978-1-4673-8796-5/16/$31.00 2016 IEEE

Kernel Parameter Selection by Gap Maximization
between Intra and Inter-Class Samples

John Yang, Hyeogjin Lee and Nojun Kwak
Graduate School of Convergence Science and Technology
Seoul National University
Seoul, Korea
Email: {yjohn, hjinlee, nojunk} @snu.ac.kr

Abstract—By maximizing the gap between classes in the
reproducing kernel Hilbert space (RKHS), our method optimizes
for the sigma values of radial basis function (RBF) or gaussian
kernels. For each sample, we try to ensure the distance gap
between intra-class and inter-class in RKHS to be large. Unlike
previous methods of multiple kernel learning, our method does
not need large amount of computations, which allows us to apply
the proposed method to a larger set of data. Our method is
compared with the method of kernel target alignment which is
one of the most popular methods in multiple kernel learning to
prove its efficiency of finding the optimal kernel parameter for
the Face vs Non-face dataset.

Index Terms—Multiple kernel learning, Kernel parameter
selection, Gap maximization, Kernel methods.

I. INTRODUCTION

Usually, for the data that is impossible to be linearly
discriminated in the input space, kernel trick allows linear
segregation in a more complex space. Selecting the kernel
function and its parameters is an important issue in training
process, but often requires heuristic trials to seek an opt kernel
function and to tune the parameters for a given data.

A. Multiple Kernel Learning

As in Gonen and Alpaydin [1] [2], recent developments
have suggested to use multiple kernels instead of selecting
one specific kernel function and its corresponding parameters.
One can approach this problem by considering convex com-
binations of p kernels, as in

P
ki, x) = Y k™ (i, 25), (1
m=1

with g £ [u1,--+,p1p] > 0 (element-wise nonnegative) and
P tm = 1 for p different kernel &™) functions and
X = [x1,...,Xy] is n input data. Learning the kernel param-

eters, then, consists of learning the weighting coefficients for
each base kernel, rather than optimizing the kernel parameters
of a single kernel. The optimized solution can then be used to
understand which features of the examples are of importance
for discrimination. An accurate classification can be obtained
by a sparse weighting f,,,, and pragmatic experiments and
deeper analysis can be studied more efficiently. One of the
weaknesses of MKL is that not only the size of kernel
matrices increase as the training instances increase, but also the
hardware memory size must afford the complicated optimizing

349

calculations. When an optimal training for a large data set
is required, kernel method is occasionally not taken in the
training process because of the large amount of calculations
that correspond.

B. Kernel Target Alignment

The idea of Kernel alignment was firstly introduced by
Cristianini et al. [3] with which our method is closely related.
Their framework was introduced from maximizing the align-
ment between a target-kernel and a combination of multiple
kernels. In their work, the similarity between two given kernels
k1(x;,%;) and ko(x;,x;) is defined as:

<K1 > K2>F
\/<K17 K1>F <K27 K2>F 7
where K; and K, are kernel matrices for the kernels,
k1(x;,x;) and ko(x;,x;), respectively, Here, (K1, Ko), =
tr(KTK3) is the Frobenius inner product with tr(-) being
the trace of matrix. For binary classification problems, let the
class label be y; € {1,—1} for each training data x; and
the target matrix can be set as K; = yy”. Given an sample
X = [x1,...,Xp], Frobenius inner product between Gram
matrices (K1, Kj)p. The similarity alignment between the
kernel matrix K and the target matrix is defined as

KKy (Kyy'),
VKK (KK ny/(KK)p
and the method of kernel alignment tries to maximize this
similarity.

Kernel Alignment method was later developed into more
efficient optimization setting by Lankriet et al. [4]. They
developed Cristianini’s idea into a quadratically constrained
quadratic program by implementing multiple kernel combina-
tion into alignment maximization problem. They precalculate
the numerator of Equ. 3 as ¢; = <Ki,ny> > and the
denominator S;; = (K;,K;), to reduce their number of
constraints. Thus, the alignment maximization with multiple
kernel combination becomes :

A(Ky,Ks) = 2

AKK,) =

3)

max ulq
I

, @
subject to p* Sp <1

In order to set up this optimization setting, computational

complexity required is O(pdn?+n?+pn? +p*n?) : O(pdn?)

