by
the duality between maximizing variance and minimizing
reconstruction error. It maximizes an L1 dispersion among the
projected samples,

PN
i ¼ 1 JWTxi J1. A novel and efficient method

for maximizing the L1 dispersion was also presented in [11]. The
method allows PCA-L1 to be performed by much less computa-
tional effort than R1-PCA.

HQ-PCA is formulated based on the maximum correntropy
criterion in terms of information theoretic learning. Without the
zero-mean assumption, which is necessary in other variants of
PCA, HQ-PCA maximizes the correntropy estimated between a set
of training samples xif gNi ¼ 1 and the set of their reconstructed
samples Wyiþm

� �N
i ¼ 1, where m is a data mean. Mathematically,

HQ-PCA tries to maximize the following objective function:

arg max
W;m

XN
i ¼ 1

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xT
i x i�xT

i WWTx i

q� �
; ð2Þ

where gðxÞ ¼ expð�x2=2σ2Þ is the Gaussian kernel and x i ¼ xi�m.
Note that HQ-PCA finds a data mean as well as a projection matrix.
Using the Welsch M-estimator ρW ðxÞ ¼ 1�gðxÞ, HQ-PCA is regar-
ded as a robust M-estimator formulation because it is equivalent
to finding WH and mH that minimize the following objective
function:

JHQ ðW;mÞ ¼
XN
i ¼ 1

ρW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xT
i x i�xT

i WWTx i

q� �
: ð3Þ

In [13], the optimization problem in (2) was effectively solved in the
half-quadratic optimization framework, which is often used to address
nonlinear optimization problems in information theoretic learning.
3. Robust principal component analysis based on generalized
mean

3.1. Generalized mean for positive numbers

For a pa0, the generalized mean or power mean Mp of f
ai40; i¼ 1;…;Ng [20] is defined as

Mp a1;…; aNf g ¼ 1
N

XN
i ¼ 1

api

 !1=p

:

The arithmetic mean, the geometric mean, and the harmonic mean
are special cases of the generalized mean when p¼ 1; p-0, and
p¼ �1, respectively. Furthermore, the maximum and the minimum
values of the numbers can also be obtained from the generalizedmean
by making p-1 and p-�1, respectively. Note that as p decreases
(increases), the generalized mean is more affected by the smaller
(larger) numbers than the larger (smaller) ones, i.e., controlling p
makes it possible to adjust the contribution of each number to the
generalized mean. This characteristic is useful in the situation where
data samples should be differently handled according to their impor-
tance, for example, when outliers are contained in the training set.

In [24], it was shown that the generalized mean of a set of
positive numbers can be expressed by a nonnegative linear com-
bination of the elements in the set and, in this paper, it is further
simplified as follows:XK
i ¼ 1

api ¼ b1a1þ⋯þbKaK

bi ¼ ap�1
i ; i¼ 1;…;K : ð4Þ

Note that each weight bi has the same value of 1 if p¼ 1, where the
generalized mean becomes the arithmetic mean. It is also noted
that, if p is less than one, the weight bi increases as ai decreases.
This means that, when po1, the generalized mean is more
influenced by the small numbers in aif gKi ¼ 1, and the extent of the
influence increases as p decreases. This equation plays an
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important role in solving the optimization problems using the
generalized mean.

3.2. Generalized sample mean

Most conventional PCAs commonly assume that training samples
have zero-mean. To satisfy this assumption, all of the samples are
subtracted by the sample mean, i.e., xi�mS for i¼ 1;…;N, where
mS ¼ 1

N

PN
i ¼ 1 xi. The conventional sample mean can be considered as

the center of the samples in the sense of the least square, i.e.,

mS ¼ arg min
m

1
N

XN
i ¼ 1

Jxi�mJ22: ð5Þ

In (5), a small number of outliers in the training samples dominate the
objective function because the objective function in (5) is constructed
based on the squared distances. To obtain a robust sample mean in the
presence of outliers, a new optimization problem is formulated by
replacing the arithmetic mean in (5) with the generalized mean as

mG ¼ arg min
m

1
N

XN
i ¼ 1

Jxi�mJ22
� �p !1=p

:

This problem is equivalent to (5) if p¼ 1. As mentioned in the previous
subsection, the contribution of a large number to the objective function
decreases as p decreases. Thus, the negative effect of outliers can be
alleviated if po1. From now on, we will call mG as the generalized
sample mean. Using the fact that xp with p40 being a monotonic
increasing function of x for x40, this problem can be converted to

mG ¼ arg min
m

XN
i ¼ 1

Jxi�mJ22
� �p

: ð6Þ

Although the minimization in (6) should be changed into the max-
imization when po0, we only consider positive values of p in
this paper.

