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Abstract

In this paper, a novel cultural event classification algo-
rithm based on convolutional neural networks is proposed.
The proposed method firstly extracts regions that contain
meaningful information. Then, convolutional neural net-
works are trained to classify the extracted regions. The fi-
nal classification of a scene is performed by combining the
classification results of each extracted region of the scene
probabilistically. Compared to the state-of-the-art methods
for classifying Chalearn Looking at People cultural event
recognition database, the proposed methods shows compet-
itive results.

1. Introduction

Image classification or scene classification is one of the

basic tasks in computer vision, and they have drew a lot of

attention in recent years. In particular, performance of ob-

ject detection and classification has been increased signif-

icantly in accordance with recent advances on deep learn-

ing. While most datasets for object detection or classifi-

cation such as ImageNet challenge [14] focus on dealing

with different kinds of objects, it is also important to clas-

sify scenes which contain similar objects common in differ-

ent scenes. Especially, recognizing and classifying scenes

which include people is useful in order to understand cul-

tural characteristics or human behaviors. Chalearn Cultural

event classification challenge [1] aims to understand scenes

that can be seen at various cultural events throughout the

world. The dataset consists of 50 cultural events around

the world with about 11,000 images, most of which contain

people. Since many images contain similar objects, it is

important to find discriminative characteristics of cultural

events, for example, garments or makeup of people at the

events. It can be expected that these discriminant charac-

teristics will only appear in specific regions of images and

that the rest non-specific areas of the images appear com-
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Figure 1: Overview of the proposed algorithm. After find-

ing region proposals from an image, each region proposal is

classified by CNN. Then, the final classification of an image

is calculated by combining the region classification results.

monly in multiple events. Following this rationale, we pro-

pose a method that classifies an image by gathering sub-

region classification results. Figure 1 illustrates the clas-

sification process of our method. Rather than classifying

the whole input image, we detect regions of the image with

different sizes and classify those regions individually using

convolutional neural networks (CNN). In our experiments,

the CNNs are trained successfully without exploiting pre-



trained weights. Then, the class probabilities of each re-

gion are gathered together to produce the final output for

the query image. The proposed framework can be applied

not only to the cultural event recognition, but also to any

other scene classification problems. Despite the simplicity

of our approach, the performance of the proposed algorithm

is competitive with those of the top-tier methods in the chal-

lenge.

2. Related work

Recent advances in deep neural networks boosted the

performance of image classification problems. Since the

work of Krizhevsky et al. [10], CNN has received wide at-

tention, and many different structures are proposed to im-

prove classification accuracy [7, 17, 18]. Classification us-

ing CNN can also be applied to object detection. Unlike

classification of an image, object detection needs to locate

the object in the input image. To locate an object in an

image, classification algorithm should be applied to all the

possible subregions of the image. Girshick et al. [6] reduced

the search space of the subregions by extracting region pro-

posals from images. The idea of region proposal is adopted

in our framework for a different purpose.

Cultural event recognition can be regarded as a cate-

gory of scene classification. SUN database [21] and MIT67

dataset [13] are examples of scene classification datasets

which cover various scenes of different categories. There

are mainly two approaches for scene classification. The

first approach is to exploit Bag-of-Features(BoF) represen-

tation [2]. The classification performance can be improved

when BoF model is combined with spatial pyramid match-

ing [11] or its variants [22]. The second approach is to

classify scenes through CNN. Donahue et al. [4] extracted

features from pre-trained CNN and used the features for

the scene classification. In [9], spatio-temporal information

is learned by extending a CNN in time domain to classify

videos. This method is also applied to human action recog-

nition.

While human action recognition or pose estimation has

drew lots of attention [3, 5, 19], recognizing cultural event

from a single image has been rarely studied. In addition,

while the previous scene classification datasets contain im-

ages of wide area, some of the images in the cultural event

classification dataset contain a closeup of people or specific

objects. Each cultural event has its own distinctive char-

acteristics, which can be garments, pose of human, event-

specific objects such as beer glasses, or other semantic fea-

tures. Rather than extracting those information explicitly,

we trained CNN with training examples to learn the dis-

criminant features automatically.

3. CNN with region proposals
In the images of cultural events, there are regions that

distinguish one event from the others. In other words, vi-

sual characteristics of a cultural event appear only on the

subregions of the image. For instance, images of Oktober-
fest contain beer glasses, and images of Sendfest contain

lots of sand textures. The motivation of our method is that

training and testing with only the discriminant regions will

improve the accuracy of the classification. However, it is

hard to locate the regions that contain key information of the

image. Inspired by [6], we extract region proposals which

are candidates of the distinctive regions for cultural event

recognition. We will refer to the extracted region proposals

as image regions in the paper. The image regions are sub-

image of the original image whose size and location are de-

fined by a rectangular box. The details of our algorithm is

explained in the following subsections.

