This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Efficient /;-Norm-Based Low-Rank Matrix

Approximations for Large-Scale Problems
Using Alternating Rectified Gradient Method

Eunwoo Kim, Student Member, IEEE, Minsik Lee, Member, IEEE, Chong-Ho Choi, Member, IEEE,
Nojun Kwak, Member, IEEE, and Songhwai Oh, Member, IEEE

Abstract— Low-rank matrix approximation plays an important
role in the area of computer vision and image processing. Most
of the conventional low-rank matrix approximation methods
are based on the I/3-norm (Frobenius norm) with principal
component analysis (PCA) being the most popular among
them. However, this can give a poor approximation for data
contaminated by outliers (including missing data), because the
I>-norm exaggerates the negative effect of outliers. Recently,
to overcome this problem, various methods based on the
[1-norm, such as robust PCA methods, have been proposed for
low-rank matrix approximation. Despite the robustness of the
methods, they require heavy computational effort and substantial
memory for high-dimensional data, which is impractical for real-
world problems. In this paper, we propose two efficient low-rank
factorization methods based on the /1-norm that find proper
projection and coefficient matrices using the alternating rectified
gradient method. The proposed methods are applied to a number
of low-rank matrix approximation problems to demonstrate their
efficiency and robustness. The experimental results show that our
proposals are efficient in both execution time and reconstruction
performance unlike other state-of-the-art methods.

Index Terms— Alternating rectified gradient method, /{-norm,
low-rank matrix approximation, matrix completion (MC), prin-
cipal component analysis (PCA), proximal gradient method.

I. INTRODUCTION

OW-RANK matrix approximation has attracted much
attention in the areas of subspace computation, data
reconstruction, image denoising, and dimensionality reduction
[1]-[10]. Since real-world data are usually high-dimensional,
it is desirable to reduce the dimension of data without loss
of information for rapid computation. Many data can usually
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be well represented with fewer parameters, and reducing
the data dimension not only reduces the computing time,
but also removes unwanted noise components. One of the
most popular methods addressing these issues is principal
component analysis (PCA) [11].

PCA transforms data to a low-dimensional subspace that
maximizes the variance of given data based on the Euclidean
distance (l>-norm). The conventional [>-norm-based PCA
(I1>-PCA) that has been used in many problems is sensitive
to outliers and missing data, because the /;-norm can some-
times amplify the negative effects of such data. This prevents
recognition or computer vision systems from performing well.

As an alternative, low-rank matrix approximation based
on the /i-norm, which is more robust to outliers [1]-[3],
[5], [6], has been proposed. Also, there are many weighted
low-rank matrix approximation methods based on the /;-norm,
in dealing with matrix completion (MC) problems, in the
presence of missing data [3], [9], [10], [12]. These techniques
assume a Laplacian noise model instead of a Gaussian noise
model. In spite of the robustness of these approaches, they
are too computationally intensive for a practical use and it is
hard to find a good solution of the /1 cost function because
of its nonconvexity and nonsmoothness. There are alternative
approaches [4], [7], [13]-[15] that modify the /; cost function
to resolve the computation and robustness issue, but their
solution are not as good as that obtained for the original
[1 cost function. Recently, robust PCA (RPCA) methods have
been emerged to solve the non-Gaussian noise model and
computation issues associated with large-scale problems based
on various optimization methods [8], [12], [16]-[18] and these
optimization methods extended to the tensor-based methods
[19], [20].

Hawkins et al. [1] proposed a robust version of singular
value decomposition (SVD) by applying an alternating
[1-regression algorithm and a weighted median technique to
overcome outliers and missing data. Although this method
is robust to such data, it takes a long time to find a
local minimum using the alternating minimization technique.
Ke and Kanade [2], [3] presented convex programming and
weighted median approaches based on alternating minimiza-
tion for the /;-norm-based cost function, but these methods
are also computationally expensive.

Ding et al. [4] proposed r1-PCA, which combines the merits
of the /;-norm and /p-norm. Kwak [5] suggested PCA-I; to
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find successive projections, using a greedy approach to max-
imize the /1-norm of the projected data in the feature space.
These two methods adopt modified cost functions, which are
different from the original /1 cost function given in [2] and [3],
resulting in the degradation of robustness to outliers.