The necessary condition for mG to be a local minimum is that
the gradient of the objective function in (6) with respect to m is
equal to zero, i.e.,

∂
∂m

XN
i ¼ 1

Jxi�mJ22
� �p

¼ 0:

However, it is hard to find a closed-form solution of the above
equation. Although any gradient-based iterative algorithms can be
applied to obtain mG, they usually have slow convergence speed.
Alternatively, we develop a novel method based on (4), which is
more efficient than gradient-based iterative methods. Our method
for solving the problem in (6) is an iterative one, similar to the
expectation–maximization algorithm [25].

In the derivation, we decompose (6) into the form of (4) and
consider the weight bi in (4) as a constant. Then, (6) can be
approximated by a quadratic function of Jxi�mJ2 which can
easily be optimized. The details are as follows. Let us denote the
value ofm after t iterations as mðtÞ. The first step of the update rule
is, for m close to a fixed mðtÞ, to represent the objective function in
(6) as a linear combination of Jxi�mðtÞ J22 using (4), i.e.,

XN
i ¼ 1

Jxi�mJ22
� �p

�
XN
i ¼ 1

αðtÞ
i Jxi�mJ22;

where

αðtÞ
i ¼ Jxi�mðtÞ J22

� �p�1
: ð7Þ

Here, the approximation becomes exact when m¼mðtÞ. Note that
the objective function near mðtÞ can be approximated as a quad-
ratic function of m without computing the Hessian matrix of the
objective function. The next step is to find mðtþ1Þ that minimizes
the approximated function based on the computed αðtÞ
i , i.e.,

∂
∂m

XN
i ¼ 1

αðtÞ
i Jxi�mJ22 ¼ 0:

The solution of this equation is just the weighted average of the
samples as follows:

mðtþ1Þ ¼ 1PN
j ¼ 1 α

ðtÞ
j

XN
i ¼ 1

αðtÞ
i xi: ð8Þ

This update rule with the two steps is repeated until a convergence
condition is satisfied. This procedure is summarized in Algorithm 1.

Algorithm 1. Generalized sample mean.
Input: fx1;…; xNg, p40.
t⟵0.
mðtÞ⟵mS.
repeat

Approximation: For fixed mðtÞ, compute αðtÞ
1 ;…;αðtÞ

N

according to (7).

Minimization: Using the computed αðtÞ
1 ;…;αðtÞ

N , update
mðtþ1Þ according to (8).
t⟵tþ1.

until A stop criterion is satisfied
Output: mG ¼mðtÞ.
9:

Note that a weighted average is computed at each iteration in Algo-
rithm 1. Thus, it can be said that Algorithm 1 is a special case of the
mean shift algorithm [26]. It is also noted that the number of initial
points is only one, which is set to mS. Since non-convex optimization
methods depend on initial points, they are generally conducted
several times started from different initial points and the solution is
selected as the one providing the best performance. However, we
have empirically found that Algorithm 1 started frommS converges to
a local optimum point that is enough robust to outliers.

To demonstrate the robustness of the generalized sample mean
obtained by Algorithm 1, we randomly generated 100 samples from a
two-dimensional Gaussian distribution with the mean mi ¼ 0 and
covariance matrix Σ i ¼ diag 0:5;0:5½ � for inliers and also generated 10
samples from another two-dimensional Gaussian distribution with the
mean mo ¼ 5;5½ �T and covariance matrix Σo ¼ diag 0:3;0:3½ � for out-
liers. Using the generated samples, the sample mean was computed
and two generalized sample means were also obtained by Algorithm 1
with p¼ 0:1 and p¼ 0:2, respectively. Fig. 1 shows the arithmetic
sample mean and the two generalized sample means together with the
generated samples. It is obvious that the generalized sample means are
located close to the mean of the inliers, 0;0½ �T , whereas the arithmetic
sample mean is much more biased by the ten outliers. This illustrates
that the generalized sample mean with an appropriate value of p is
more robust to outliers than the arithmetic sample mean.

