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Abstract

This study investigates a new method of feature extraction for classification prob-
lems. The method is based on the independent component analysis (ICA). However,
unlike the original ICA, one of the unsupervised learning methods, it is developed
for classification problems by utilizing class information. The proposed method is
an extension of our previous work on binary-class problems to multi-class prob-
lems and it treats the class labels as input features in order to produce two sets of
new features: one that carries much information on the class labels and the other
that is irrelevant to the class. The learning rule for this method is obtained using
the stochastic gradient method to maximize the likelihood of the observed data.
Among the new features, using only class-relevant ones, the dimension of the fea-
ture space can be greatly reduced in line with the principle of parsimony, resulting
better generalization. This method was applied to recognizing face identities and
facial expressions using various databases such as the Yale, AT&T (former ORL),
Color FERET face databases and so on. The performance of the proposed method
was compared with those of conventional methods such as the principal component
analysis (PCA), Fisher’s linear discriminant (FLD), etc. The experimental results
show that the proposed method performs well for face recognition problems.
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1 Introduction

Many subspace methods have been successfully applied to construct features
of an image [1] – [6]. Among these, the Eigenface [1] (based on PCA) and
Fisherface [2] (based on FLD) methods are popular, because they allow the
efficient characterization of a low-dimensional subspace whilst preserving the
perceptual quality of a very high-dimensional raw image.

Though it is the most popular, the Eigenface method [1], by its nature, is
not suitable for classification problems since it does not make use of any out-
put class information in computing the principal components (PC). Besides,
it extracts features that are not invariant under the transformation. Merely
scaling the attributes changes resulting features. In addition, it does not use
higher order statistics and it has been reported that the performance of the
Eigenface method is severely affected by the level of illumination [2].

Unlike the Eigenface method, the Fisherface method [2] focuses on the clas-
sification problems to determine optimal linear discriminating functions for
certain types of data whose classes have a Gaussian distribution and the cen-
ters of which are well separated. Although it is quite simple and powerful for
classification problems, it cannot produce more than Nc−1 features, where Nc

is the number of classes. As in the Eigenface method, it only uses second or-
der statistics in representing the images. On the other hand, some researchers
have proposed subspace methods using higher order statistics such as the evo-
lutionary pursuit and kernel methods for face recognition [5] [3] [4].

Recently, independent component analysis (ICA), which was originally devised
for blind source separation problems, has received a great deal of attention
in the neural networks and signal processing societies because of its potential
applications in various areas. Bell and Sejnowski [7] developed an unsupervised
learning algorithm for performing ICA based on entropy maximization in a
single-layer feedforward neural network, and other researchers have shown that
ICA is more powerful for face recognition than the PCA [8] [9] [6]. Unlike PCA
and FLD, ICA uses higher order statistics and has been applied successfully
in recognizing faces with changes in pose [8], and classifying facial actions [9].
Like PCA, it does not utilize the output class information and it leaves plenty
of room for improvement.

In our previous works [10] [11] [12], we have proposed a feature extraction
method called ICA-FX which utilizes the standard ICA algorithm for binary
classification problems. In this method, the binary class label is treated as one
of the hidden sources whose linear combinations are considered to constitute
the observations. Then, feature extraction problems can be solved by standard
ICA algorithms. By maximizing the joint mutual information between the class
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labels and the new features, we could find a number of features that carry as
much information on the class labels as possible.

However, the application of ICA-FX is limited to two-class problems and it
cannot be applied to multi-class problems such as face recognition. As such,
in this paper, ICA-FX is extended to multi-class problems. There have been
several researches whose focus is to extend binary classification problems to
multi-class problems [13] [14] [15] [16]. Most of the researches of this kind dealt
with the problem of how to extend binary classifiers such as support vector
machines (SVM) to multi-class classification problems and the most popular
solution is to decompose multi-class classification problems into several mul-
tiple binary classification problems and to use combining schemes afterwards
[13] [14] [15] [16]. Regarding feature extraction schemes, FLD which was orig-
inally designed for two-class problems has been easily extended to multi-class
problems by changing the form of within-scatter and between-scatter matrices.

In this paper, instead of adding only one class node as an input to the structure
of ICA, we have added Nc class nodes as inputs to the structure of ICA where
Nc denotes the number of classes. In doing so, the 1-out-of-Nc coding scheme
is used to code the class label.

The proposed method is applied to face recognition and facial expression prob-
lems. It greatly reduces the dimension of feature space while improving the
classification performance.

This paper is organized as follows. A brief review of the ICA is carried out
in Section 2 and a new feature extraction algorithm is proposed in Section 3.
The experimental results for the face recognition problems are given to show
the advantages of the proposed algorithm in Section 4. Finally, conclusions
follow in Section 5.

2 Review of ICA

The problem of linear independent component analysis for blind source sepa-
ration was developed in the literature [17] - [19]. In parallel, Bell and Sejnowski
[7] developed an unsupervised learning algorithm based on entropy maximiza-
tion of a feedforward neural network’s output layer, which is referred to as
the Infomax algorithm. The Infomax approach, the maximum likelihood es-
timation (MLE) approach, and the negentropy maximization approach were
reported to have identical results [20] - [22].

The problem setting of an ICA is as follows: Assume that there is an L-
dimensional zero-mean non-Gaussian source vector sss(t) = [s1(t), · · · , sL(t)]T ,
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such that the components si(t)’s are mutually independent, and an N -dimensional
observed data vector xxx(t) = [x1(t), · · · , xN(t)]T is composed of a linear com-
bination of sources si(t) at each time point t, such that

xxx(t) = Asss(t) (1)

where A is a full rank N × L matrix with L ≤ N . The goal of the ICA is
to find a linear mapping W , where each component of an estimate, uuu, of the
source vector

uuu(t) = Wxxx(t) = WAsss(t) (2)

is as independent as possible. The original sources, sss(t), are recovered exactly
when W is the inverse of A up to some scale changes and permutations. For
a derivation of an ICA algorithm, it is usually assumed that L = N , because
there is little knowledge of the number of sources. In addition, sources are
assumed to be independent of time t and be drawn from an independent
distribution pi(si).

Bell and Sejnowski [7] used a feed-forward neural processor to develop the
Infomax algorithm, one of the most popular algorithms for ICA. The weight
update rule of the Infomax algorithm is as follows:

∆W ∝ [I −ϕϕϕ(uuu)uT ]W (3)

Here, uuu = Wxxx and ϕϕϕ(uuu) =

[

−
∂p1(u1)

∂u1

p1(u1)
, · · · ,−

∂pN (uN )

∂uN

pN (uN )

]T

.

