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Abstract—For human pose estimation in videos, it is signifi-
cant how to use temporal information between frames. In this
paper, we propose temporal flow maps for limbs (TML) and
a multi-stride method to estimate and track human poses. The
proposed temporal flow maps are unit vectors describing the
limbs’ movements. We constructed a network to learn both
spatial information and temporal information end-to-end. Spatial
information such as joint heatmaps and part affinity fields is
regressed in the spatial network part, and the TML is regressed in
the temporal network part. We also propose a data augmentation
method to learn various types of TML better. The proposed
multi-stride method expands the data by randomly selecting
two frames within a defined range. We demonstrate that the
proposed method efficiently estimates and tracks human poses
on the PoseTrack 2017 and 2018 datasets.

I. INTRODUCTION

Human pose estimation (HPE) is one of the most significant
tasks in computer vision. Over the past few years, static image-
based pose estimation for either a single person or multiple
people has achieved high accuracy using convolutional neu-
ral networks (CNNs). Deeply-structured networks as well as
iterative networks have been proposed for this task to take
advantage of their large receptive fields and rich representation
power.

In case of multiple people pose estimation, there are two
major approaches: top-down and bottom-up approaches. The
bottom-up approach [1]-[10] detects the body joints of all
people at once and then estimates human poses individually.
On the other hand, the top-down approach [5], [11]-[16]
consists of a human detector that detects human bounding
boxes and a single person pose estimator that locates and
groups body joints in each bounding box.

Recently, HPE in videos has grabbed attentions as an
extension of HPE in a single image. For HPE in videos,
human pose tracking should be performed as well as the
pose estimation. Many researches have exploited temporal
information in various ways for tracking. Such methods as
a bounding box tracking algorithm, optical flow, similarity of
estimated shape, temporal flow fields (TFF) and so on have
been applied for this task [2], [8], [15], [16].

Among them, the work of Xiao et al. [15] is a representative
top-down approach. They detected the pose based on the
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extracted bounding boxes and proposed a box tracking method
for pose tracking, which is a combination of a box propagation
using optical flow and a flow-based pose similarity. Likewise,
Ibrahim et al. [8] used the similarity of the poses to track
the pose while it is a bottom-up approach. In case of [16],
they proposed an online pose tracking algorithm called pose
Sflow, which is an association of the same person in different
frames. They created the optimized pose flow using several
scores such as mean score of all keypoints. In summary, these
studies proposed tracking methods based on the similarity of
estimated poses.

On the other hand, Andreas et al. [2] represented an asso-
ciation of poses as temporal vector maps called temporal flow
fields (TFF). TFF indicates the flow of a joint between two
frames. They estimated poses through the heatmaps and part
affinity fields [1] and used a similarity measure in a bipartite
graph matching to track the poses. However, when estimating
TFF, using only joint location may not be enough to track
the poses. Tracking only a single joint may lead to a lack
of representation power or may be vulnerable to occlusion
of joints. Therefore, if a limb that connects two joints is
tracked, it is expected to provide richer representation for the
tracker and to enhance robustness to occlusion. In addition,
considering frames of multiple strides rather than only two
consecutive frames can further improve the robustness and
performance of the network.

To this end, in this paper, we propose a pose estimator
and tracker based on TML which is designed to represent a
temporal movement of a person by estimating the direction
of limbs’ movement. More specifically, we subdivide each
limb into several sections equally in each frame. Then, 2D
unit vectors that represent the direction of corresponding limb
sections between two frames are calculated, which are used
to build each limb’s temporal maps. A huge amount of data
is needed to train the TML because the maps have to learn
extensive information. Thus, we develop a multi-stride method
as a data augmentation method to learn various types of TML.
In other words, we randomly take the two frames within a
given time range.