3.3. Principal component analysis using generalized mean

For a projected sample WTx, the squared reconstruction error
eðWÞ can be computed as

eðWÞ ¼ ~xT ~x� ~xTWWT ~x ;

where ~x ¼ x�m. We use the generalized sample mean mG for m. To
prevent outliers corresponding to large eðWÞ from dominating the
objective function, we propose to minimize the following objective
function:

JGðWÞ ¼ 1
N

XN
i ¼ 1

eiðWÞ½ �p
 !1=p

; ð9Þ
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Fig. 1. 2D toy example with 100 inliers and 10 outliers. The arithmetic mean (mS)
and the generalized sample mean (mG) are marked.
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where eiðWÞ ¼ ~xi
T ~xi � ~xi

TWWT ~xi is the squared reconstruction error
of xi with respect toW. Note that JGðWÞ is formulated by replacing the
arithmetic mean in JL2 ðWÞ with the generalized mean keeping the use
of the Euclidean distance and it is equivalent to JL2 ðWÞ if p¼ 1. The
negative effect raised by outliers is suppressed in the same way as in
(6). Also, the solution that minimizes JGðWÞ is rotationally invariant
because each eiðWÞ is measured based on the Euclidean distance. To
obtain WG, we develop an iterative optimization method similar to
Algorithm 1.

Like the optimization problem for mG in the previous subsec-
tion, under the assumption that p40, the optimization problem
based on (9) is firstly converted as follows:

WG ¼ arg min
WTW ¼ I

1
N

XN
i ¼ 1

eiðWÞ½ �p
 !1=p

¼ arg min
WTW ¼ I

XN
i ¼ 1

eiðWÞ½ �p; ð10Þ

Next, let us denote WðtÞ as the value of WARn�m after the t-th
iteration. Near a fixedWðtÞ, the converted objective function in (10)
can be approximated as a quadratic function of W according to (4)
asXN
k ¼ 1

eiðWÞ½ �p �
XN
i ¼ 1

βðtÞ
i eiðWÞ;

where

βðtÞ
i ¼ eiðWðtÞÞ

h ip�1
: ð11Þ

Here, the approximation becomes exact if W¼WðtÞ. After calcu-
lating each βðtÞ

i , Wðtþ1Þ can be computed by minimizing the
approximated function as

Wðtþ1Þ ¼ arg min
W

XN
i ¼ 1

βðtÞ
i eiðWÞ

¼ arg max
W

tr WTSðtÞβ W
� �

; ð12Þ

where SðtÞβ ¼ PN
i ¼ 1 β

ðtÞ
i
~x i ~x

T
i .

Algorithm 2. PCA-GM.
1:
2:
3:
Input: fx1;…;xNg, mG, m, p.
t⟵0.
WðtÞ⟵WPCAARn�m.
repeat

Approximation: For fixed WðtÞ, compute βðtÞ
1 ;…;βðtÞ

N using
(11).

Minimization: Using the computed βðtÞ
1 ;…;βðtÞ

N , find Wðtþ1Þ

by solving the eigenvalue problem in (12).
t⟵tþ1.

until A stop criterion is satisfied
Output: WG ¼WðtÞ.
9:

Note that SðtÞβ is a weighted covariance matrix and the columns of

Wðtþ1Þ are the m orthonormal eigenvectors associated with the

largest m eigenvalues of SðtÞβ . These two steps are repeated until a

convergence criterion is satisfied. Algorithm 2 summarizes this
iterative procedure of computing WG. Unfortunately, the update

rule in Algorithm 2 does not guarantee that JG Wðtþ1Þ
� �

o JG WðtÞ
� �

.

Nonetheless, the experimental results show that WG obtained by
the algorithm is good enough.