The underlying assumption of the Infomax algorithm is that the sources have
a super-Gaussian distribution, which has a sharp peak and longer tails than
a normal Gaussian distribution. Some studies [23], [24] relaxed this assump-
tion of the source distribution to be sub-Gaussian or super-Gaussian and [23]
presented the extended Infomax learning rule:

∆W ∝ [I − D tanh(uuu)uuuT − uuuuuuT ]W (4)






di = 1 : super-Gaussian

di = −1 : sub-Gaussian.

Here di is the ith element of the N -dimensional diagonal matrix D, and it
switches between sub- and super-Gaussian using the stability analysis.

In this paper, the extended Infomax algorithm (4) is adopted because it is
easy to implement with less strict assumptions on the source distribution.
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3 Feature extraction based on ICA for multi-class problems

ICA outputs a set of maximally independent vectors that are linear combina-
tions of the observed data. Although these vectors might have some applica-
tions in such areas as blind source separation [7] and data visualization [25],
for classification problems, it does not perform as good as supervised methods
such as FLD, because it does not make use of class information. The effort
to incorporate the standard ICA with supervised learning has been made in
our previous works [11], [12]. In those studies, a new feature extraction algo-
rithm, ICA-FX (feature extraction based on ICA), for classification problems
with binary class labels was proposed. In this section, this will be extended to
multi-class problems. The problem to be solved in this paper is as follows:

(Problem statement) Assume that there are a normalized input feature
vector, xxx = [x1, · · · , xN ]T , and an output class, c ∈ {o1, · · · , oNc

}. The
purpose of feature extraction is to extract M(≤ N) new features fafafa =
[f1, · · · , fM ]T from xxx, by a linear combination of the xi’s, containing the
maximum information on class c.

The main idea of the proposed feature extraction algorithm is simple. The
application of the standard ICA algorithms to feature extraction for classi-
fication problems makes use of the class labels to produce two sets of new
features; features that carry as much information on the class labels (these
features will be useful for classification) as possible and the others that do not
(these will be discarded). The advantage is that the general ICA algorithms
can be used for feature extraction by maximizing the joint mutual informa-
tion between the class labels and new features. The overall derivation of the
algorithm takes almost the same steps as that for the binary case reported in
[12].

Henceforth, a feature extraction method for classification problems by modi-
fying the standard ICA algorithm is proposed. The main idea of the proposed
method is to incorporate the class labels into the structure of standard ICA to
extract a set of new features that contains much information about the class
label.

In information theoretic view, the aim of feature extraction is to extract M
new features fffa from the original N features, xxx, such that I(fffa; c), the mutual
information between newly extracted features fffa and the output class c, ap-
proaches I(xxx; c), the mutual information between the original features xxx and
the output class c [12].

This can be satisfied if we can separate the input feature space xxx into two
linear subspaces: one that is spanned by fffa = [f1, · · · , fM ]T , which contains
the maximum information on the class label c, and the other spanned by
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Fig. 1. Feature extraction in the structure of ICA (ICA-FX)

fff b = [fM+1, · · · , fN ]T , which is nothing to do with the class, i.e., independent
of class c as much as possible.

The condition for this separation can be derived as follows. If it is assumed that
fff = Wxxx where W ∈ ℜN×N is nonsingular, then xxx and fff = [f1, · · · , fN ]T =
[fffT

a , fffT
b ]T span the same linear space, which can be represented with the direct

sum of fffa ∈ ℜM and fff b ∈ ℜN−M . Then by the data processing inequality [26],

I(xxx; c) =I(Wxxx; c) = I(fff ; c)

=I(fffa, fff b; c) ≥ I(fffa; c).
(5)

The first equality holds because W is nonsingular. The second and the third
equalities are from the definitions of fff , fffa and fff b. In the inequality on the
last line, the left and the right-hand side are equal if I(fff b; c) = 0.

Therefore, if we can make fff b be independent of c, the dimension of the input
feature space can be reduced from N to M(< N) by using only fffa instead of
xxx, without losing any information on the target class.

To make fff b be independent of the class information c, the structure of inde-
pendent component analysis is modified as shown in Fig. 1 and this will be
denoted by ICA-FX from now on.

In Fig. 1, in the structure of standard ICA drawn in the upper part of the
figure, class information c is added as one of the input sources to generate the
observation xxx.

To begin with, let us first consider how discrete class labels can be incorporated
in the structure of ICA. To enable this, the discrete class labels need to be en-
coded into numerical variables. Here, if the number of classes is Nc, the 1-out-
of-Nc scheme is used in coding classes, i.e., a class vector, ccc = [c1, · · · , cNc

]T ,
is introduced and if a class label, c, belongs to the lth value, i.e., c = ol, then
cl is activated as 1 and all the other ci’s, i 6= l, are set to −1. After all the
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training examples are presented, each ci, i = 1, · · · , Nc, is shifted in order to
have zero mean and is scaled to have a unit variance.

Now ICA-FX modifies the structure of standard ICA as follows:

(Mixing) Assume that there are N independent sources sss = [s1, · · · , sN ]T

which are also independent of the class label c. Assume also that the ob-
served feature vector xxx is a linear combination of the sources sss and ccc with
the mixing matrix A ∈ ℜN×N and B ∈ ℜN×Nc ; i.e.,

xxx = Asss + Bccc. (6)

In this scenario, for different class labels, the observed data xxx is assumed to
have the same distribution with different means, because ccc is constant for
a specific class label. In face recognition problems, one can think that the
features of faces belonging to a person are distributed around a center in the
feature space and that such centers are separated from each other by Bccc.

(Unmixing) Because class information ccc is incorporated in the mixing
stage, to reconstruct the sources sss, ccc should also be included in the unmixing
stage. As shown in Fig. 1, the unmixing equation becomes

uuu = Wxxx + V ccc. (7)

As in standard ICA, our sub-goal is to make uuu equal to eee, the scaled and
permuted version of the source sss; i.e.,

eee , ΛΠsss (8)

where Λ is a diagonal matrix corresponding to an appropriate scale and Π
is a permutation matrix.

If this is the case, uuu = WAsss + (WB + V )ccc = ΛΠsss should hold and
W = ΛΠA−1 and V = −ΛΠA−1B. Then, the ui’s (i = 1, · · · , N) are
independent of the class label c by the assumption.