Figure 1 shows the overall flow of inference in the proposed
method. During inference, we process three frames as a frame
set at a time. First, we extract poses on each frame in the
form of joint heatmaps and part affinity fields at the spatial
part. The extracted poses are tracked between the first and
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Fig. 1. An inference flow of proposed method. A set of frames (Fy_1, Ft, Fy1) is defined for temporal inference. Two frames that are (Fy_1, F3) or (F%,
Fi11) are input into the network as a pair. First, poses are estimated using the spatial part on the each frame and TML are extracted by the temporal part at
the same time. To track poses, we calculate the association score of each person using the TML and the joint distance score. The optimal connection is found
by using a bipartite method. In order to refine the middle of frame F}, we need to get the associated information between (Fy_1, Fy41) through the TML
and the joint distance. If the pose is connected between Fy_1 and Fi41, we added the average pose of between (Fy_1, Fi41). Note that, the time interval
of TML is 1 at inference stage but it can be a greater number at training stage which will be described in the multi-stride method.

the second frame of the three frames by associated scores
obtained from a TML score and a joint distance. The second
frame lies in the middle of the consecutive three frames. After
the same procedure is applied to the second frame and the
third frame, the second frame is refined by analyzing the
association scores of the three frames. The frame set is selected
at one frame interval. This makes the model stable since the
information from the frames back and forth adjust the result
of the intermediate frame.

Thus, the contributions of our work are as follows:

1) We propose the TML to represent directions of limbs’
movement.

2) A multi-stride method is proposed to train various TML
as a data augmentation method.

3) The current poses are refined by associated score of the
previous frame and the next frame.

We evaluated the proposed method on the PoseTrack 2017
and 2018 datasets [17]. To prove the effectiveness of the
proposed method, we made a comparison of our work with
state-of-the-art algorithms.

II. RELATED WORK
A. Single person pose estimation

Over the past few years, many CNN based methods in single
person pose estimation [3], [7], [18]-[26] used very deep
networks. Also, a recursive methodology has been adopted
in many competitive methods.

Newell et al. [21] proposed a model with multiple hourglass
modules that repeats bottom-up and top-down processing and
Wei et al. [25] proposed a convolution version of the pose
machine [22] which has been proposed by Ramakrishna et
al. Features in these networks possess a large receptive field
which extracts an efficient representation of human context.
Advances in the single person pose estimation have made it
possible to proceed research on multi-person pose estimation.

B. Multi person pose estimation

Multi-person pose estimation [1]-[16], [27] methods can
be categorized as top-down and bottom-up approaches. The
top-down approaches [5], [11]-[16] firstly detect a person’s
bounding box and estimate single pose on the extracted
bounding box. On the other hand, the bottom-up approaches

[1]-[10] firstly detect parts of people and then determine poses
in the input image by connecting the candidate parts.

Cao et al. [1] proposed part affinity fields (PAFs) to as-
sociate body parts and determined the pose using the PAFs.
Doering et al. [2] and Zhu et al. [10] suggested modified
version of methods based on this model. DeeperCut [7] is a
graph decomposition method to re-define a variable number of
consistent body part configurations. The performances of state-
of-the-art multi-person pose estimation methods are pretty
good for a single frame. However, to apply the methods on
real applications, we need to combine them with tracking
algorithms for video data.

C. Human pose estimation with tracking

Several methods have been proposed to estimate and track
human poses on videos [2], [4], [5], [12], [15], [16], [27].
These methods can be divided into two groups depending on
whether the learned temporal information is used or not. For
the methods that do not use the learned temporal information,
they track the pose by applying optical flow, box tracking
algorithm, and so on. Xiu et al. [16] proposed a pose tracker
based on a pose flow that is a flow structure indicating the
same person in different frames by pose distance. Xiao et
al. [15] tracked the pose to use a flow-based pose tracking
algorithm based on box propagation using optical flow and a
flow-based pose similarity. Instead of naively connecting the
relationships between detected poses, several papers trained
sequential information. Radwan et al. [8] used a bi-directional
long-short term memory (LSTM) framework to learn the
consistencies of the human body shapes. Doering et al. [2]
proposed temporal flow fields that are vector fields to indicate
the direction of joints.

However, tracking only a single joint may not contain
enough temporal information due to lack of representation
power and also it may be vulnerable to occlusion of joints.
Therefore, in this paper, instead of a single joint point, a limb
connecting two adjacent joints is tracked, which is expected
to resolve the above mentioned problems. Also, during both
training and testing, we consider a pair of frames with more
than one time interval rather than only using two consecutive
frames for the robustness of the proposed architecture.
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Fig. 2. The structure of the proposed network. The spatial and the temporal parts are combined together in a single network. On the spatial part, joint
heatmaps (H circle) and part affinity fields (A circle) are regressed. Outputs from the spatial part and features from the final layers of the VGG parts are fed
into the temporal part. The temporal part regresses the TML (L circle). Pixel-wise L2 losses are used to optimize all the outputs. V;_1 and V; mean the
extracted features from VGG parts at t — 1 and ¢ frame respectively. Spstages is the concatenated spatial features of ¢ — 1 frame and ¢ frame at the stage6.