Fig. 3. Examples of original face images (upper row) and the corresponding images (lower row) occluded by rectangular noise.
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To help understanding of Algorithm 2, we made another toy
example as shown in Fig. 2(a) where 110 two dimensional samples
are plotted. Among the samples, 100 samples are regarded as
inliers and the others are regarded as outliers. The samples were
generated as the following rule:

xi �Nð0;1Þ;
yi ¼ xiþϵi;

where the random noise ϵi is sampled from Nð0;0:52Þ for inliers
and Nð0;32Þ for outliers, respectively. Fig. 2(b) shows the objective
function of PCA-GM in (9) with p¼ 0:3 for the samples as shown in
Fig. 2(a). We can see from Fig. 2(b) that the conventional PCA is
prone to the ten outliers because its objective function is mini-
mized around W¼ ½ cos 601 sin 601�T . However, PCA-GM is
robust to the outliers because its objective function is minimized
at W¼ ½ cos 48:91 sin 48:91�T , which is close to the solution
without the outliers Wn ¼ ½ cos 451 sin 451�T . Given an initial
projection vector Wð0Þ ¼ ½ cos 301 sin 301�T , the approximation
step in Algorithm 2 gives a quadratic function corresponding to
the red dashed line in Fig. 2(b). In the second step, the next
iteration Wð1Þ is determined as ½ cos 32:11 sin 32:11�T by mini-
mizing the approximate function. Interestingly, it can be said that
the approximate function plays a similar role of an upper bound of
the objective function around Wð0Þ in this update rule. It is also
noted that the approximated function at the local optimal point
W¼ ½ cos 48:91 sin 48:91�T has its minimum as the same location,
which is denoted as the magenta dashed dotted line in Fig. 2(b).
This means that Algorithm 2 converges to the local minimum
point of the objective function for the problem shown in Fig. 2(a).

In practice, when eiðWðtÞÞ is zero or very small for any i,

eiðWðtÞÞ
h ip�1

is numerically unstable if po1, and Algorithm 2
cannot proceed anymore. This problem can also occur in
Algorithm 1. It can be overcome by adding a small constant δ into
each eiðWÞ as
eiðWÞ0 ¼ ~xT

i ~x i� ~xT
i WWT ~x iþδ; ð13Þ

where δ should be small enough that the modified objective
function is not affected too much. This perturbation also changes

SðtÞβ in (12) into bSðtÞ
β as

bSðtÞ
β ¼

XN
i ¼ 1

βðtÞ
i

~x i ~x
T
i þ

δ
n

� �
;

where n is the original dimensionality of data.
4. Experiments

To evaluate the proposed method, we considered face recon-
struction, digit clustering, and object categorization problems, the
first two of which were addressed in [11,13], respectively. The
proposed method was compared with PCA, PCA-L1, R1-PCA, and
HQ-PCA. Except for the conventional PCA, they have the para-
meters to be predetermined and we determined the values of the
parameters according to the recommendations in [10,11,13]. Also,
in PCA-GM, the generalized sample mean was used instead of the
sample mean, and the perturbation parameter δ in (13) was set to
0.01 times the minimum of eiðWPCAÞ for i¼ 1;…;N. For the itera-
tive algorithms as R1-PCA, HQ-PCA, PCA-GM, the number of
iterations was limited to 100.

4.1. Face reconstruction

We collected 800 facial images from the subset ‘fa’ of the Color
FERET database [27] for the face reconstruction problem. Each face
image was normalized to a size of 40� 50 pixels using the eye
coordinates, which were obtained in the database. We simulated
two types of outliers. For the first type of outliers, some of the
facial images were randomly selected, and each of the selected
images was occluded by a rectangular area, each pixel in which
was randomly set to 0 (black) or 255 (white). The size and location
of the rectangular area were randomly determined. Fig. 3 shows
examples of original normalized faces in the upper row and their
corresponding faces occluded by the rectangular noise in the
lower row. To evaluate the proposed method with different noise
levels, we selected 80, 160, and 240 images from the 800 facial
images and occluded them by rectangular noise, so that we made
three training sets including 80, 160, and 240 occluded images. For
the second type of outliers, other three training sets were con-
structed by adding 80, 160, and 240 dummy images (outlier) with
the same size to the original 800 face images (inlier), so that the
numbers of inliers and outliers in the three training sets are
(800,80), (800,160), and (800,240) respectively. Each pixel in the
dummy images was also randomly set to 0 or 255.