Because our final goal is to make some of the features fff b independent
of class information ccc and force the others fffa = fff \ fff b contain all the
information about the class which was contained in the original features xxx,
some restrictions in the form of V is made as shown in Fig. 2 and equation
(9).

Here, the original feature vector xxx is fully connected to uuu = [u1, · · · , uN ]
and the class vector ccc is connected only to uuua = [u1, · · · , uM ], but there is
no connection from ccc to uuub = [uM+1, · · · , uN ]. This makes the last N − M
rows of V becomes zero vectors.
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Fig. 2. Feature extraction algorithm based on ICA (ICA-FX)

In the figure, the augmented weight matrix WWW ∈ ℜ(N+Nc)×(N+Nc) becomes

WWW =







W V

000Nc,N INc





 =











































w1,1 · · · w1,N v1,1 · · · v1,Nc

...
...

...
...

wM,1 · · · wM,N vM,1 · · · vM,Nc

wM+1,1 · · · wM+1,N

...
... 000N−M,Nc

wN,1 · · · wN,N

000Nc,N INc











































. (9)

where W ∈ ℜN×N and V = [V T
a ,000T

N−M,Nc
]T ∈ ℜN×Nc . Here the first nonzero

M rows of V is denoted as Va ∈ ℜM×Nc .
In this structure, among the elements of fff = Wxxx(= uuu − V ccc), fff b =

[fM+1, · · · , fN ]T will be equal to uuub because the ith row of V , Vi is zero for
i = M + 1, · · · , N . Thus it will be independent of c by the assumption.
Therefore, if the relation uuu = eee and the independence assumption on the
sources and the class label hold, the M(< N) dimensional new feature
vector fffa will contain the whole information about the class label c that
was contained in xxx.

8



Now that the feature extraction problem is set in a similar form as the standard
ICA problem, a learning rule for WWW can be derived in the same way as that
for the standard ICA. Below, the MLE approach was used for the derivation.

If it is assumed that uuu = [u1, · · · , uN ]T is made equal to eee, a scaled and
permutated version of the source, sss, as in (8), the log likelihood of the data
for a given WWW becomes the following:

L(xxx,ccc|WWW ) = log | detWWW | +
N

∑

i=1

log pi(ui) + log p(ccc) (10)

because

p(xxx,ccc|WWW ) = | detWWW | p(uuu,ccc) = | detWWW |
N
∏

i=1

pi(ui) p(ccc). (11)

The second equality of (11) is from the assumption that each element of sss is
independent of the other elements of sss, which is also independent of the class
vector ccc.

Now, L can be maximized, and this can be achieved by the steepest ascent
method. Because the last term in (10) is a constant, differentiating (10) with
respect to WWW leads to

∂L

∂wi,j

=
adj(wj,i)

| detWWW |
− ϕi(ui)xj 1 ≤ i, j ≤ N

∂L

∂wi,N+j

= −ϕi(ui)cj 1 ≤ i ≤ M, 1 ≤ j ≤ Nc

(12)

where adj(·) is adjoint and ϕi(ui) = −dpi(ui)
dui

/pi(ui) . Note that each ci has a
binary numerical value depending on the class label c.

It can be seen that | detWWW | = | det W | and adj(wj,i)/| detWWW | = W−T
i,j . Thus

the learning rule becomes

∆W ∝ W−T −ϕϕϕ(uuu)xxxT

∆Va ∝ −ϕϕϕ(uuua)ccc
T .

(13)

Here ϕϕϕ(uuu) , [ϕ1(u1), · · · , ϕN(uN)]T and ϕϕϕ(uuua) , [ϕ1(u1), · · · , ϕM(uM)]T .

Since the two terms in (13) have different tasks regarding the update of the
separate matrices W and Va, the learning process can be divided. Applying
a natural gradient on updating W , by multiplying W T W on the right side of
the first equation of (13), the following is obtained.

W (t+1) =W (t) + µ1[IN −ϕϕϕ(uuu)fffT ]W (t)

V (t+1)
a =V (t)

a − µ2ϕϕϕ(uuua)ccc
T .

(14)
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Here µ1 and µ2 are the learning rates that can be set differently.

By this weight update rule, the resulting ui’s will be not only independent
of one another but also independent of the class label c, if the initial point
(W 0, V 0

a ) is sufficiently near the optimal point.

Note that the learning rule for W is the same as the original ICA learning rule
[7], and also note that fffa corresponds to the first M elements of Wxxx. Therefore,
the optimal features fffa can be extracted by the proposed algorithm when it
finds the optimal solution for W by (14). Note also that although the 1-of-Nc

scheme was used in coding the discrete class labels into numerical ones, the
derivation of the algorithm can be easily applied to other coding schemes.

The stability condition of the learning rule (14) for multi-class ICA-FX can
be easily derived in the same way as that for binary classification problems in
[12] as follows:

Theorem: The local asymptotic stability of the ICA-FX around the stationary
point (W = ΛΠA−1, V = −ΛΠA−1B) is governed by the nonlinear moment

κi = E{ϕ̇i(ei)}E{e2
i } − E{ϕi(ei)ei} (15)

and it is stable if

1 + κi > 0, 1 + κj > 0, (1 + κi)(1 + κj) > 1 (16)

for all 1 ≤ i, j ≤ N . Therefore, the sufficient condition is

κi > 0, 1 ≤ i ≤ N. (17)

Proof: See Appendix.

Note that the condition for the stability of the ICA-FX in Theorem 1 is iden-
tical to that of the standard ICA in [27]. Therefore, the interpretation of the
nonlinear moment κi can be consulted to [27]. It is important that the lo-
cal stability be preserved when the activation function ϕi(ei) is chosen to be
positively correlated with the true activation function ϕ∗

i (ei) , −ṗi(ei)/pi(ei).

The computational complexity of the algorithm increases approximately in
the order of (N2 + MNc), which is the number of elements in WWW .

As in standard ICA, applying PCA before conducting the ICA-FX can enhance
the performance of the ICA-FX much more. Therefore, the PCA was used in
all the following experimental results before applying the ICA-FX.
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4 Experimental Results

In this section, the ICA-FX was applied to face recognition problems and the
performance was compared with those of the other methods such as PCA, ICA,
and FLD. This is an extension of [28] where face recognition problems were
viewed as multiple binary classification problems and the binary version of the
ICA-FX [11] [12] was used to tackle the multi-class classification problems.