III. METHOD

In order to estimate and track human poses using a single
network, we constructed a network consisting of two sub-parts
(a spatial part and a temporal part) as shown in Figure 2. We
used the network presented in [1] for the spatial part, which
has iterative stages. The stage consists of two branches, one
for joint heatmaps and the other for part affinity fields. In
the proposed network, we take two frames as inputs. Each
frame passes through the VGG network to extract features
[28]. The features of each frame are fed into each spatial part
of the network in parallel. The features of two input frames
and the output of the spatial part’s last stage are concatenated
and fed into the temporal part. The temporal part has a single
branch to train the TML. Same as the spatial part, we apply
the iterative stages. Since the last stage outputs of the spatial
part are fed into each stage of the temporal part, the spatial
and the temporal information affect each other through the
end-to-end learning. We calculate the pixel-wise L2 loss as a
loss function for each map at all stages.

Below is a more detailed description on each part.

o Spatial parts: Spatial parts are made up of six stages to
learn the joint heatmaps and the part affinity fields. VGG
features of two frames are fed into each spatial part. The
losses of the joint heatmaps (H circle in Figure 2) and
the part affinity fields (A circle in Figure 2) are calculated
at each stage as in [1].

o Temporal parts: The temporal parts resemble the single
branch of the spatial part and are made up of three stages
to learn the TML. Each stage of the temporal parts has
three 3 x 3 convolutions and two 1 x 1 convolutions.
The first stage takes the concatenated features as inputs:
the VGG features of the two input frames, and the joint
heatmaps and the part affinity fields from the last stage
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Fig. 3. An example of TML (a) Illustration explaining how to obtain the
TML using the frames Fy, and Fi,. We subdivide each limb into several
parts and calculate the unit vector of each pair (connected by the yellow
lines, St, p.i,n and Sy, pi1.n). (b) Visualization of the left arm TML on
z(top) and y(bottom) coordinates. (¢) Accumulated TML for all limbs on
z(top) and y(bottom) coordinates. The values of TML are between the range
of -1 and 1.

in the spatial parts. The second and the third stages
additionally use the TML of the previous stage as an
input. Iterative stages gradually improve the accuracy
of the TML The loss of the TML (L circle in Figure
2) is calculated at each stage using a pixel-wise L2
loss function. The number of stages, three, was found
experimentally.

As the spatial parts are the same network presented in
[1], we will focus on the temporal part in the following
subsections.



A. Temporal flow Maps for Limb movement (TML)

The TML is a set of vector fields representing flows of
person’s limbs. In this paper, a limb denotes a part linking two
joints such as an upper arm and calf. An example of the vector
fields of a single limb is shown in Figure 3(b). To obtain these
new type of maps, first we divide each limb at regular intervals
to multiple parts. Figure 3(a) shows an example of a divided
limb at frame F;, and Fj,. In the figure, the red line means
a limb and each yellow dot line shows the same parts on the
same limb between frames. A separated part (S p ), Which
means an n-th separated part on [-th limb on the p-th person
at the frame ¢, is used to calculate the movement direction
between two frames. Based on the pair (S, p.ins Stopin)s
we calculate a unit vector v as follows:

V= (Stl,p,l,n - Stg,p,l,n) (l)

HSth:DJm - St27107l,n||2 .

Here, n, [ and p represent the index of a separated part, a
limb and a person respectively, and ¢; and ¢y are the frame
indices. The part S is represented by a two dimensional vector
corresponding to the position of the part and thus v is also a
two-dimensional vector.

Then, the L for the /-th limb is encoded through the unit
vector v for each pixel s = (x,y) which is the limb passes
through at the time interval ¢; and t5. To draw the TML, we
applied the similar process of part affinity field in [1].

v if sCC
Lip(s) = {O otherwise. @

According to the condition (C'), each pixel is determined to
whether it is on the path of limb movement at the time interval
t, and to. More concretely, in our case, the pixels belonging
to the line segment (S, pi,n, Sts.p,1,n) With a constant width
is filled with the value of v and the other pixels remain as
ZEero.