BigComp 2016

for computing all p kernels (n? times d-vector operations),
O(n?) for the target kernel matrix, yyT, O(pn?) for q and
O(p*n?) for S. Later in this paper, our method is compared
against Lankriet’s alignment maximization.

II. KERNEL PARAMETER SELECTION BY
GAP-MAXIMIZATION

Our method initiates from considering the similarity among
feature vectors for each sample. Considering that the elements
of a kernel matrix measure the similarity between samples,
it is natural to find kernel parameters p = [p1,- -, tip)
that maximizes the minimum gap between within-class kernel
element and the between-class kernel element. This can be

formulated as
minimize —b
i
subject to kj; — ki; > b,Vie {1,--- ,n},
p
hgn =D umkéf,ﬁ),
m=1

(&)

Le {Uly # vil,

p

Z Bm =1, 2> 0.
m=1

This is a simple linear programming but it has nins(n —
2) constraints where n; and ny are the number of samples
for class 1 and -1 respectively and satisfies n = nj; + no.
Because of the huge number of constraints, in our work, we
try to reduce this number significantly by considering only the
kernels that preserve relative distance information in the input
space and RKHS.

For a given kernel matrix which is based on relative
distances of input feature vectors such as Gaussian kernels,
the information of the distances within the original space must
be also conserved in the kernel space. In case of the Gaussian
kernel

2
kij = k(z;, ;) = exp <M) , 6)

o2

kij depends on ||z; — ||, with o? influencing only as an
exponential scaling factor. Therefore the relative distance
information between samples in RKHS does not change with
parameter o2,

Consider binary classification problems with training data
X = [x1,...,X,] and its class labels y; € {—1,1}. For this
dataset, we first calculate the Euclidean distance matrix:

)

D= [(XZ - Xj)T(Xi - Xj)]w;,j = [dij}w,j)

where d;; is the squared distance between x; and x;. For each
column ¢ of distance matrix D which represents distances in
the original space from x; to others, we find the index of a
sample x; with maximum distance from x; among the ones
that share the same class labels with x; and the index of a

350

sample x; whose distance is minimum among the ones with
different class labels than x;, as in Equ. 5.

After computing D, only the two values in each column
indexed in the previous step are going to feed into the p
Gaussian kernel function:

D
K™ = exp <—2>
O.WL

where the exp(+) is Hadamard (element-wise) exponential.

Then we try to find the kernel mixture parameters g in
Equ. 1 that maximizes the difference between the elements of
the combined kernel located in the indices of maximum and
minimum value in each column that we figured from D. The
reason we primarily computed D is because when Gaussian
kernel is used, the order of the samples by the distance does
not change in RKHS because the relative distance is conserved
by the distance measure within the kernel function.

This approach reduces a significant amount of computa-
tional burdens of MKL methods. To build a kernel matrix,
it usually requires calculations in the order of n? along with
d-vector operations during the training process. The compu-
tations increase even more up to pdn? for multiple kernel
learning with p kernels. However, because it does not need to
compute for all kernels, our method requires less computional
expense. The construction of D needs dn? operations for d-
vectors. After O(n?) for findinig minimum and maximum
values for all n columns is calculated, the last computation
is computing kernel values for p kernels with 2 x n values
selected from D in the order of 2pn. The whole computation
for our method then requires O(dn? + n? + pn) before the
optimization process, which is significantly less expensive than
kernel alignment maximization in [4].