To apply the ICA-FX to face recognition problems, we first need to determine
the original input features xxx of an image which will be used to obtain the
new features fffa. There are several methods for determining the features of an
image, such as wavelets, Fourier analysis, fractal dimensions, and many other
methods [29]. Among them, one can easily come up with an idea of using each
pixel as one feature.

Though this is the simplest, directly applicable to PCA and FLD, without loss
of information of an image, the dimension of the input space of this method
becomes too large to be handled easily. Moreover, images are vulnerable to
noise. Thus, in this paper, each image was downsampled into a manageable
size in order to reduce the computational complexity as in [4].

Subsequently, each downsampled pixel was transformed to have a zero mean
and a unit variance over the training images, and PCA was then performed
both as a whitening process of the ICA-FX and for the purpose of further
reducing the dimension of the input space which leads to a significant reduction
of time for training in ICA-FX.

Therefore, in this setting, xi corresponds to the coefficient of the ith principal
component of a given image. Finally, the main routine of the ICA-FX was
applied to extract the valuable features for classification. Figure 3 shows the
experimental procedure used in this paper. For comparison, ICA and FLD
were also used after PCA was performed, as shown in the figure. The down-
sampling step was identical to that used in [4] and we could compare the
performance of the proposed method with those of kernel methods reported
in [4].

If not explicitly stated otherwise, the performances were tested with the leave-
one-out scheme and the classification was performed using the one nearest
neighborhood classifier. That is to say, to test the ith image among the total n
images, all the other (n−1) images were used for training and the ith image was
classified as the identity of the image whose Euclidean distance from the ith
image was the closest among the (n−1) images. For the Color FERET dataset
and the CMU-PIE dataset, training and test data were set differently and the
classification was performed using the one nearest neighborhood classifier.
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Fig. 4. Yale Database

The ICA-FX was applied to the Yale [2], the AT&T [30], the Color FERET
[31] [32] , and the CMU-PIE [33] face databases for face recognition, and to
the Japanese Female Facial Expression (JAFFE) [34] database for classifying
facial expressions. Throughout the experiments, the learning rates µ1 and µ2

for the ICA-FX were set to 0.002 and 0.1 respectively and the number of
iterations for learning was set to 300. The results of ICA were obtained by the
extended Infomax algorithm with a learning rate of 0.002 and 300 iterations.

4.1 Yale Database

The Yale face database consists of 165 grayscale images of 15 individuals.
There are 11 images per subject with different facial expressions or configu-
rations. In [2], the authors report two types of databases: a closely cropped
set and a full face set. In this paper, the closely cropped set was used and the
images were downsampled into 21 × 30 pixels as in [4]. Figure 4 shows the
downsampled images of the first three individuals of the dataset.

For the data, PCA was first performed on 630 downsampled pixels and various
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Fig. 5. Weights of various subspace methods for Yale dataset. (1st row: PCA (Eigen-
faces), 2nd row: ICA, 3rd row: FLD (Fisherfaces), 4th row: ICA-FX)

numbers of principal components were used as the inputs of the ICA, FLD
and ICA-FX. Figure 5 represents the typical weights of PCA, ICA, FLD, and
ICA-FX. The top row is the first 10 principal components (PC) among 165
PC’s, which are generally referred to as Eigenfaces. The third row is the first
10 out of 14 Fisherfaces that are the weights of FLD. The second and the
fourth rows are the weights of ICA and ICA-FX respectively. Here, the first
30 principal components were used as inputs to ICA, FLD, and ICA-FX and
ten features were extracted using the ICA-FX.

Figure 6 shows the performances of PCA, ICA, FLD, and ICA-FX when dif-
ferent numbers of principal components were used in the face classification.
The performances were obtained by the leave-one-out scheme. Note that the
number of features produced by the FLD is 14, because there are 15 subjects
in this dataset, while the number of features by ICA is the same as that of
PCA. In the ICA-FX, the number of features was set to 10. Because ICA and
the ICA-FX can have different results according to the initial weight random-
ization, the results of ICA and ICA-FX are averages of two experiments. From
the figure, it can be seen that the performance of ICA-FX is better than those
of the other methods regardless of the number of principal components that
are used as inputs to the ICA-FX.

Note that the error rate decreases as the number of principal components
increases in the ICA-FX. In other methods, the error rates decrease in the
beginning as the number of features increases but they increase as the number
of features further increases. Regarding PCA and ICA, the reason for this can
be attributed to ‘Occam’s razor ’ or ‘the law of parsimony ’ which states that
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simple decision rule has better generalization performances [35]. On the other
hand, because the number of features used in FLD is fixed to 14 regardless
of the number of principal components, the reason for this phenomenon on
FLD can be sought for differently. As the dimension of input space increases
the within-scatter matrix in FLD becomes close to a singular matrix and
FLD may suffer from the ‘small sample size’ problem which results in a poor
generalization performance [36].

Figure 7 shows the performance of the ICA-FX with various numbers of ex-
tracted features (M in Section III) when the number of principal components
(N in Section III) was fixed to 30, 40, and 50. In the figure, it can be seen
that the performances are better when 10 ∼ 20 features are extracted and the
error rates tend to grow as the number of extracted features increases for all
the three cases. This phenomenon can again be explained by ‘Occam’s razor ’
[35]. The unnecessarily large number of features degrades the generalization
performance.

To provide insights on how the ICA-FX simplifies the face pattern distribution,
each face pattern is projected into the two dimensional feature space in Figure
8. This figure provides a low-dimensional representation of the data, which
can be used to capture the structure of the data. In the figure, the PCA,
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Fig. 7. Performances of ICA-FX on Yale database with various number of features
used. (30, 40, and 50 principal components were used as inputs to ICA-FX.)

ICA, FLD, and ICA-FX were used to generate features using all the 165 face
images. Thirty principal components are used as inputs of ICA, FLD, and
ICA-FX. For the ICA-FX, ten features are extracted. The most significant
two features are selected as bases for PCA and FLD cases, and the first two
features are selected as bases for ICA and ICA-FX. For the sake of simplicity
in visualization, the first seven identities among the total fifteen identities are
shown in the figure, i.e., total 77 images are used for the plots. Before plotting,
features are normalized to have zero means and unit variances. Seven different
symbols such as ’+’, and ’*’ are used to represent different identities. Note that
the same symbols cluster more closely in the cases of FLD and ICA-FX than
those of PCA and ICA as expected.