When the TML of multi person are overlapped at the same
position, it is averaged to preserve the scales of the output.
Thus, the final TML for the [-th joint averages the TML of
the joints of all people appeared in the image as follows:

P(s) .
Li(s) = {P%S) 2 p=1 Lip(s), ?f P(s)>1 3
0 if P(s) =0,

where P(s) means the number of non-zero vectors at pixel
s. All of n divided parts follow the above process to make
the TML. Figure 3(b) shows a visualization of the TML
of a single limb that is a part of left lower arm in x and
y directions. The closer the value to —1(+1), the brighter
(darker) it becomes. In Figure 3(a), we can see that the left
hand of the person moves to the left-down side. Then, the
direction of x channel is — while the direction of y channel
becomes + as shown in Figure 3(b). Thus, it is confirmed that
the direction is different in each pixel of the TML.

Unlike optical flow [29] representing directions and mag-
nitudes at each location, the TML only represents the direc-
tions using unit vectors. Because the TML does not contain
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Fig. 4. Examples of the TML of x coordinate with various time intervals.
Consecutive image sequences are shown from left to right. (a), (b) and (c)
are the right arm TML of the left person with the different time intervals, 1,
2 and 4 respectively. Using various strides, it is possible to get the TML of
both small and large movements.

magnitude information, it is more prone to change of time
interval between frames. The multi-stride method for data
augmentation, which will be describe in the next subsection,
helps to alleviate this issue and successfully trains the network
using video frames with different sampling rates.

Furthermore, the TML channel can be set as an individual
channel for each limb (Figure 3(b)) or as an accumulated
channel which accumulates the TML of all limbs (Figure
3(c)). The number of individual channels becomes the
number of limbs x 2 (x,y coordinate channel) while the
accumulated channel has only 2 channels (z,y coordinate
channel). We will show the efficiency of different types of
channel in the evaluation section.

B. Multi-stride method

The TML has temporal information on the joint location.
We need a huge dataset containing various situations and poses
to learn the maps. If one trains the TML by using only a
fixed time interval in videos sequentially, only limited types
of maps can be obtained, which usually contains very small
movements. Thus, we propose a multi-stride method which
uses a pair of frames with various time interval as a data
augmentation method. To generate the various time interval,
we randomly select two frames within a given time range.

Figure 4 shows the examples of the TML on a small-motion
video. If we only use the time interval of one shown in Figure
4(a), we cannot get a direction of large motions in this video.
On the other hands, if we use various time intervals, additional
maps can be obtained as shown in Figure 4(b) and (c), making
it possible to express a case where the motion is varied even
in a small movement.

Furthermore, our multi-stride method can be used to refine
poses at inference time. The proposed refining method can be
useful when a frame misses a person but the preceding and the
next frames successfully target the person. In this case, because
our multi-stride method randomly selected two frames at the
training time and the network learned this situation, we can
extract the TML and track the pose between frame F; and
Fi+9. More details can be found in the Section III-C.



TABLE I
THE ESTIMATION AND TRACKING RESULTS OF THE PROPOSED METHODS ON THE POSETRACK2017 AND 2018 VALIDATION DATA. #STAGE MEANS THE
NUMBER OF STACKED STAGES IN THE TEMPORAL PART. JOINT-FLOW HAS A DIFFERENT TYPE OF TEMPORAL MAP THAT IS CREATED BY JOINT
MOVEMENT. BASICALLY, THE PROPOSED TML HAS TWO CHANNELS (z AND y) FOR EACH LIMB. (*) MEANS THE METHOD IN WHICH THE TML OF ALL
LIMBS ARE ACCUMULATED IN A SINGLE MAP FOR X AND Y DIRECTIONS. + ADOPTED THE NON-MAXIMUM SUPPRESSION (NMS) FOR JOINTS. ++
INDICATES THAT THE PROPOSED REFINING METHOD FOR THE MIDDLE FRAME POSE IS APPLIED. DISTANCE MEANS THAT THE TML IS NOT USED IN THE
CALCULATION OF THE ASSOCIATION SCORE IN (4) BY SETTING o TO 0, WHICH MEANS THAT IT ONLY USES THE TORSO DISTANCE OF A PERSON FOR THE
ASSOCIATED SCORE.