After applying different versions of PCAs to the training sets
with the various numbers of extracted features m from 5 to 100,
we compared the average reconstruction errors as in [11] defined
as

1
N

XN
i ¼ 1

xori
i �m

� �
�WWT xi�mð Þ

						
2
;

						 ð14Þ

where xori
i and xi are the i-th original unoccluded image and the

corresponding training image, respectively, N is the number of the
face images, and m is the mean of the original normalized faces.
For the training sets related to the second type of outliers, the
dummy images were excluded when measuring the average
reconstruction errors, and xori

i and xi were identical. Note that W is
the projection matrix obtained from PCA, PCA-L1, R1-PCA, HQ-PCA,
and PCA-GM for the various values of m. Moreover, PCA-GM was
performed using 0.1, 0.2, 0.3, and 0.4 for the value of p to figure out
the effect of it.

Figs. 4 and 5 show the average reconstruction errors measured
as in (14) for the training sets constructed to simulate two types of
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Fig. 4. Average reconstruction errors of different PCA methods for the data sets
where the numbers of inliers and outliers (occlusion) are (a) (720, 80),
(b) (640,160), and (c) (560, 240). (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
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Fig. 5. Average reconstruction errors of different PCA methods for the data sets
where the numbers of inliers and outliers (dummy images) are (a) (800, 80),
(b) (800, 160), and (c) (800, 240). (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)
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outliers when 5rmr100. As shown in the figures, PCA-GM and
HQ-PCA generally gave better performances than PCA, PCA-L1, and
R1-PCA regardless of the types of outliers and the level of noise,
and they yielded competitive results to each other. When the
Fig. 6. Eigenfaces obtained by PCA, PCA-L1, R1-PCA, HQ-PCA, and PCA-GM w
number of the occluded images is 240, which corresponds to
Fig. 4(c), HQ-PCA provided lower average reconstruction errors
than PCA-GM for mr 40 while PCA-GM with p¼ 0:1 and p¼ 0:2
gave better performances than HQ-PCA for mZ 60. When the
ith p¼ 0:1 in order of row. (a) Occlusion noise. (b) Dummy image noise.



Fig. 7. Examples of MNIST handwritten digit images used as inliers (first row; 3, 8,
9) and outliers (second row; other digits).

Table 1
Clustering accuracy (%) of the digit images corresponding to ‘3’, ‘8’, and ‘9’ in the
reduced spaces which are obtained from the training set containing the other digit
images as outliers.

m PCA PCA-L1 R1-PCA HQ-PCA PCA-GM

50 70.00 69.00 69.67 70.00 70.00
100 70.00 72.00 70.00 69.33 69.67
150 70.67 74.00 70.67 70.00 70.00
200 70.33 73.67 70.33 73.67 75.00
250 70.33 73.67 73.67 74.00 74.00
300 70.33 75.00 75.00 73.67 73.67
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number of the dummy images is 80, which corresponds to Fig. 5
(a), the lower reconstruction errors could be obtained by PCA-GM
rather than HQ-PCA whenmr 60 while HQ-PCA preformed better
than PCA-GM for 80 rmo 100.

The effectiveness of the proposed method can also be found by
visualizing projection matrices in terms of the Eigenfaces [3]. Fig. 6
shows the first ten of Eigenfaces obtained by different PCA
methods when m¼ 40 and the number of outliers is 240 for both
types of outliers. We can see that the Eigenfaces of HQ-PCA and
PCA-GM are less contaminated from the outliers than PCA, PCA-L1,
and R1-PCA. Also, it can be seen from the figure that PCA-L1 yiel-
ded projection matrix with a different property. This may be a
reason of the fact that PCA-L1 provided relatively large recon-
struction errors when m is small as shown in Figs. 4 and 5(c).

The effect of p in PCA-GM was as expected. For the occlusion
noise as shown in Fig. 4, the lower values of p gave better per-
formances and the performance differences are more distinct as m
and noise level increase. For the dummy images as shown in Fig. 5,
PCA-GM showed almost similar performances for all the values of
p except for 0.4 when mZ 70. These results agree with the fact
that the generalized mean of a set of positive numbers depends on
small numbers more and more as p gets smaller.