In Table 1, the performance of ICA-FX was compared with those of the other
algorithms: PCA (Eigenface), FLD (Fisherface), ICA, and the kernel methods
presented in [4]. In the table, the hold-out test was also used as well as the
leave-one-out test. For hold-out test, the first 8 images of each person is used
for training and the other 3 images were reserved for test data. Therefore, the
training and the test data consist of 120 and 45 samples respectively in hold-
out test. The experimental procedure for this work was set to be the same
as that in [4]. In the experiments, PCA was initially conducted on 630 pixels
and the first 30 principal components were used as in [2]. Subsequently, the
FLD, ICA, and ICA-FX were applied to these 30 principal components. Table
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Fig. 8. Distribution of seven identities (·, ◦, ∗,×, +, ⋄, �) of Yale data in two dimen-
sional subspaces of PCA, ICA, FLD, and ICA-FX.

Table 1
Experimental results on Yale database: the leave-one-out and the hold-out tests
were both reported. The training and the test data consist of 120 and 45 samples
respectively in hold-out test. The results for kernel methods are from [4].

Method
Dim. of
Reduced
Space

Leave-one-out (165) Hold-out (120/45)

No. of Error No. of Error

Error Rate (%) Error Rate (%)

Eigenface (PCA) 30 41 24.85 10 22.22

ICA 30 38 23.03 10 22.22

Fisherface (FLD) 14 14 8.48 5 11.11

Kernel Eigenface (d=3) 60 40 24.24 – –

Kernel Fisherface (G) 14 10 6.06 – –

ICA-FX 10 7 4.24 3 6.66
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Fig. 9. AT&T Database

1 shows the classification error rates of each methods. In the left columns, the
error rates were determined by the ‘leave-one-out’ strategy, while in the right
columns, they were obtained by the ‘hold-out’ scheme. The recognition was
performed using the one nearest neighbor classifier as in [2]. In the leave-one-
out case, the performances of the kernel Eigenface, and the kernel Fisherface
are from [4]. From the table it can be seen that the ICA-FX outperforms
the other methods using a smaller number of features. Also note that the
performance of ‘leave-one-out’ scheme is better than ‘hold-out’ scheme for
supervised feature extractors, FLD and ICA-FX. This may due to the smaller
number of training examples in hold-out test compared to those in leave-one-
out test.

4.2 AT&T Database

The AT&T database of faces (formerly ‘The ORL Database of Faces’) [30],
consists of 400 images, which are ten different images for 40 distinct indi-
viduals. It includes various lighting conditions, facial expressions, and facial
details. The images were downsampled into 23 × 28 pixels for computational
efficiency as in [4]. Figure 9 shows the downsampled images of the first three
individuals.

The experiments were performed exactly the same way as in the Yale database.
The results in the forthcoming figures are from the leave-one-out test with the
one nearest neighborhood classifier. Averages of two experiments for the ICA
and ICA-FX are reported here. Figure 10 shows the weights of the PCA, ICA,
FLD, and ICA-FX for this dataset respectively.

Figure 11 shows the error rates of the PCA, ICA, FLD, and ICA-FX when
different numbers of principal components were used. Note that the number
of extracted features by FLD is 39, because there are 40 classes. Because there
must be at least 40 PC’s to get 39 Fisherfaces, the error rates of the FLD for
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Fig. 10. Weights of various subspace methods for AT&T dataset. (1st row: PCA
(Eigenfaces), 2nd row: ICA, 3rd row: FLD (Fisherfaces), 4th row: ICA-FX)
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Fig. 11. Comparison of performances of PCA, ICA, FLD, and ICA-FX on AT&T
database with various number of PC’s. (The numbers of features for FLD and
ICA-FX are 39 and 10 respectively. The number of features for ICA is the same as
that of PCA)

20 and 30 PC’s are not reported. The number of extracted features for the
ICA-FX was set to ten.

Figure 12 shows the error rates of the ICA-FX when different numbers of
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Fig. 12. Performances of ICA-FX on AT&T database with various number of fea-
tures used. (40, 50, and 60 principal components were used as inputs to ICA-FX.)

features were used with 40, 50, or 60 principal components. It can be seen
that there are little differences in the performance when ten or more features
are extracted and the error rates gradually increase as the number of features
increases. This phenomenon is the same as that for the Yale database.

In Figure 13, each face pattern is projected into the two dimensional feature
space. In the figure, the PCA, ICA, FLD, and ICA-FX were used to generate
features using all the 400 face images. Forty principal components are used as
inputs of ICA, FLD, and ICA-FX. For the ICA-FX, ten features are extracted.
The most significant two features are selected as bases for PCA and FLD cases,
and the first two features are selected as bases for ICA and ICA-FX. As in Yale
databases, for the sake of simplicity in visualization, the first seven identities
among the total 40 identities are shown in the figure, i.e., total 70 images are
used for the plots. Before plotting, features are normalized to have zero means
and unit variances. Seven different symbols are used to represent different
identities. In the figure, one can rather easily separate one cluster of a symbol
from another in the cases of FLD and ICA-FX than in the cases of PCA and
ICA.

Table 2 shows the error rates of the PCA, ICA, FLD, the kernel methods,
and ICA-FX. Both the leave-one-out and the hold-out tests were shown. For
hold-out test, the first 5 images of each person were used for training and the
rest 5 images were used for test. Therefore, the numbers of training and test
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Fig. 13. Distribution of seven identities (·, ◦, ∗,×, +, ⋄, �) of AT&T data in two
dimensional subspaces of PCA, ICA, FLD, and ICA-FX.

Table 2
Experimental results on AT&T database: the leave-one-out and the hold-out tests
were both reported. The training and the test data consist of 200 and 200 samples
respectively in hold-out test. The results for kernel methods are from [4].

Method
Dim. of
Reduced
Space

Leave-one-out (400) Hold-out (200/200)

No. of Error No. of Error

Error Rate (%) Error Rate (%)

Eigenface (PCA) 40 16 4.00 22 11.0

ICA 40 17 4.25 23 11.5

Fisherface (FLD) 39 16 4.00 19 9.5

Kernel Eigenface (d=3) 40 8 2.00 – –

Kernel Fisherface (G) 39 5 1.25 – –

ICA-FX 10 4 1.00 13 6.5
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Fig. 14. JAFFE Database

Table 3
Distribution of JAFFE database

Category No. of Images Total Images

Angry 30

Disappointed 29

Fearful 32

Happy 31 213

Sad 31

Surprised 30

Neutral 30

samples are 200 each. For ICA, FLD and ICA-FX, 40 principal components
were used for the input vector as in [4]. The performances of the kernel methods
are those from [4]. As shown in the table, it can be seen that the ICA-FX
outperforms the other methods with significantly less features. Also note that
the performances of leave-one-out test are better than hold-out test. This may
due to the smaller number of training examples in the hold-out test.