data Method MOTA mAP
| #stage | Head | Shou | Elb | Wri | Hip | Knee | Ankl | Total

Joint-Flow(x) 1 70.6 70.1 50.6 | 37.5 | 539 | 41.8 30.3 52 73.1
Joint-Flow 1 48.5 48.3 303 | 19.3 | 339 23 13.5 32.1 73.2

TML(%) 1 72 70.6 52.1 | 37.7 | 53.8 41.3 30.9 52.6 71.3

2017 TML 1 70.1 69.5 519 | 40.5 | 53.8 43.5 32.7 52.9 729
TML 3 T4.7 74.1 61.7 | 494 59 52.6 43.7 60.3 70.9

TML+ 3 75.1 746 | 62.5 | 50.1 | 59.5 53 44.2 60.9 71.3

Distance+ 3 49.9 50.1 40.5 | 31.5 | 37.7 32.4 26.7 39.2 71.3

TML++ 3 75.5 75.1 62.9 | 50.7 60 534 44.5 61.3 71.5

2018 | TML++ | 3 | 76 | 769 | 66.1 | 564 | 65.1 | 61.6 | 524 | 657 | 746

C. Inference

We define a set of frames consisting of three frames
(Fi—1, Fy, Fy41) as shown in Figure 1 for temporal inference
which associates joint candidates in different frames. First,
on each frame, we estimate the joint candidates using the
joint heatmaps and spatially connect the candidates using part
affinity fields as in [1]. The heatmaps and part affinity fields
are created by the spatial part as shown in Figure 2.

Based on the connected joint candidates denoted as I, we
track the poses. We calculate the associated score of each
person in different frames. The associated score is calculated
by a linear combination of a score of the TML (S7) and a
score of joint distance (Sy):

S =aSrt+ (1—a«a)Sg, “4)

where « is a hyper-parameter which is set to 0.5 in our
experiments.

We measure the score of a candidate movement on each
TML by calculating the line integral. More specifically, we
extract two joint candidates I;l and Ijt? in different frames at
time ¢; and ¢y corresponding to the joint 7 and make a nor-
malized directional vector between the two joint candidates.
Then the value of the TML corresponding to the line segment
(I;-l, 1;2) is obtained to take inner product with the directional
vector. This is done for all the points in the line segment and
integrated as follows:

a2 [, e

Here, [ is a joint candidate and n ; is the number of joints for a
person which is determined in the spatial part. K (u) indicates
interpolated points in the line segment (1", hr tz) where u €
{0,1},ie., K(u) = (1—u)- It1 +u- It"’ ThlS score measures
the plausibility of joint assomatlon between frames using the
TML.

=1
u)) - Wd )

We measured the joint distance (S;) between the frames
using the Euclidean distance.

1 &
Sa= oy L =17 ©)

Both scores are given a different weight by using the variable
« which is determined through experiments. Finally, we find
the optimal connection by applying a bipartite graph [2].

After this, we refine the poses that have disappeared at the
intermediate frame and come out again as shown in the second
and the third images in Figure 1. More specifically, those
situation means that the pose are not extracted on the frame
F but extracted and tracked between the frames (Fy_1, Fi11).
To improve the situation, after pairs of frames with the time
interval of one (Fy_1, F}), (F}, Fyy1) are processed, then to
recover the missing person or joint in the frame F}, a pair of
frames with the time interval of two (F;_1, F}41) is inputted to
the proposed network followed by the above tracking method.
After that, the poses or the joints missed in the middle of the
frame F; are filled with average locations of those in F;_;
and Fiqg.

IV. EXPERIMENTS
A. Datasets

In order to prove the efficiency of the proposed method, ex-
periments on the PoseTrack 2017 and 2018 datasets [17] have
been performed. PoseTrack datasets are large-scale bench-
marks for human pose estimation and tracking. The PoseTrack
datasets have various videos of human activities including
fishing, running, tennis and so on. The datasets include a
wide range of pose variations from a monotonous pose to
a complex pose. PoseTrack datasets have the videos more
than 500 sequences that are expected to be more than 20K
frames. It is composed of 250 videos for training, 50 videos for



validation and 214 videos for testing. PoseTrack 2018 dataset
annotated more data than 2017.

