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Abstract. In this paper, we propose a new feature extraction method for regres-
sion problems. It is a modified version of linear discriminant analysis (LDA)
which is a very successful feature extraction method for classification problems.
In the proposed method, the between class and the within class scatter matrices in
LDA are modified so that they fit in regression problems. The samples withsmall
differences in the target values are used to constitute the within class scatterma-
trix while the ones with large differences in the target values are used for the
between class scatter matrix. We have applied the proposed method in estimat-
ing the head pose and compared the performance with the conventional feature
extraction methods.
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1 Introduction

Regression, which is a process of estimating a real-value function based on a finite
set of noisy samples, is one of the classical problems in statistics, machine learning
and pattern recognition societies. When dealing with classification problems, regression
problems can be classified as supervised learning, where a set data consisting of pairs
of input objects and desired outputs are given. The input objects and the desired outputs
are usually called theinput variables and thetarget variables, respectively.

It is well known that reducing the number of input variables through dimension-
ality reduction techniques such as feature selection or feature extraction is desirable.
Reducing the dimensionality of the feature space may improve the learning process by
considering only the most important data representation, possibly with elements retain-
ing the maximum information of the original data and better generalization capabilities
[1]. Dimensionality reduction is quite desirable not only in the aspect of the number of
required data, but also in terms of data storage and computational complexity.

In this paper, we focus on the linear feature extraction methods for regression prob-
lems to reduce the dimensionality of input space.
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Many studies have been performed to solve the feature extraction problems among
which the principal component analysis (PCA) [2] and the independent component
analysis (ICA) [3] have been widely used. Although PCA is oneof the most popular
and widely used methods, which is very useful in reducing thedimension of a feature
space to a manageable size, it can still be improved for supervised learning problems
since it is an unsupervised learning method that does not make use of the target infor-
mation. Likewise, ICA, which is another unsupervised learning method, leaves much
room for improvement to be used for supervised learning problems. Unlike PCA and
ICA, linear discriminant analysis (LDA) [4] was originallydeveloped for supervised
learning, especially to find the optimal linear discriminating functions for classification
problems.

Although many feature extraction methods have been developed for classification
problems, relatively little attention has been given to feature extraction for regression
problems in the machine learning society.

On the other hand, in statistics, several algorithms have been developed for dimen-
sionality reduction in regression problems, among which the classical multivariate lin-
ear regression (MLR) [5] can be a starting point. Although MLR is optimal in the sense
of least squared error, it has the limitation that it can produce only one feature. To
overcome this limitation, a local linear dimensionality reduction method based on the
nearest neighbor scheme has been proposed [6]. Sliced inverse regression (SIR) [7] and
principal hessian directions (PHD) [8] are also very popular dimensionality reduction
techniques for regression problems in statistics.

In this paper, we propose a new feature extraction method forregression problems.
It is a generalization of LDA to regression problems which tries to maximize the ra-
tio of distances of samples with large differences in targetvalue and those with small
differences in target value. The experimental results showthat the proposed method
performs well for many regression problems. In addition, because it only needs to solve
the eigenvalue decomposition problem, it is relatively faster than iterative methods such
as ICA-FX [9].

The paper is organized as follows. In Section II, we briefly overview the conven-
tional feature extraction methods for regression problems. A new feature extraction
method is presented in Section III and the experimental results are shown in Section IV.
Finally, the conclusions and future works follow in SectionV.

2 Conventional Methods: Linear Feature Extraction for
Regression

Consider a set of predictor/response3 pairs{(xxxi, yyyi)}
n
i=1 wherexxxi ∈ ℜd×1, yyyi ∈ ℜt×1

andn denotes the number of given predictor/response pairs. Here, d is the number of
input variables andt is the number of target variables which will be equal to 1 in most
problems.4.

3 Note that instead of the termspredictor andresponse, input and target can be used without
notification.

4 From now on, we will assumet = 1 and instead of the vector formyyy, the scalar formy will
be used without notification.
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In this regression setting, we want to find a set of linear transformations ofxxx that can
constitute sufficient statistics for target vectoryyy. This transformation can be denoted as
fi = wwwT

i xxx, wherefi is the i-th new feature andwwwi ∈ ℜd×1 is the corresponding
coefficient or weight vector.

In this section, we introduce several conventional methodsfor this purpose.

2.1 Sliced Inverse Regression (SIR)

The following is the standard SIR algorithm. For simplicity, let us assume thatt = 1
and the covariance matrixSx of input variablesxxx is d × d identity matrix.