4.3 JAFFE Database

This database consists of 213 images of seven facial expressions (angry, dis-
appointed, fearful, happy, sad, surprised, and neutral) posed by ten Japanese
female models [34]. The number of images belonging to each category is shown
in Table 3. Figure 14 shows samples of the images. For the experiments, each
image was downsampled to 16 × 16 and a total of 256 pixels were used. The
PCA, ICA, FLD, and ICA-FX were used for recognizing seven facial expres-
sions and the weights for each method are shown in Figure 15. Note that there
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Fig. 15. Weights of various subspace methods for JAFFE dataset. (1st row: PCA
(Eigenfaces), 2nd row: ICA, 3rd row: FLD (Fisherfaces), 4th row: ICA-FX)

are six Fisherfaces, because there are seven categories of facial expression.

The performances of the various methods are shown in Figure 16. In the figure,
various numbers of principal components were used as the inputs to ICA, FLD
and ICA-FX. For the ICA-FX, ten features were extracted. It can be seen that
the performances of the FLD is even worse than those of the PCA especially
when the number of principal components were small. The performance of the
ICA-FX is better than those of the other methods in most cases. The error
rates for ICA-FX decreases consistently as the number of principal components
increases, while those of the others do not. This phenomenon is the same as in
Yale and AT&T datasets and can be explained by ‘Occam’s razor ’ and ‘small

sample size’ problem as before.

Figure 17 shows the error rates of the ICA-FX when different numbers of
features were used with 50, 60, or 70 principal components. It is expected
from Figure 16 and 17, that error rates can be reduced to below 5% with
more principal components and 15 features extracted by the ICA-FX.

Table 4 shows the performances of the PCA, ICA, FLD, and ICA-FX when
the first 60 principal components were used. In this table, the number of
features by the ICA-FX was set to ten. The experimental results show that the
classification rates of the ICA-FX are better than those of the other methods.
Furthermore, the performance of the FLD is unsatisfactory in this case. The
reason is that the number of extracted features by the FLD is too small to
contain sufficient information on the class. When five features are extracted
by the ICA-FX, the classification errors are approximately 19 ∼ 23% in Fig
17, and are close to that of the FLD in Table 4.
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Fig. 16. Comparison of performances of PCA, ICA, FLD, and ICA-FX on JAFFE
database with various number of PC’s. (The numbers of features for FLD and
ICA-FX are 6 and 10 respectively. The number of features for ICA is the same as
that of PCA)

Table 4
Experimental results on JAFFE database

Method
Dim. of No. of Error

Reduced Space Error Rate (%)

Eigenface (PCA) 60 24 11.27

ICA 60 26 12.20

Fisherface (FLD) 6 53 24.88

ICA-FX 10 17 7.98

4.4 FERET Database

The Color FERET database contains a total of 11,338 facial images obtained
from 994 subjects (individuals). The experimental settings were identical to
that of [37]. Total 992 subjects that have both ‘fa’ and ‘fb’ frontal images
were selected and these 1,984 images were used in the experiments. The size
of each image is 768 × 512 (pixels). The first 200 subjects having true color
images (the subject ‘00043’ to the subject ‘00245’) were used for training,
while the remaining 792 subjects were used for testing. Total 400 images were
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Fig. 18. Sample FERET images after histogram equalization. The top row shows
the training images of two subjects, and the bottom row shows one gallery and three
probe images of a subject.

used as training examples, 792 ‘fa’ images were used as the gallery, and 792
‘fb’ images were used for probing. All of these color images were converted
into gray images and then cropped and rescaled to a size of 120 × 100 as in
[37]. After this, histogram equalization was applied to the rescaled image and
the resulting pixels were normalized to have zero means and unit variances.
Figure 18 shows several sample images after histogram equalization. The top
row shows the training images of two subjects, and the bottom row shows one
gallery and three probe images of one subject.
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For this database, we have compared the performance of ICA-FX with those
of PCA, FLD, NLDA [38] and kernel Fisherface [4]. Note that as the number
of training subject is 200, the dimension of class vector ccc is 200×1 in ICA-FX.

Firstly, PCA was performed on the original 12,000 (120 × 100) dimensional
input space and 140 PCs were obtained. Then, FLD and ICA-FX was ap-
plied to this 140 PCs. For NLDA and kernel Fisherface, the original 12,000
pixels were used as input. As a classifier, one nearest neighborhood classifier
was used. For kernel Fisherface, polynomial kernels of order one to five and

Gaussian kernels k(i, j) = exp(− ||xi−xj ||
2

Nσ2 ) with σ2 ∈ {1, 2, · · · 10} were tested.
Here, N denotes the number of inputs, i.e, it is 12,000 in this case.

Figure 19 shows the error rates of feature extraction methods with various
number of extracted features. Fig. 19(a) shows the performances on the gallery
which consists of 792 images while (b) corresponds to the performances on
the 992 probe images. For both gallery and probe datasets, the performances
improves as the number of extracted features increases and they saturate
in the end. We can see that the differences in performances on gallery and
probe datasets are small. Regardless of the number of extracted features, FLD,
NLDA and ICA-FX performed better than PCA by more than 5%. Although
the differences are small, ICA-FX performed better than FLD by around 1%
in the saturation region. The figure also shows that ICA-FX is slightly better
than NLDA in the saturation region but the difference is negligible. Regarding
kernel Fisherface, the performance was best for Gaussian kernel with σ2 = 8
and it is reported here. The performance of kernel Fisherface was best for
small numbers of features, however it gets worse than other methods for large
numbers of features. The best error rate of ICA-FX on the probe data was
3.79% when the number of extracted features was 50. On the other hand, the
best error rates of FLD, NLDA and kernel Fishface was 4.80%, 4.80% and
4.92% respectively.