The annotation types of PoseTrack 2017 and 2018 are
different. The joints of PoseTrack 2018 added more parts
such as ears and shoulder on top of the joints of PoseTrack
2017 and a new order of joints has been set. However,
at the test time, mean average precision (mAP), multiple
object tracker accuracy (MOTA) and multiple object tracking
precision (MOTP) are evaluated in the annotation order of
PoseTrack 2017.

B. Implementation details

We used the open-source library Caffe [30] to implement
our model. Our model was trained with a weight decay of
0.0005, a momentum of 0.9 and a learning rate of 0.00005. We
used the pre-trained model of [1] trained on COCO keypoints
dataset [31] as a base network. At the training time, we needed
to change the joint order and to add some parts such as ears
to middle of head from Postrack to COCO to use the pre-
trained model parameter, because COCO data and PoseTrack
data have different order of joints.

At the training time, we applied data augmentation methods
such as random crop, random rotate and so on. We set the
scaling and rotation parameters based on the first frame among
the two images. After a scaling and a rotation, we randomly
select a person and crop a region such that the center of the
selected person is located at the center of the region. The
scaling, the rotation and selected person information of the
first frame are applied equally in the second frame.

C. Evaluation

MOTA, MOTP and mAP are used to evaluate the perfor-
mance [32]. Table I shows the results of the proposed methods
by different settings - using different numbers (1 or 3) of
iterative stages in the temporal part (#stage), using channel
accumulation of TML instead of using individual channels for
each joint (%), and a tracking method only using distance score
by setting « in (4) as 0 (distance). Through the experiment,
we empirically decide the number of subdivide each limb to
20 pieces to make the TML.

To make the temporal network part having as few param-
eters as possible while maintaining high performance, we
experimented with different number of repetition stages, 1,
3 and 6. The spatial part used a fixed six stages. Table I only
compares the performances with one and three iterative stages
in the temporal part, because the experimental result of the
iterative 6 stages is lower than that of 3 stages and has a huge
number of parameters.

Similar to optical flow [29], we accumulate all limb move-
ments in one map called accumulated channel map as shown
in Figure 3(c). On the Table I, (x) means that the network
used the accumulated TML. Basically, we use a map with
a channel for each limb called individual channel map. The
number of channel on individual channel map is (the number
of (x,y) channels = 2)x(the number of limbs), but the
accumulated channel map has only two (x,y) channels. In

TABLE II
POSE ESTIMATION AND TRACKING PERFORMANCE ON POSETRACK 2017
TEST DATASET.

Method | mAP | MOTA | MOTP | Prec. | Rec

| Poseflow [16] | 63 | 51 | 169 | 712 | 789

Topdown | MVIG | 632 | 508 | |- -
| Xiao etal [15] | 746 | 578 | 626 | 794 | 803

| JointFlow [2] | 63.6 | 53 | 232 | 821 | 706

Bottom-up | Jinetal [5] | 59.16 | 50.59 | | - | -
| TML++ | 6878 | 5446 | 852 | 80 | 76.1

TABLE III

POSE ESTIMATION AND TRACKING PERFORMANCE ON POSETRACK 2018
TEST DATASET.

Method | Additional training data | MOTA | mAP | Wrists AP | Ankles AP
Xiao et al. [15] | +COCO+Other | 6137 | 74.03 | 73 | 69.05
ALG |  +COCO+Other | 6079 | 7485 | 7262 | 7111
Miracle | +COCO+Other | 5736 | 709 | 6819 | 66.06
cMp | +COCO | 5447 | 6467 | 6178 | 6086
PR \ +COCO | 4454 | 5905 | 5016 | 494
TML++ | +COCO | 5486 | 6781 | 602 | 5685

all the tested networks, the accumulated channel map obtained
lower accuracy than the individual channel map. Huge amount
of the directional information of each limb is lost in the
accumulated map, because the map includes some problems,
e.g., different limbs overlap in the same location and have an
averaging effect on that point.