Step 1. Sort the datayi in increasing order.
Step 2. Divide the ordered data set intoL slices to make the slice size as equally as possible.

Let nl be the number of examples in slicel.
Step 3. Within each slice, compute the sample mean ofxxx, x̄xxl = 1

nl

∑

i∈slicel xxxi.
Step 4. Compute the covariance matrix for the slice means ofxxx, weighted by the slice sizes.

Sη =
1

n

L
∑

l=1

nl(x̄xxl − x̄xx)(x̄xxl − x̄xx)T (1)

Here,x̄xx denotes the sample mean ofxxx such that̄xxx = 1
n

∑n
i=1 xxxi.

Step 5. Find thek-th SIR directionwwwk by conducting the eigenvalue decomposition ofSη.

Sηwwwk = λkwwwk, λ1 ≥ λ2 ≥ · · · ≥ λd (2)

Note the similarity of SIR to PCA. SIR takesL points each of which is the sample
mean ofnl points in each slicel and then performs the PCA to theseL points. However,
the difference is that in generating theL points,xxxs that are associated with similary

values are averaged out to capture the relationship betweenthe inputxxx and the targety.

2.2 Principal Hessian Directions (PHD)

As in SIR, let us assume thatt = 1 and letf(xxx) be the regression functionE(Y |xxx).
Here,E(·) denotes expectation. Consider the Hessian matrixH(xxx) of f(xxx) whose(i, j)
component is as follows:

Hij(x) =
∂2

∂xi∂xj

f(x), (3)

wherexk is thek-th component of the vectorxxx.
Hessian matrices are important in studying multivariate nonlinear functions and

PHD focuses on the utilization of the properties of Hessian matrices for dimensionality
reduction. In the PHD algorithm, the principal Hessian directionswwwks (k = 1, · · · , d)
are obtained by solving the following eigenvalue decomposition problem:

Syxxwwwk = λkwwwk, |λ1| ≥ |λ2| ≥ · · · ≥ |λd| (4)
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whereSyxx can be estimated by

Syxx =
1

n

n
∑

i=1

(yi − ȳ)(xxxi − x̄xx)(xxxi − x̄xx)T . (5)

Because the PHD is based on the Hessian matrix, it performs poorly on the problems
where targets are linearly related to the input variables.

2.3 Linear Discriminant Analysis (LDA)

Unlike the methods previously described in this section, LDA focuses on the classifica-
tion problem where instead of a continuous target variabley, a discrete class identifier
c ∈ {1, · · · , Nc} is used. Here,Nc is the number of classes.

In LDA, we try to optimize the following Fisher’s criterion such that the ratio of
the between-covariance matrixSb = 1

n

∑Nc

c=1 nc(x̄xxc − x̄xx)(x̄xxc − x̄xx)T and the within-

covariance matrixSw = 1
n

∑Nc

c=1

∑

i∈{class=c}(xxxi − x̄xxc)(xxxi − x̄xxc)
T is maximized.

W = arg max
W

|WT SbW |

|WT SwW |
(6)

Here,x̄xx = 1
n

∑n
i=1 xxxi is the total mean of the samples,nc is the number of samples be-

longing to the classc andx̄xxc = 1
nc

∑

i∈{class=c} xxxi is the mean of the samples belonging
to the classc.

The optimization problem in (6) is equivalent to the following generalized eigen-
value problem,

Sbwwwk = λkSwwwwk λ1 ≥ λ2 ≥ · · · ≥ λd, (7)

wherewww1 is the most discriminant component,www2 is the second, and so on.

3 The Proposed Method: LDA for regression

In the classification problems, LDA has been a very successful method for dimensional-
ity reduction and many variants have been also developed. Asdescribed in the previous
section, the gist of LDA lies in maximizing Fisher’s criterion which tries to maximize
the between-class scatter while minimizing the within-class scatter.

In this section, we extend this idea to the regression problems and a new feature
extraction algorithm for regression is proposed. From now on, the new method will be
referred to asLDA-r.