Note that the performance enhancement of ICA-FX over FLD on the FERET
database is smaller than those on Yale and AT&T databases. Although this
might be due to the characteristic of the dataset, the reason for this might
also be attributed to the large number of classes in the training of FERET
database. Because ICA-FX has a good chance of falling into a local minimum,
the large number of classes which results in a high dimensional weight matrix
Va seems to have a bad effect on the performance of ICA-FX. Although this
can be mitigated by performing the ICA-FX several times with different initial
weight matrices, as a rule of thumb, we recommend the readers to use ICA-FX
for the problems with less than 100 or 200 classes.
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Fig. 19. Error rates on the Color FERET database with various number of features
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Fig. 20. Examples of CMU-PIE database: cropped images of three poses
(c22, c05, andc27)
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Fig. 21. Error rates on the CMU-PIE database with various number of features

4.5 CMU-PIE Database

The CMU-PIE database contains more than 40,000 facial images of 68 individ-
uals, 21 illumination conditions, 13 poses and with four different expressions.
Among them, we selected the images of 65 individuals with three pose indices
(c22, c05, c27) because the images of some individuals have defects or does
not include all 21 illumination variations. Therefore, total 4,095 (65×3×21)
images were used in this experiment.

For each of three poses, three images (illumination 19∼21) of each individual
were used for constructing a feature space for training, while the other 18 im-
ages were used for testing. The original images were firstly cropped to include
only facial part and then downscaled to a standard size of 120× 100. Finally,
histogram equalization was performed on them. Figure 20 shows the examples
of cropped images of the three poses.
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We have performed PCA, FLD, NLDA, kernel Fisherface, and ICA-FX on this
dataset and show the classification error rates of the test data on Figure 21. For
kernel Fisherface, polynomial kernels of order one to five and Gaussian kernels
with σ2 ∈ {1, 2, · · · , 10} were tested as in the FERET Color dataset. The
performance of kernel Fisherface was best for Gaussian kernel with σ2 = 4.
Note that FLD, NLDA, and kernel Fisherface could extract only up to 64
features because the number of class was 65.

In the figure, we can clearly see that PCA is by far worse than the other
supervised feature extraction methods. Also ICA-FX and NLDA are better
than kernel Fisherface and FLD in most of the cases. The best classification
error rates of FLD, kernel Fisherface, NLDA and ICA-FX are 11.14%, 11.80%,
9.40%, and 9.09% respectively.

5 Conclusions

In this paper, the feature extraction algorithm, ICA-FX, has been extended
to multi-class problems and it has been applied to face recognition problems.
The proposed algorithm is based on the standard ICA and can generate very
useful features for classification problems.

Although ICA can be directly used for feature extraction, it does not generate
useful information because of its unsupervised learning nature. In the proposed
algorithm, class information was added in the learning stage of ICA. The
added class information plays a crucial role in extracting useful features for
classification. With the additional class information new features containing
the maximum information about the class can be extracted.

The proposed algorithm is easy to implement and train, because it uses the
standard feed-forward structure and the learning algorithm of ICA. Experi-
mental results for several face databases show that the proposed algorithm
performs well in face recognition problems. The number of extracted features
of the ICA-FX was relatively small. By this property, it is concluded that
the ICA-FX produces features that are in line with the ‘law of parsimony’,
resulting in a better performance.
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A Proof of the Theorem

The proof of the theorem undergoes almost the same steps as the one in [27]
[12].

At first, the argument that the point (W = ΛΠA−1, V = −ΛΠA−1B) is a
stationary point of the learning rule (14) can be shown as follows. By substi-
tution, one can easily show that E{[IN −ϕϕϕ(uuu)fffT ]} = 0 and E{ϕϕϕ(uuua)ccc

T} = 0
at that point. After this, the proof of Theorem 1 in [12] can exactly applied
to show the stationarity of the point.

For the second part, to show that the point in question is indeed a stable
point, we use a standard tool for analyzing the local asymptotic stability of
a stochastic algorithm. It makes use of the derivative of the mean field at a
stationary point.

In doing so we introduce a new version of weight matrices Z and K such that

W (t) = Z(t)W ∗

v
(t)
ij = k

(t)
ij v∗

ij (6= 0), 1 ≤ i ≤ M, 1 ≤ j ≤ Nc

(A.1)

where kij is the (i, j) component of K, W ∗ and v∗
ij are the optimal values of

W and vij which are ΛΠA−1 and −(ΛΠA−1B)ij, respectively. Note that the
stability of W and vij in the vicinity of W ∗ and v∗

ij is equivalent to the stability
of Z and kij in the vicinity of the identity matrix IN and 1.

With the change of variables from (W,Va) to (Z,K) the learning rule for W
in (14) becomes

Z(t+1) = {IN − µ1G(Z(t), K(t))}Z(t) (A.2)

where the (i, j)th element of G ∈ ℜN×N is

G(Z(t), K(t))ij = ϕi(ui)fj − δij

=







ϕi((Z
(t)W ∗xxx)i +

∑Nc
n=1 k

(t)
in v∗

incn)(Z(t)W ∗xxx)j − δij if 1 ≤ i ≤ M

ϕi((Z
(t)W ∗xxx)i)(Z

(t)W ∗xxx)j − δij if M < i ≤ N
.

(A.3)

and

v
(t+1)
ij = v

(t)
ij − µ

(t)
ij ϕi(ui)cjv

∗
ijv

(t)
ij , 1 ≤ i ≤ M, 1 ≤ j ≤ Nc. (A.4)

Here we assume that the learning rate µ
(t)
ij (> 0) changes over time t and varies

with different index (i, j) such that it satisfies µ
(t)
ij v

(t)
ij v∗

ij = µ2. The assumption

is justified because v
(t)
ij v∗

ij
∼= v∗2

ij is positive when v
(t)
ij is near a stationary point

29



v∗
ij. This assumption holds only after Va has reached sufficiently near a stable

point V ∗
a .

Using the fact that v
(t)
ij = k

(t)
ij v∗

ij we can rewrite (A.4) as

k
(t+1)
ij = [1 − µ

(t)
i gij(Z

(t), K(t))]k
(t)
ij , 1 ≤ i ≤ M (A.5)

where

gij(Z
(t), K(t)) = ϕi(ui)v

∗
ijcj

= ϕi((Z
(t)W ∗xxx)i +

Nc
∑

n=1

k
(t)
in v∗

incn)v∗
ijcj

(A.6)

In our problem, Z ∈ ℜN×N and K ∈ ℜM×Nc constitute an N2 + MNc di-
mensional space, and we can denote this space as a direct sum of Z and
K; i.e., Z ⊕ K. Then the derivative considered here is that of a mapping
H : Z ⊕ K → E{G(Z,K)Z} ⊕ E{g11(Z,K)k11} ⊕ · · · ⊕ E{gMNc

(Z,K)kMNc
}

at the stationary point (Z∗, K∗) where Z∗ = IN and K∗ = 1MNc
, where 1MNc

is the M × Nc dimensional matrix whose every components are all 1’s. The
derivative is of (N2 + MNc)

2 dimension, and if it is positive definite, the sta-
tionary point is a local asymptotic stable point. As in [27] [12], because the
derivative of the mapping H is very sparse, we can use the first-order expansion
of H at the point (Z∗, K∗) rather than trying to use the exact derivatives.