Brooks et al. [6] presented a method for finding successive,
orthogonal /j-norm-based hyperplanes to minimize the
[1-norm cost function. Eriksson and Hengel [9] proposed a
weighted low-rank matrix approximation using the /j-norm
in the presence of missing data. However, these methods
find the solution using convex linear programming, which is
computation intensive and requires more memory storage.

Lin et al. [12] proposed RPCA based on the /1-norm and
nuclear norm for a nonfixed rank problem and solved it using
the augmented Lagrange method (ALM). However, it requires
too much execution time for large-scale problems because it
performs SVD at each iteration. Toh et al. [16] proposed an
accelerated proximal gradient method to find a robust solution
for PCA problems. These methods find a solution for large-
scale problems based on rank estimation, but they may not
give a good solution for some computer vision problems
such as structure from motion (SFM), which is a fixed-rank
problem [10].

Shen et al. [8] proposed a low-rank matrix approximation
using the /;-norm based on augmented Lagrangian alternat-
ing direction method (ALADM). Zheng et al. [10] recently
proposed a practical weighted low-rank approximation method
using ALM. Both methods have fast convergence rates and can
be applied to fixed-rank problems, but it requires significant
parameter tuning for optimal performance.

In this paper, we propose two alternating rectified gradient
algorithms that solve the /i-based factorization problem at
significantly less running time and memory for large-scale
problems. Even though the proposed methods are based on an
alternating minimization method, they give fast convergence
rates owing to the novel method of finding the update direction
by a rectified representation based on matrix orthogonalization.
These methods are derived from the observation that there
are numerous projections and coefficient matrices that give
the same multiplication result while the convergence speed
depends largely on how these matrices are chosen. After
finding an update direction, we use the weighted median
algorithm to find the step size for updating a matrix. Since
the weighted median technique has small computation com-
plexity, it is appropriate for large-scale problems. However,
unlike the method in [2], which applies the weighted median
algorithm columnwise, we apply it to the entire matrix at once
to reduce the computational burden. The proposed methods
are more efficient and robust than the other factorization
and RPCA methods in solving various problems, as shown
in Section V.

We demonstrate the competitiveness of the proposed meth-
ods in terms of the reconstruction error and computational
speed, for examples, such as large-scale factorization problems
and face reconstruction from occluded or missing images.
In addition, the proposed methods are applied to a nonrigid
SFM problem using two well-known multiview benchmark
data sets.
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This paper is organized as follows. In Section II, we briefly
review an alternating-update approach of low-rank matrix
approximation based on the /{-norm and discuss the drawbacks
of this approach. In Section III, we propose an approxi-
mated low-rank matrix approximation algorithm based on the
[1-norm. Then, we propose an improved algorithm based on
dual formulation in Section IV. In Section V, we present
various experimental results to evaluate the proposed method
with respect to other well-known subspace analysis methods.

II. PRELIMINARIES

In this section, we briefly review low-rank matrix approxi-
mation methods based on the /{-norm.

Principal component analysis (PCA), which can be used
to approximate a matrix by a low-rank matrix in the
l>-norm, is one of the most popular methods for preprocess-
ing data. However, this method can be sensitive to outliers
and missing data because the cost function based on the
l>-norm can magnify their influence. Therefore, [,-based low-
rank approximations may find projections that are far from
the desired solution. Unlike the /;-norm, the /{-norm is more
robust to outliers and missing data in statistical estimation.
A minimization problem based on the /{-norm can be regarded
as a maximum-likelihood estimation problem under the
Laplacian noise distribution [2].