3.1. Extracting region proposals

To extract distinctive and meaningful regions from an

image, the extracted regions should be repetitively detected

and need to be robust to scale or rotation variations. Though

we have no idea of which features are discriminant for cul-

tural event recognition, we expect that the discriminant fea-

tures are in the object levels. For these reasons, we used

[20] to obtain the region proposals which is also used in [6]

for object detection tasks. As in [20], possible object lo-

cations are extracted via selective search which combines

an exhaustive search and segmentation. From the extracted

candidate regions, we exclude the ones that is too small

(regions whose width or height is less than 10% of the

original image) and too tall or fat regions (regions whose

width/height ratio is grater than 2 or less than 0.5). After the

exclusion step, approximately 200 to 300 image regions are

extracted from one image. Data augmentation is another ad-

vantage of region proposal extraction. It is able to generate

over one million training examples from the thousands of

training images, which is sufficient to train our deep CNN.

3.2. Structure of CNN

Using the patches extracted in Section 3.1, CNN is

trained to classify each patch. The structure of our CNN

is illustrated in Figure 2. As shown in the figure, our model

consists of 3 convolutional layers, each of which is followed

by the corresponding pooling layers (3 pooling layers), and

2 fully connected layers. The filter size of each convolu-

tional layer is 5 × 5, 3 × 3, and 3 × 3 respectively, and the

number of filters for each convolutional layer is 96, 128,

and 128 respectively. First convolutional layer is applied

on the input image with stride of 2, and images in the sec-

ond and third layers are padded with 1 on both sides before

applying convolution. All pooling layers pool over 3×3 re-

gions with stride of 2. Hence, there are overlapping regions
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Figure 2: Structures of CNN. Filters at the first convolutional layer is applied with stride of 2, and images at the second and

third layers are padded with 1 pixel. Dropout is applied to fully connected layers.

for each pooling kernel. There are two fully connected lay-

ers, each of which has 2,048 nodes. In the fully connected

layers, dropout [17] is applied to improve generalization

performance. Rectified Linear Unit(ReLU) is used as the

activation function of the network. Finally, softmax clas-

sifier is applied on the last layer, where the cross entropy

is used as a loss of the model [12]. Caffe framework [8]

is used to implement, train, and test our model. Each im-

age region is resized to 133 × 133, and the resized region

is randomly cropped to 129 × 129 size. In practice, ran-

dom cropping during the training prevents overfitting and

allows robustness on the small translation [10, 15]. The im-

age region is cropped at the center during the testing. The

cropped images is fed to the CNN as an input after mean

subtraction. Considering number of images in the training

set, number of filters for each layer is adjusted to approxi-

mately half the size of the model of [10]. Recently, CNN

with small filter size showed promising results [16], so we

used relatively small filter size in the convolutional layers.

The proposed CNN is able to classify the training examples

efficiently without pre-training step.

3.3. Training and testing CNN

The Chalearn cultural recognition database has 5,875

training, 2,332 validation, and 3,569 test images, respec-

tively. During the validation phase, only the training set is

used for training CNN, while both training and validation

sets are used to train CNN in the test phase. The number

of regions extracted is 1,558,815 for train sets, 624,629 for

validation sets, and 951,738 for test sets, respectively. Dur-

ing the training, the cost function is minimized by stochastic

gradient descent method with learning rate of 0.01, momen-

tum of 0.9, and weight-decay of 0.0005. The minimization

process is performed for 250,000 iterations with mini batch

size of 128, which corresponds to around 20 epochs when

using only the training set and around 15 epochs when us-

ing both the training and validation sets. It took 16 to 17

hours to train the CNN on a single desktop PC with 24GB

RAM and GeForce Titan Black GPU.

Testing is applied for every extracted region through the

trained CNN. Therefore, class probabilities are assigned for

each region, and the assigned class probabilities of regions

from the same image is gathered together to produce the

final prediction of the image. The method how to predict

the final probabilities of an image is explained in the next

section.

4. Classification of an image
4.1. Rejecting high entropy regions

Before gathering the classification results of each region,

the image regions whose class probability distribution have

high entropy are discarded. The entropy of probability dis-

tribution X = [x1, · · · , xC ] is calculated as

H(X) = −
C∑

i=1

P(xi) lnP(xi), (1)

where C is the number of classes and xi is the probability

that the region belongs to class i. Note that the maximum

entropy for the cultural event recognition database is about

3.9 since there are 50 classes. The threshold is determined

as 2.5 by testing on the validation set, which is fixed for the

whole experiments in this paper. The regions that have high

entropy values are considered to contain not much discrim-

inant information, and they are not used for classification of

the input image.

4.2. Combining the classification probabilities of
image regions

Several simple schemes are tested for the classification

of an image from the class probabilities of each region of

the image.



Mean of probabilities: As the simplest approach, the

class probabilities of an input image can be calculated as the

average class probabilities of all the subregions. Hence, the

probabilities of each class for the input image x is assigned

as

P(class = c|x) =

N∑
i=1

P(class = c|ri)
N

, (2)

where ri is an image region (i = 1, 2, . . . , N ), N is the

number of image regions from the input image x, and c is

the class for cultural events.

Weighted sum of probabilities: This scheme weights

the image regions that cover large areas of the input image.