For convenience, let us split H into two functions H1 and H2 such that

H1 : Z ⊕ K → E{G(Z,K)Z} ∈ ℜN×N

H2
ij : Z ⊕ K → E{gij(Z,K)kij}, 1 ≤ i ≤ M, 1 ≤ j ≤ Nc.

(A.7)

Note that H = H1 ⊕ H2. To get the first order linear approximation of the
function at a stationary point (Z∗, K∗), we evaluate H1 and H2 near a small
variation of the stationary point (Z,K) = (Z∗ + E , K∗ + εεε), where E ∈ ℜN×N

and εεε ∈ ℜM×Nc .

With the independence and zero mean assumptions on ei’s and class label c,
which results in the independence of ei’s and cj’s, it becomes

H1
ij(IN + E ,1MNc

+ εεε)

=







































EijE{ϕ̇i(ei)e
2
j} + E{ϕi(ei)ei}Eji +

∑M
m=1 EimE{ϕ̇i(ei)αjαm}

−E{ϕ̇i(ei)αjβi} + o(E) + o(εεε) if 1 ≤ i, j ≤ M

EijE{ϕ̇i(ei)e
2
j} + E{ϕi(ei)ei}Eji +

∑M
m=1 EimE{ϕ̇i(ei)αjαm}

+o(E) + o(εεε) if M < i ≤ N, 1 ≤ j ≤ M

EijE{ϕ̇i(ei)e
2
j} + E{ϕi(ei)ei}Eji + o(E) + o(εεε) if M < j ≤ N

(A.8)
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and

H2
ij(IN + E ,1MNc

+ εεε)

= −v∗
ij

M
∑

m=1

EimE{ϕ̇i(ei)αmcj} + v∗
ijE{ϕ̇i(ei)βicj} + o(E) + o(εεε)

1 ≤ i ≤ M, 1 ≤ j ≤ Nc.

(A.9)

Here, αi ,
∑Nc

n=1 v∗
incn and βi ,

∑Nc
n=1 v∗

incnεin.

Now, we develop the local stability conditions case by case. As mentioned
before, the detailed derivation is almost the same as that in [12].

(Case 1) i, j > M

In this case, H1
ij and H1

ji only depend on Eij and Eji and are represented as







H1
ij

H1
ji





 =







E{ϕ̇i(ei)}E{e2
j} E{ϕi(ei)ei}

E{ϕi(ej)ej} E{ϕ̇j(ej)}E{e2
i }













Eij

Eji





 , Dij







Eij

Eji





 if i 6= j

H1
ii = [E{ϕ̇i(ei)e

2
i } + E{ϕi(ei)ei}]Eii , diEii.

(A.10)

Thus for i 6= j, Zij and Zji are stabilized when Dij is positive definite. And if
i = j, Zii is stabilized when di is positive. Using the fact that E{ϕi(ei)ei} = 1
∀i = 1, · · · , N , we can show that the local stability condition for the pair (i, j)
when i, j > M is (16).

(Case 2) i ≤ M, j > M

In this case, H1
ij and H1

ji are dependent not only on Eij and Eji but also on
all Ejm, m = 1, · · · ,M . Thus for a fixed j, we augment all the H1

ij and H1
ji, i =

1, · · · ,M , and construct a 2M -dimensional vector HHHj , [H1
1j, · · · , H1

Mj, H
1
j1, · · · , H1

jM ]T .

Now this augmented vector HHHj depends only on EEE j , [E1
1j, · · · , EMj, Ej1, · · · , EjM ]T

and can be represented as a linear equation HHHj = DDDjEEE j, using an appropriate
matrix DDDj ∈ ℜ2M×2M . The stability of ZZZj = [Z1j, · · · , ZMj, Zj1, · · · , ZjM ]T for
j > M is equivalent to the positive definiteness of DDDj and it can be checked
by investigating the sign of the HHHT

j EEE j.
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Substituting (A.8) and using E{ϕi(ei)ei} = 1 ∀i = 1, · · · , N , we get

HHHT
j EEE j =

M
∑

i=1

(H1
ijEij + H1

jiEji)

=
M
∑

i=1

[E{ϕ̇i(ei)e
2
j}E

2
ij + 2EijEji + E{ϕ̇j(ej)e

2
i }E

2
ji] + E{ϕ̇j(ej)}E{(

M
∑

i=1

Ejiα
∗
i )

2}.

(A.11)

If we assume that ϕ̇j(·) is nonnegative, as we did in the proof of the uniqueness
of the scalar λj, the last term is nonnegative. Thus, a sufficient condition
for this equation to be positive is to make the first term positive, and this
condition is satisfied if and only if equation (16) holds. Therefore, (16) becomes
a sufficient condition for the local stability of ZZZj.

(Case 3) i, j ≤ M

In this case, because H1
ij and H2

ij are dependent both on E and εεε, we construct
a new vector and investigate the stability condition of the vector as in the
previous case.

Consider the M×M+M×Nc dimensional vectors HHH , [H1
11, H

1
12, · · · , H1

MM , H2
11, · · · ,

H2
MNc

]T and EEE , [E11, E12, · · · , EMM , ε11, · · · , εMNc
]T . Using (A.8) and (A.9),

HHH can be represented as the linear equation HHH = DDDEEE , where DDD is an appro-
priate matrix. Thus, the stability of the Z = [Z11, Z12 · · · , ZMM ]T and K can
be checked using the same procedure as the previous case.

HHHTEEE =
M
∑

i=1

M
∑

j=1

H1
ijEij +

M
∑

i=1

Nc
∑

j=1

H2
ijεij

=
M
∑

i=1

M
∑

j=1

(E2
ijE{ϕ̇i(ei)e

2
j} + EijEji) +

M
∑

i=1

[E{ϕ̇i(ei)}E{(βi −
M
∑

j=1

αjEij)
2}]

(A.12)

The last term is nonnegative with the assumption of ϕ̇i(·) ≥ 0, and a sufficient
condition for the double summation to be positive is (16). Thus, Z ⊕ K is
locally stable if condition (16) holds.

Combining the stability conditions for the case 1, 2, and 3, we conclude that
the learning rule (14) for ICA-FX is locally asymptotically stable at the sta-
tionary point if the condition (16) holds.
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