Unlike the classification problems, it is difficult to define the between-class scat-
ter and within-class scatter matrices in regression problems because the target variable
is continuous. The simple idea that the samples with small differences in the target
values are considered as belonging to the same class, while the ones with large differ-
ences are considered as belonging to different classes, is used to define the between-
class and within-class scatter matrices. The followings are the modified within-class
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and between-class scatter matrices for LDA-r:

Swr =
1

nw

∑

(i,j)∈Aw

f(yi − yj)(xxxi − xxxj)(xxxi − xxxj)
T (8)

Sbr =
1

nb

∑

(i,j)∈Ab

f(yi − yj)(xxxi − xxxj)(xxxi − xxxj)
T . (9)

Here,Aw = {(i, j) : |yi − yj | < τ, i, j ∈ {1, · · · , n}, i 6= j}, Ab = {(i, j) :
|yi − yj | ≥ τ, i, j ∈ {1, · · · , n}, i 6= j} andnw = |Aw| andnb = |Ab|. The

functionf(·) is a weight function positive values. Note thatnw + nb = n(n−1)
2 .

Using this modified scatter matrices, the Fisher’s criterion can be rewritten for re-
gression problems as

W = arg max
W

|WT SbrW |

|WT SwrW |
. (10)

As stated earlier, maximizing the above Fisher’s criterionis equivalent to solving the
generalized eigenvalue problem:

Sbrwwwk = λkSwrwwwk λ1 ≥ λ2 ≥ · · · ≥ λd (11)

which is again equivalent to the following eigenvalue decomposition problem:

S−1
wr Sbrwwwk = λkwwwk λ1 ≥ λ2 ≥ · · · ≥ λd (12)

wherewww1 is the most important component,www2 is the second, and so on.
In modifying LDA for regression problems, we could have segmented the given

dataset into several virtual classes based on the target values with fixed boundaries and
applied the conventional LDA for classification problems. Although this method is sim-
ple, the results can be highly dependent on how to segment boundaries and the number
of virtual classes. In addition, this approach may not take into account the different lev-
els of similarity among different classes. Therefore, in LDA-r, soft boundaries which
are different from one sample to another are used.

Note that the threshold parameterτ plays an important role in setting the boundary.
If τ is small,nw becomes small whilenb becomes large and vise versa. The threshold
τ can be represented as a multiple of the standard deviationσy of target variabley such
thatτ = ασy. Typical range forα is 0.1 to 1.0.

Although the weight functionf(·) can be set as a constant, e.g.,f(x) = 1, it is
probably better to makef(x) take different values for different inputs. Because|yi −
yj | = τ sets a boundary whether the pair(i, j) should belong toAw or Ab, the effect of
(i, j)-pair which is near this boundary can be reduced by settingf(x) ≃ 0 for |x| ≃ τ .
Typical examples off(·) fulfilling this requirement aref(x) = ||x| − τ | andf(x) =
√

||x| − τ |.
Note that LDA-r is not invariant to transformation of input features and susceptible

to scaling of input features as in LDA. Therefore, it is desirable to preprocess the given
dataset by applying PCA which is often called the sphering process [2].

The computational complexity of LDA-r can be decomposed into two parts. The
first part is related to obtaining the covariance matrices shown in (9) and it is propor-
tional to the square of the number of examples, i.e.,O(n2). The second part is related
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Fig. 1. One thousand random points drawn fromN(0, I2). The slanted lines and ellipses in red
are the contour map which connects the points that have the samey value.

to solving the eigenvalue decomposition problem in (11) andit is typically proportional
to the cubic of the input dimension, i.e.,O(d3).

Comparing this to the complexity of LDA, because the second part is common in
LDA and LDA-r, we see that LDA-r is somewhat more computationally complex than
LDA which requiresO(n) operations in obtaining the scatter matrices. However, fora
largen, a subset of samples can be selected in computing the scattermatrices to reduce
the computational complexity.

4 Experimental Results

4.1 Linear and Quadratic Targets

Consider two independent input featuresx1 andx2 which have normal distribution with
zero mean and variance of 1. In addition, suppose the target output variabley has the
following relationships with the inputxxx:

Linear: y = 2x1 + x2 (13)

Quadratic: y = 4(x1 − 2x2)
2 + (2x1 + x2)

2. (14)

In Fig. 1(a) and (b), we have plotted 1,000 samples each. In each figure, a contour
map was drawn in red which connects the points that have the same y value (slanted
lines for the linear case, and ellipsoids for the quadratic case). For these empirical data,
we have applied SIR, PHD, and LDA-r.

Linear target: For the linear case, the optimal feature isf = 2x1 + x2 which corre-
sponds to the optimal weight vectorwww∗ = [2, 1]T .