Let our final kernel be:

p p
K= Z :u’mK(m) = |:Z an’“gn)} = [k'ij}w,j' ®)
Vi,j

m=1 m=1

®)

Then, our primal problem becomes:
minimize —b
o

subject to kj; — k;; > b,Vie {1,--- ,n},

p
kgh = Z Nmkér}?):

m=1
j= arg max ki stoyr =y, (10)
fe{l,....i—1,i+1,...,n}
= argmin ky; st yr # yi,
fe{l,...,n}
P
Z pm =1,p > 0.
m=1

When computing for the maximally distant feature vectors for
intra-class and the minimally distant feature vectors for inter-
class, use of Gaussian kernels is computationally helpful.

As described earlier, if Equ. 5 is used, there will be
ning(n—1) constraints. However, if the combination of Gaus-
sian kernels that relative distance does not depend on param-
eter values are used, D matrix allows the pre-understanding

(©)

Fig. 1: Toy example of our method. (a) The graph shows input
data that is non-linearly distributed around the graph. (b) By
kernel principal component analysis (KPCA), the coordinates
in the kernel space are represented by two major eigenvectors
for the ease of structural understanding. (c) This is the kernel
matrix with the values from O to 1 that maps the input data in
(a) to coordinates in (b). As you can see, the upper-left and
the lower-right are sparse in many of the kernel components.

of indices of where maximum and minimum are present in
each column. This allows the reduction of constraints required
to only 1 for each instance. The optimization requires n
constraints after all.

Our optimal solution finds the right value of o for the
Gaussian kernels that maps data to the kernel space where data
can be clustered within its neighbors the most. In doing so, our
method does not try to make all intra-class kernel components
to be 1, but only ones selected from D. Considering the
actual coordinates of feature vectors after they are mapped into

351

Algorithm 1 The Gap-Maximization to solve for the kernel
space that is optimized by a convex combination of p Gausian
kernels by maximizing the gap between the classes.

Input: Training data X, training class c and kernel parameters
0% = [02,...,02]".

Output: Weights of kernel parameter p.

1: Construct D as (7).

2. for i=1,...,n do

3 Find d;; such that dj; > dy; Vf € {flyr = y:}.
4 Find dj; such that d;; < ds; Vf € {flyr # vi}-
5: end for
6

7

8

:form=1,...,pdo
fori=1,...,n do
K = e (53,
9: k;l(lm) = exp %
10: end for
11: end for

12: Find p = [p1,- -+, pp) solving (10) or (11).

kernel space, our optimal kernel space is where the vectors can
be clustered with the ones of their own class. This suggests
that intra-class part in the kernel matrix optimization can be
partially sparse as long as it is fullly ranked matrix. If intra-
class sections are full rank, it means that they can be clustered
as together. Restricting the result from having the obvious
solution which is to have all data becomes 1, each inter-class
feature vector is taken to the furthest in the optimized kernel
space, and minimally valued in the kernel matrix K.

III. GENERALIZATION

Instead of taking their indices for minimum and maximum
values in account for each column, we take indices where
nth minimum and maximum values are because of possible
outliers. Considering furthest or closest feature vector in
original space, if the distance is too large relative to other ones,
the outliers can distract optimizing toward the right solution.
Also, the more number of training instances, more probability
of outliers in a dataset would be present. Thus, from D, the
indices for eth minimum and maximum values for each column
are taken in order to optimize. Then our problem becomes:

minimize —b

I
subject to kj; — k;; > b,Vie {1,--- ,n},

P
g = D iy
m=1

eMargmax ky; stoyp=vy;, (1D

| = eMargminky; st yp # vi,
fe{1,...,n}

p
ZNm:LMZO-

m=1

Fig. 2: Examples of face and non-face images.

TABLE I: Experiment result on Face vs. Non-face Dataset

| Alignment Gap Maximization (ours)
Recognition Rate 97.25% 97.92%
Activated Sigma Value(s) 10241025 1031
Weighting Coefficient(s) 0.1748, 0.8252 1.0000

Since kernel tricks are usually used for non-linearly dis-
tributed data in the input space, we set up a binary class toy
example data that was designed to have non-linear distribution.
Figure 1 visualizes toy example of our method. Figure 1(b)
clearly shows the data that is mapped to the kernel space by
a kernel matrix constructed in Fig. 1(c) is easily separable by
an optimized linear plane of support vector machine (SVM).
As it also can be seen in Fig. 1(c), there exist many sparse
components in kernel matrix while doing a good job in
discriminating the features in the kernel space. This is resulted
by our method that optimizes physical distance in the kernel
space with its neighboring features to be close, not the values.