4.2. Clustering

The clustering problem was dealt with using a subset of the
MNIST handwritten digit database,2 which includes a training set of
60,000 examples and a test set of 10,000 examples. We randomly
gathered 100 examples per the digits ‘3’, ‘8’, and ‘9’ from the first
10,000 examples in the training set. To simulate outliers, we also
randomly gathered 60 examples corresponding to the other digits
from the same 10,000 examples. Thus, our training set for the clus-
tering problem consists of 300 inliers and 60 outliers, which were
normalized to unit norm. Fig. 7 shows nine images of the inliers in
the upper row and nine images of the outliers in the lower row.

After obtaining projection matrices by applying various versions
of PCAs to the training set, K-means clustering with K ¼ 3 was
performed using the projected inlier examples. For the initial means
of the K-means clustering, we selected the two examples with the
largest distance and then selected another example which had the
largest sum of the distances from the previously selected two
examples. The clustering accuracy was computed based on the class
labels assigned to the examples in the database. Table 1 shows the
clustering accuracy for various numbers of extracted features. As
the previous experiments, we conducted PCA-GM using the settings
of pAf0:1;0:2;0:3;0:4g. The best performance was achieved when
p¼0.3 which is reported in Table 1. Considering the clustering
accuracy without the dimensionality reduction was 70%, PCA-GM
improved the clustering accuracy by 5%. Different from the results
of the face reconstruction problem in the previous subsection, R1-
PCA and PCA-L1 gave similar highest clustering accuracy as PCA-
GM, while HQ-PCA performed poorly than PCA-GM. However, R1-
PCA and PCA-L1 provided the highest accuracy when m¼ 300
whereas PCA-GM yielded the best performance when m¼ 200.
2 http://yann.lecun.com/exdb/mnist/
4.3. Object categorization

We evaluated the proposed method by performing object cate-
gorization on Small NORB data set [28]. The NORB data set consists of
images of 50 different objects belonging to 5 categories each of
which contains 10 objects. For each category, the images of 5 objects
shown in Fig. 8(a) belong to its training set and those of 5 objects
shown in Fig. 8(b) belong to its test set. The Small NORB data set is a
subset of the NORB data set comprising 24,300 images for training
and 24,300 images for testing, which are normalized with the size of
96 � 96 pixels on uniform background. Each object in the data set
was captured under 18 azimuths, 9 elevations, and 6 light conditions.
To evaluate the proposed method for different numbers of training
samples, we uniformly sampled the three image capture variables to
construct three training sets with 3375, 12,150, and 24,300 samples.
We also resized the images in the data set to 48 � 48 and 64 � 64
pixels for computational efficiency. Consequently, we have six
training sets with different number of samples (N) and dimension-
ality of input samples (n).

Although there are various approaches to categorize an arbitrary
sample z corresponding to an image of an object, we performed the
categorization by the nearest-to-subspace, i.e., z is determined to
belong to the category minimizing the distance from z to the sub-
space spanned by the training samples in the category. For the dis-
tance from z to the subspace of the i-th category, we employed the
squared residual error of z to the subspace computed as
~zTi ~z i� ~zTi WiW

T
i ~z i, where ~z i ¼ z�mi and Wi is the orthonormal basis

of the subspace, which corresponds to the projection matrix and can
be obtained by one of the PCA methods aforementioned. Also, mi is
the mean of the training samples in the i-th category. We used the
sample mean mS for mi in PCA, PCA-L1, and R1-PCA while we used
mH and mG instead of mS in HQ-PCA and PCA-GM, respectively. For
the purpose of comparison, the categorization accuracy was eval-
uated varying the dimensionality of subspaces (m) from 5 to 50.

Fig. 9 shows the categorization accuracy measured on the
24,300 test images in Small NORB data set. It is necessary to note
that artificial outliers were not used in this experiments different
from the previous ones. We can see that PCA-GM with an appro-
priate value of p is competitive with the conventional PCA when
N¼3375 and the proposed method provides higher categorization
accuracies than PCA as N increases. Especially when N¼ 24;300;
the proposed method achieves the best performance for all the
cases of m. This trend appears in both cases of n¼ 48� 48 and
n¼ 64� 64. However, the other variants of PCA did not gave
higher accuracies than the conventional PCA for most cases. In
particular, HQ-PCA, which showed competitive performance in the
face reconstruction experiments, resulted in the lowest categor-
ization accuracy. This means that the proposed method can be an
effective alternative to PCA in object categorization using the
nearest-to-subspace when training data is enough.