We implemented and compared the performance of the
Joint-Flow map to show that the map created using limbs is
more efficient than the map created using joints. The Joint-
Flow map is constructed as a direction in which the joint
moves between two frames. The Joint-Flow map follows the
equation of (2) but uses the joint location instead of separated
part s. The mAPs of Joint-Flow are higher than the TML
, but MOTAs are lower. This results shows the difficulty of
tracking using the Joint-Flow, because the Joint-Flow map
has less information than the TML. Moreover, we compared
with JointFlow [2] that proposed a temporal map about joint
movement as shown in Table II. On the PoseTrack 2017 test
set, our results are better than those of the JointFlow [2].

Because the proposed method is the bottom-up approach, it
is possible to detect many joint candidates on the same part.
Thus, a non-maximum suppression (NMS) is applied for joints
to reduce confusion after estimating joint location. (+) in Table
I means that first we detect joints using the joint heatmaps and
refine the joint using NMS. Reducing the confusing candidates
increases tracking performance by around 0.4% in mAP and
0.6% in MOTA.

The sum of the TML score and the joint distance score is
used for the association score to track poses. We experimented
to see how the joint distance affects to association score. On
Table I, (Distance) means that only joint distances of a person



Fig. 5. An example of pose refinement using multi-stride inputs during the inference. The person at the right side of input images (red line) is tracked from
F;_1 to Fi41, but the pose of the person is not detected at F;. By associating the poses at Fy_1 and Fy41, we can retrieve the missed pose at F;. On the
other hand, we cannot refine the person on the left side (pink line), because it is only estimated at the Fy_1.

Fig. 6. The qualitative results of the proposed multi-stride pose estimator and tracker. The images are in chronological order from left to right. Tracked poses
are displayed in the same color.

is used in the calculation of association score. To enable this,
at inference time, we use the same structure as TML+ and set
a to 0. Only using the distance score incurs more confusion
with nearby people and the resultant MOTA is by far lower
than others on average. However, we need to use the distance
score to handle the case of no motion. Thus, we apply « to
0.5 in all the other cases.

One of our contributions is the refining method for the
middle frame pose. We refine the pose on the middle of frame
by analyzing between three frames. (++) in Table I, Table II,

and Table III means that the refining method is applied. Figure
5 shows an example result of the refined pose. The pose on
F; is refined through the association between frames F;_; and
Fi+1. In case of the person on the right side (red line), the
person is tracked at the F;_; and the F} 4, but not tracked at
the F}. Through the refining method, an average pose between
F,;_1 and Fiy; is added on the frame F;. Unfortunately, the
person on the left side (pink line) can not be tracked through
the refining method, because the pose is not estimated at the
Ft+1.



Figure 6 shows qualitative results of pose estimation and
tracking. Poses are estimated and tracked well in a variety of
environments even when several people move close together or
quickly. Because our association score considers the distance
score, poses that have a little movement can also be tracked
as shown in the fourth row on Figure 6. Unfortunately, if the
poses nearly occludes each other as in the last row of Figure
6, the pose is likely to be missed. For future work, we may
propagate the pose through the TML and refine the estimated
pose by comparing it with the propagated pose to address this.

We compare our method with the state-of-the-art methods
on the PoseTrack 2017 and 2018 test datasets as shown
in Table II. Though the proposed method shows a lower
performance than the highest record [15], the result of the
proposed network is the best among the bottom-up approaches.

Because the PoseTrack challenge was held on the September
2018, papers using the PoseTrack 2018 data have not been
published yet. We could not compare the proposed method
with other methods on the PoseTrack 2018 validate data.
However, we can compare results of state-of-the-art on the
PoseTrack 2018 test data through the results on the PoseTrack
leader-board site as shown in the Table III. We cannot com-
pare the structures of the networks, but ours shows the best
performance among the ones trained only using COCO data.

V. CONCLUSIONS

We propose a multi-stride pose estimator and tracker. It
tracks the joints based on the TML which is a unit vector map
representing the human flow. The multi-stride method has been
used to train various temporal flow maps. Our method utilizes
both the spatial and temporal information. Spatial information
such as joint heatmaps and part affinity fields is regressed by
the spatial part and TML is regressed by the temporal part.
The combined network can be trained in an end-to-end manner
influencing each other. We demonstrate the efficiency of the
proposed method on the PoseTrack 2017 and 2018 datasets.
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