The underlying intuition for this scheme is that large re-

gions may contain more information than smaller regions.

The area, or the number of pixels, of the image region is

used as the weight. Then, the calculated weighted sum is

normalized as in the following equation,

P(class = c|x) =

N∑
i=1

area(ri)P(class = c|ri)
C∑

c=1

N∑
i=1

area(ri)P(class = c|ri)
, (3)

where area(ri) denotes the area of the image region ri.
Maximum probabilities count: This method counts the

label that has maximum probability for each image region.

The probability for each class is calculated as

P(class = c|x) =

N∑
i=1

I(argmax
k

P(class = k|ri) = c)

N
,

(4)

where I(·) is the indicator function which takes on zero

(miss) or one (hit). Hence, this method ignores the prob-

ability distribution of each region, and only the label that

has maximum probability contributes to the classification.

5. Experimental results
In the Chalearn cultural event recognition challenge, per-

formance is measured in terms of mean average precision

(mAP). mAP is calculated as the average area under the

precision-recall curve for each class. The mAP of our

method on validation set using various prediction schemes

in Section 4.2 is shown in Table 1. The three methods are

abbreviated as mean, weighted sum, and counting respec-

tively. Whether the entropy thresholding (ET) is applied (w/

ET) or not (w/o ET) is also indicated. All methods outper-

form the baseline method and show similar performance.

The simplest approach, mean of the probabilities, shows

best result among the three. The performance of mean of

probabilities with ET is slightly better than without it, but

the difference is marginal.

Method mAP

Mean w/ ET 0.683
Mean w/o ET 0.677

Weighted sum w/ ET 0.671

Counting w/ ET 0.661

Baseline method [1] 0.239

Table 1: Mean average precision on the validation set

Method Top-1 acc. Top-5 acc.

Image region w/o ET 43.0% 68.2%

Image region w/ ET 50.7% 75.1%

Mean w/ ET 69.9% 87.7%

Weighted sum w/ ET 69.1% 87.8%
Counting w/ ET 69.8% 87.2%

Table 2: Classification accuracy on the validation set

We also measured the classification accuracy of our

methods. Both top-1 accuracy and top-5 accuracy are re-

ported in Table 2. In the table, the first two rows show the

average classification accuracy of total 624,629 image re-

gions for the validation set. This accuracy is directly related

to the performance of the trained CNN. The image regions

with high entropy have little information on the specific cul-

tural event and we can see that the image region classifi-

cation performance is increased by around 7% by exclud-

ing high entropy regions in both top-1 and top-5 accuracies.

The lower 3 rows in Table 2 show the image classification

performances by combining the class probabilities of each

image region as described in Section 4.2. All combining

schemes show nearly the same classification accuracy: 69%

for the top-1 accuracy and 87% for the top-5 accuracy. In-

terestingly, image classification accuracy is boosted signif-

icantly compared to the image region classification result.

Top-1 accuracy is increased by 20% and top-5 accuracy is

increased by 12%. Therefore, it can be said that, by classify-

ing multiple subregions from the image and aggregating the

results together, the classification accuracy can be boosted.

Using the trained CNN, one can find examples of im-

age regions that have high class probability for one class.

Figure 3 shows the image regions that have class probabil-

ity of larger than 0.99 for a specific cultural event. This

means that the images in Figure 3 is typical examples of

regions that contain distinctive information from the other

classes. It can be seen that some images cover wide scenes

while others contain closeup of specific objects. Therefore,

it can be argued that region extraction in various size in-

fluence the performance. Also, by scrutinizing the regions

with high probability (or low entropy), the visual character-

istics of each cultural event can be easily identified.



Team name mAP

MMLAB 0.855

UPC-STP 0.767

MIPAL SNU 0.735
SBU CS 0.610

MasterBlaster 0.582

Nyx 0.319

Table 3: Mean average precision on the test set

Lastly, Table 3 shows the mean average precision on

the test set, which is the final result of the cultural event

recognition challenge. Image regions from both the training

and the validation sets are used as training examples. The

method used for generating the result of the test set is mean

of probabilities with entropy thresholding. The increased

performance compared to the result on the validation set

can mainly be attributed to the increased number of training

image regions. All participants are denoted as their team

names, and our method, MIPAL SNU, ranked 3rd among

6 participants. Though our method is inferior to the best

method, it has some desirable aspect that it does not require

prior knowledge or pre-training.

6. Conclusion

In this paper, a cultural event recognition algorithm

is proposed based on the extraction of region proposal

and convolutional neural networks. The proposed CNN

successfully classified training images which are the sub-

regions of images. The classification probabilities of image

regions in an image are combined to generate the final im-

age classification result. Our framework is simple, yet pow-

erful enough to achieve the competitive result compared to

the other methods of the challenge. Also, due to the gen-

erality of the proposed algorithm, it can be applied to any

other image classification problems as well as the cultural

event recognition.

Though simple averaging or counting scheme reasonably

improved the classification performance, developing more

efficient combining scheme should be considered as a future

work. Also, filtering out unnecessary image regions during

the training can improve the classification accuracy of the

CNN.
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