Together with the categorization accuracy, we measured
number of iterations in PCA-GM and running time of the proposed
method to obtain projection matrices from the above six training

http://yann.lecun.com/exdb/mnist/


Fig. 8. Images of objects in (a) training and (b) test sets of NORB data set.
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sets of the Small NORM data set. Table 2 shows the average
numbers of iterations performed in the proposed method. From
this table, we can find that PCA-GM converges in less than 50
iterations on average. Also, the average number of iterations
decreases as the value of p increases from 0.1 to 0.9. This may have
been resulted from the fact that the objective function of PCA-GM
has many fluctuations when the value of p is close to zero whereas
it is similar to one of the conventional PCA, which is quadratic,
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Fig. 9. Categorization accuracy of different PCA methods for the training sets with different sizes of training images (n) and different numbers of training samples (N); (a)
(48�48, 3375), (b) (48�48, 12,150), (c) (48�48, 24,300), (d) (64�64, 3375), (e) (64�64, 12,150), (c) (64�64, 24,300). (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
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when the value of p is close to one. The overall running time of the
proposed method described in Algorithm 2 varies depending on
the number of iterations needed until a stop criterion is satisfied.
Thus, we divided the overall running times by the average num-
bers of iterations performed in computing five projection matrices
with respect to five categories for every combination of m, n, and



Table 2
Average numbers of iterations needed in PCA-GM on small NORB data set.

p¼ 0:1 p¼ 0:3 p¼ 0:5 p¼ 0:7 p¼ 0:9

22.89 23.43 19.27 14.80 8.42

Table 3
Average running time in seconds per each iteration in PCA-GM with p¼ 0:1 on small NORB data set.

m n¼ 48� 48 n¼ 64� 64

N ¼ 3375 N ¼ 12;150 N ¼ 24;300 N ¼ 3375 N ¼ 12;150 N ¼ 24;300

5 1.05 22.55 40.28 1.62 47.37 146.31
10 0.95 25.45 42.90 1.59 51.36 150.91
15 0.98 25.69 37.78 1.59 52.55 134.89
20 0.94 23.74 39.14 1.49 46.61 149.55
25 0.89 17.99 35.50 1.44 36.83 130.75
30 0.88 19.60 38.86 1.42 42.74 98.59
35 0.89 18.34 39.40 1.46 43.60 136.14
40 0.84 20.23 32.62 1.42 42.51 106.12
45 0.85 20.21 33.70 1.38 39.35 126.85
50 0.84 18.35 32.03 1.43 41.43 111.99
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N, which are summarized in Table 3 in the setting of p¼ 0:1: From
the other values of p, we could see the similar tendencies. The
running times were measured on a 3.4 GHz Intel Xeon workstation
with 12 cores using MATLAB. Each iteration in the algorithm
consists of two processes, the approximation and the minimiza-
tion. Compared to the approximation, the minimization requires
much more computations. It corresponds to the weighted eigen-
value decomposition, which was implemented by applying the
singular value decomposition (SVD) to the weighted data matrix
instead of computing the weighted covariance matrix and apply-
ing the eigenvalue decomposition to it for efficiency. Thus, the
running times reported in Table 3 can be regarded as the running
time of the SVD approximately. Considering the average numbers
of iterations shown in Table 2, it can be said that the proposed
method is feasible enough until N¼ 25;000 and n¼ 5000 roughly.
5. Conclusion and discussion

We proposed a robust PCA using the generalized mean to
mitigate the negative effect of outliers belonging to the training
set. Considering the fact that the sample mean is prone to the
outliers, a generalized sample mean was proposed based on the
generalized mean as an alternative to the sample mean in the
framework of the proposed method. The efficient iterative meth-
ods were also developed to solve the optimization problems for-
mulated using the generalized mean. Experiments on the face
reconstruction, clustering, and object categorization problems
demonstrated that the proposed method performs better than or
equal to the other robust PCAs depending on the problems tackled.
We expect that the proposed methods can be used in various
applications. For example, a trimmed average, which is one of the
robust first-order statistics, was used in a scalable robust PCA
method [29]. We think that the generalized sample mean can be
an effective alternative to the trimmed average.
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