Considering that the area between the neighboring slanted lines can be considered as
a slice in SIR, there will be significant differences in the mean valuesx̄xxl(l = 1, · · · , L)
of each slices and we expect the SIR will work well for this problem. As expected, SIR
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producedwww = [0.89, 0.45]T which is very close to the optimal valuewww∗. The number
of slices was set toL = 10 in this case.

Regarding PHD, becausey is linear with respect toxxx, all the elements in the Hessian
matrix of this problem are zeros and we can expect PHD can not solve this problem.
As a matter of fact, for the empirical data shown in Fig. 1(a),PHD producedwww =
[0.88,−0.51] which is far fromwww∗.

The reason PHD fails to this problem lies in the form of the weight function. In
PHD, the weight function is just the deviation from the target meanȳ. Therefore, the
points in the lower left part in Fig. 1(a) have negative weights (yi− ȳ < 0) and the other
points which are located in the upper right part have positive weights (yj − ȳ > 0). As
a result, contributions of any two points which are symmetric with respect to the center
cancel out each other in the formation ofSyxx and the eigenvalues ofSyxx become very
small resulting in poor performance of PHD.

For this example, LDA-r is also applied with weight functionf(x) =
√

||x| − τ |
andα = 0.3. LDA-r resulted inwww = [0.89, 0.45]T which is very close to the optimal
weight. Note that in LDA-r, the scatter matrices are all positive semi-definite.

Quadratic target: As shown in Fig. 1(b), for a fixedy, (x1, x2) constitutes an ellipsoid
whose major axis is in the direction of(2, 1) and the minor axis is in(−1, 2).

If we are to extract only one feature among the set of linear combinations of input
variablesx1 andx2, the major axis is the best projection which corresponds to afeature
f = x1 − 2x2, i.e.,www∗ = [1,−2]T .

As expected, SIR does not work well for this example because all the mean values
of the different slices are near zero and a random direction which is highly dependent
on a specific data will be chosen. For the empirical data shownin Fig. 1(b), SIR with
L = 10 extracted the first weight vectorwww = [−0.84, 0.52]T which is far from the
optimal valuewww∗ = [1,−2]T .

Unlike SIR, PHD works well for this problem becausey is quadratic with respect
to xxx and the principal Hessian directions are easily calculated. Calculating the Hessian

matrix, it becomesH =

[

16 −12
−12 34

]

and the principle Hessian direction is[1,−2]T

as expected. For the empirical data shown in Fig. 1(b), the PHD algorithm resulted in
www = [0.44,−0.90]T which is very close to the optimal value.

For this example, LDA-r is also applied with weight functionf(x) =
√

||x| − τ |
with α = 0.3. LDA-r resulted inwww = [0.44,−0.90]T which is the optimal vector.

4.2 Pose Estimation

In this part, the proposed algorithm is applied to a pose estimation problem, by taking
it as a regression problem, and the proposed algorithm are compared to some of other
conventional methods.

In face recognition systems, pose variation in a face image significantly degrades the
accuracy of face recognition. Therefore, it is important toestimate the pose of a face
image and classify the estimated pose into the correct pose class before the recognition
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(a)

       c22               c02               c05                c27               c29                c14               c34

(b)

Fig. 2. Edge images for different poses: (a) images under various poses;(b) corresponding edge
images.

procedure. Given face images with pose variation, an image can be assigned to a pose
class by a classification method using a feature extraction method.

However, unlike general classification problems, since pose classes can be placed
sequentially from left profiles to right profiles in the pose space, there is an order re-
lationship between classes, which can be represented in distance, and the distance be-
tween classes can be used as a measure of class similarity. For example, consider a pose
estimation problem which consists of three pose classes ‘front (0°)’, ‘half profile (45°)’
and ‘profile (90°)’. In this problem, ‘profile’ images are more closer to ‘half profile’
images than ‘front’ images. If a classifier misclassifies a ‘profile’ image, it would be
better to classify it into a ‘half profile’ than a ‘front’ image. Thus, we can make use of
the order relationship between classes for feature extraction. In this sense, these types
of classification problems are similar to regression problems. If each of the pose classes
is assigned a numerical target value, the pose estimation problem may be regarded as
a regression problem and the feature extraction methods canbe used to extract useful
features in discriminating the pose of a face image.