IV. EXPERIMENT

We evaluated our method on Face vs. Non-face data from
the Color FERET face database [5], which consists 8,000 face
and non-face instances in binary classes. The face images were
cropped based on the centers of the right and left pupils and
they were resized to 24x24 pixels. The non-face images were
randomly cropped and resized to have the same size. The 400
test data instances are selected from the whole dataset, and the
rest was used as training data. We have experimented kernel
target alignment method of Lankriet’s alignment maximization
[4] and gap maximization method of ours to compare the
performance of each. During the experiments, we used CVX
toolbox [6] as an optimization solver. Since support vector
machine (SVM) algorithm [7] is widely used, our experiments
were also proceeded with SVM for the classifier.

We tried both algorithms with sigma values that increments
by 10%! from 1073 to 10°. Each optimization resulted in
different combination of sigma values. As the result, kernel
target alignment is optimized to have combination of two
dominating sigma values, 10> and 1025 with weighting co-
efficients, p192.4 = 0.1748 and pqg25 = 0.8252, respectively.
Our method is optimized to have one dominant sigma value
activated, 103! with a weighting coefficient p119s.1 = 1.

352

The difference in recognition performance is not large, but
our method is obtained by far lower amount of computa-
tions than kernel target alignment is. While our method only
computes the ones that are eth indices for minimum and
maximum values from the matrix D, alignment method takes
all the datasets into accounts in order to achieve its optimized
solution.

V. CONCLUSION

We propose the method called, Gap Maximization between
intra and inter-class samples, an efficient way of selecting opt
kernel parameter, sigma value, for a given dataset by multiple
kernel learning. The proposed method necessitates less com-
puational complexity than previously proposed MKL method,
the kernel alignment maximization. Since computing the right
parameters has been usually achieved by heuristic approaches,
our method would make experiments more practical in terms
of both performance and efficiency.

Further study of this method would be the applications of
this method’s approach to learning the kernel with multiple
features. Datasets available these days are represented in
different features for better recognition performances. Differ-
entiating features that actually useful in the process of recog-
nition from the negligible features are important process of
feature extraction. By feeding multiple features and combining
them in the optimization, one can identify features that are
significant for recognition more efficiently.

REFERENCES
[1]
[2]

M. Gonen and E. Alpaydin, “Multiple kernel learning algorithms,” J.
Machine Learning Research, JMLR, vol. 12, pp. 2211-2268, 2011.

S. S. Bucak, R. Jin, and A. K. Jain, “Multiple kernel learning for visual
object recognition: A review,” IEEE Trans. Pattern Analysis and Machine
Intelligence, TPAMI, vol. 36, no. 7, pp. 1354-1369, 2014.

N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. S. Kandola, “On
kernel-target alignment,” in Advances in Neural Information Processing
Systems, NIPS, 2001, pp. 367-373.

G. R. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. 1. Jordan,
“Learning the kernel matrix with semidefinite programming,” J. Machine
Learning Research, JMLR, vol. 5, pp. 27-72, 2004.

P. J. Phillips, H. Moon, S. Rizvi, P. J. Rauss et al., “The feret evaluation
methodology for face-recognition algorithms,” IEEE Trans. Pattern Anal-
ysis and Machine Intelligence, TPAMI, vol. 22, no. 10, pp. 1090-1104,
2000.

M. Grant and S. Boyd, “Graph implementations for nonsmooth convex
programs,” in Recent Advances in Learning and Control, ser. Lecture
Notes in Control and Information Sciences, 2008, pp. 95-110.

C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273-297, 1995.

[3]

[4]

[5]

[6]

[7]