We first consider an approximation problem for vector
y=01y2,..., ym)T by a multiplication of vector x € R™
and scalar o

y=oax+3§ (D)

where § is a noise vector whose elements have independently
and identically distributed Laplacian distribution [2]. The
probability model for (1) can be written as

p(ylx) ~ exp (— M) )

N

where || - ||; denotes the /j-norm, and s > 0 is a scaling
constant [3]. We assume for a moment that x is given. In this
case, maximizing the log likelihood of the observed data is
equivalent to minimizing the following cost function:

J(@) =y —ax|1. 3)
Then, this minimization problem can be written as
Vi
J@) = lyi—axi|=> Ixilj—a. 4)
. . i
1 1

The global optimal solution for (4) can be found by the
weighted median technique for set {y;/x;|i = 1,..., m} with
the ith weight |x;| [2], [21]. If x; = O, then the corresponding
ith term is ignored because it has no effect on finding the
solution.

The approximation problem of (1) can be generalized to
the problem of matrix approximation. Let us consider the /;
approximation of matrix Y such that

min J(P, X) =|Y — PX||; 5)
P.X

where ¥ € R™" P c¢ R™ and X € R"™" are the
observation, projection, and coefficient matrices, respectively.
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Here, r is a predefined parameter less than min(m, n), and
[| - ]]1 in (5) is the entry-wise /j-norm, i.e., ||Y |1 = Zij [vijl
where y;; is the (i, j)th element of Y, which is different
from the induced /i-norm. In general, (5) is a nonconvex
problem, because both P and X are unknown variables.
Ke and Kanade [2], [3] propose two ways of solving this
problem, one by applying alternating convex minimization and
the other by applying alternating weighted median approaches.
However, the proposed weighted median method computes the
subspace bases column by column, and therefore is potentially
more likely to be trapped into a bad local minimum [2].
They prefer the convex programming method, which is more
efficient than the weighted median method. Minimizing the
cost function over one matrix while keeping the other fixed,
and then alternately exchanging roles of the matrices, enables
the optimization process to be performed rather efficiently.
Such minimization techniques based on alternating iterations
have been widely used in subspace analysis [1]-[3], [22] and
can be written as

p® argmgn |y — PXCD),

X0 = argm}}n Iy — POX|, (©)

where the superscript ¢ denotes the iteration number.

However, these alternating approaches are still computa-
tionally very expensive and require a large memory when
the matrix dimension is large. In the following two sections,
we propose two novel efficient methods that find the solution
for (5) at a much reduced computational cost.

III. PROPOSED METHOD: [1-ARG4

As mentioned previously, solving an /1-norm-based problem
using linear or quadratic programming requires too much
time and memory for practical problems. To overcome this,
we propose a novel low-rank matrix approximation method.

A. Gradient-Based Update

We first describe the problem of low-rank matrix approxi-
mation in the /1-norm by an alternating gradient descent frame-
work. Let us rewrite the cost function for matrix approximation
in (5)

min J(P,X)=|Y — PX|. 7
P.X

Since |x| is not differentiable, we approximate |x| by
lim¢ 0 v/x2 + €2. Then, we approximate the derivative of |x|
using the derivative of lim¢ .o +/x2 + €2 as follows:

d|x| i OVx2 4 €2 i X 0 ®
— X lIIMm ———— = I ———— = Sgn
dx e—0 ox e—>0 /x2 + &2 s

where sgn(x) is the signum function of x and the approx-
imation is exact except at x 0. In this way, we can
differentiate (7) with respect to X and find that its derivative is

VxJ(P,X)=—PT sgn(y — PX). 9)
Here, sgn(Y) for matrix Y represents a matrix whose (i, j)th
element is sgn(y;;).

Now, we consider the problem of finding an optimal
step size a > 0 to update X by the steepest gradient descent

method
min J(a|P, X, VxJ) = ||Y — P(X —aVxJ(P, X))
o

=Y —aPPT sgn(Y')|y

= 1Y — aAll (10)

where Y/ =Y — PX and A = PP7 sgn(Y’). We apply the
weighted median algorithm to the ratio yi’j /a;j with weight
lajj| to get the step size a that minimizes the cost func-
tion (10). Note that in this algorithm, we apply the weighted
median algorithm to update either P or X at a time, to
reduce the total computation time and this is different from
Ke and Kanade [3], where the algorithm is applied column-
wise. Finally, Y’ and X are updated as

Y <« Y —aPPT sgn(y)

X < X +aPT sgn(Y). (11)

For P, we can also differentiate (7) with respect to P in
the same manner as

VpJ(P,X) = —sgn(Y — PX)X". (12)

The projection and coefficient matrices P and X are updated
alternatingly until convergence is achieved.