We evaluate the performance of pose estimation on the CMU-PIE database [10].
The CMU-PIE database contains more than 40,000 facial images of 68 individuals,
21 illumination conditions, 12 poses and four different expressions. Among them, we
selected the images of 65 individuals with seven pose indices (c22, c02, c05, c27, c29,
c14, c34). Each face was cropped to include only the face and rotated on the basis of the
distance among the manually selected points on an image, andthen rescaled to a size of
120 × 100 (see Fig. 2(a)). Three images under different illuminationvariation for each
of the 65 individuals in each pose class were used as a training set while the other 8190
(65x18x7) images were used for testing. We first divided the pose space into seven pose
classes from left profile to right profile and built a feature space for each pose class
using feature extraction methods explained in the previoussection. In order to estimate
a pose of a face image, each of the seven pose classes was assigned a numerical target
value from 1 (left profile) to 7 (right profile).
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Table 1. Error rate in pose classification on face images(%)

Method c22 c02 c05 c27 c29 c14 c34 Overall
PHD (1200) 28.80 44.62 28.89 1.37 1.88 5.98 3.76 12.36
SIR (1200) 29.74 44.87 27.95 1.71 2.22 7.61 3.25 16.76
LDA (6) 9.66 0 0 4.53 9.49 8.38 12.48 6.34

LDA-r(200) 7.61 0.09 0 2.56 2.82 4.87 7.18 3.59

Table 2. Error rate in pose classification on edge images(%)

Method c22 c02 c05 c27 c29 c14 c34 Overall
PHD (1200) 9.91 5.04 1.97 2.65 2.65 5.73 4.87 4.69
SIR (1200) 9.32 4.87 1.97 2.65 2.65 5.38 4.44 4.47
LDA (6) 1.03 1.03 0.17 0.26 0.26 1.97 2.56 1.04

LDA-r(200) 0.94 0.94 0 0.35 0.09 1.03 3.23 0.80

In the experiment below, each of the pixels was used as an input feature constituting
a 12,000 dimensional input space and the methods presented in the previous section
were used to extract features for estimating the pose. As canbe seen, this problem
is a typical example of the SSS problem whose input dimensiond (12,000) is much
larger than the number of training examplesn (1,365). To resolve this SSS problem,
in all the feature extraction methods, we have preprocessedthe dataset with PCA and
reduced the dimension of input space inton − 1. For the proposed method, the weight
functionf(x) =

√

||x| − τ | andα was set to 0.1. With these extracted features, the one
nearest neighborhood rule was used as a classifier with the Euclidean distance (L2) as
the distance metric.

Table 1 shows the error rates of pose classification for the test images using several
methods. Numbers in the parentheses are the number of features. As can be seen in
Table 1, the proposed method is better than the other methodsin most cases. Overall
error rates of PHD and SIR (L = 10) are above12%, while LDA gives an overall error
rate of6.34%. However, since the pose estimation is a classification problem where
levels of similarity among different classes can be defined,LDA-r is more suitable for
this problem than LDA, and we can see that the overall error rate of LDA-r is 2.75%
lower than that of LDA.

On the other hand, the images such as those in Fig. 2(a) contain necessary informa-
tion for pose estimation as well as other information such asthe illumination condition,
appearance variation, etc. In order to remove the redundantinformation for pose esti-
mation, we transform a face image to an edge image by using theSobel mask [11]. As
shown in Fig. 2(b), the edge images enhance the geometrical distribution of facial fea-
ture points. Even though the edge images may be sensitive to illumination variation, the
pose estimation can be reliably performed on images under illumination variation if the
training set contains edge images under various illumination conditions. Subsequently,
as can be seen in Table 2, the overall error rates are lower than those in Table 1. In the
case of edge images, the performance difference between each feature extraction meth-
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ods became smaller compare to the raw images, but we can see that the performance of
LDA-r is still better than the other methods.

5 Conclusions

In this paper, we have proposed a new method for linear feature extraction for regression
problems. It is a modified version of LDA. The distance information among samples are
utilized in constructing the within class and between classscatter matrices.

The two examples in Section 4.1 show the advantage of the proposed method against
the conventional methods such as SIR and PHD. It showed good performance on both
examples, while SIR and PHD performed poorly in one of the examples. We also ap-
plied the proposed method to estimating the head pose of a face image and compared
the performance to those of the conventional feature extraction methods.

The experimental result in pose estimation shows that the proposed method pro-
duces better features than the conventional methods such asSIR, PHD and LDA. The
proposed method is easy to implement and is expected to be useful in finding good
linear transformations for regression problems.
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