However, a serious issue arises in this updating procedure,
because there are numerous pairs of P and X that give the
same multiplication result of P X. To see this, let us reexamine
the minimization problem (7). If P’ = PH~! and X' = HX
for some nonsingular matrix H € R™*", then

min J(X,P)=|Y—-P'X'|1 =Y - PX]|:. (13)
P/’X/

Accordingly, the step size problem for X’ can be written as

mﬁm JBIP', X', Vx/J) =Y — BP' P sgn(Y)|l; (14)

where f is a step size. When H is orthogonal, (10) and (14) are
the same because of the relation P'P'T = PH-'H-TPT =
PHTHPT = PPT If it is not the case, then the update
direction of (14) changes depending on H, i.e.,

PPT sgn(Y’) # P'P'T sgn(Y"). (15)

This means that the update direction depends on the choice of
P and X. Therefore, it is important to find P and X that will
give a good update direction for fast convergence.

B. Finding an Optimal Direction for Alternating Updates

In the previous section, we have shown that the update
direction depends on the representation of P and X, which can
influence the convergence rate. This happens because P and X
are the intermediate variables of the following basic problem:

min  [|Y — Gl
G

st. G eRmxn (16)

where R"*" is a set of m x n matrices with rank . However,
this problem is difficult to solve directly because R”**" is not
convex. This is why it is common to use alternating updates
based on intermediate variables like P and X for low-rank
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matrix approximation. In summary, it is difficult to solve the
problem (16), while the less difficult problem (7) can still lead
to a slow convergence because of the ambiguity of the update
direction.

Then, how do we compromise? To answer this question,
notice that the gradient with respect to X can also be expressed
as the solution to the following problem:

min J(AX'|P,X)=|Y — P(X+AX)1
AX'

st [[AX||% = & (17)

where AX’ is the variation of X that we are seeking and
€ < 1. This problem is to minimize the directional derivative
of the cost function with respect to AX’ and the optimal AX’
is the same as VxJ up to scale if € — 0. To avoid the
ambiguity in representing P and X, and to convert the problem
as if it were to be solved for G € R**" in the basic problem,
we modify the constraint as

rgin J(AX'|P,X)=|Y — P(X+ AX)h
X/

(1>

1Y = AG|I

st. [[AG'|%: 2 |PAX'|% = €2 (18)

In this modified problem, we search the update direction for X,
but the new constraint limits the search domain with respect
to AG' = PAX’, the update of G, instead of AX’. In this
manner, we can preserve the convexity of the search domain
while avoiding the difficulty that arises from the ambiguity in
representing P and X.

By introducing a Lagrange multiplier to (18), the resulting
Lagrangian is

A
1Y — PAX' |1 + 5(tr(Ax/TPTPAX’) - (19

where tr is the trace operator (||A||% = tr(AT A)). Differen-
tiating (19) with respect to AX’ and equating it to zero, we
obtain

—PTsgn(Y' — PAX)+ APTPAX =0
which gives
1
AX = IP+ sgn(Y — PAX') (20)

where Pt = (PTP)~'PT is the left pseudoinverse of P.
By applying (20) to ||PAX/||% = €2, we obtain

1
- = ‘ 1)
A IPPtsgn(Y — PAX')|F
and finally
Pt Y — PAX’
_ sgn( ) e 22)
IPPFsgn(Y’ — PAX')|F
For an infinitesimal €, the update direction becomes
lim AX' o lim P*sgn(Y’ — PAX')
e—0 e—>0
= PTsgn(Y) £ AX. (23)

Note lime—gsgn(Y’ — PAX’) = sgn(¥Y’) in (20) because
lime—o AX’ = 0 in (22) and we regard sgn as a limit

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

of a smooth function, as defined in (8). Here, we ignore
PP sgn(Y — PAX')||F in (22) because we are interested
only in the direction, which is denoted as AX, and the step
size for the update will be found next. Note that, the update
direction of the low-rank approximation is given as

AG £ PAX = PP" sgn(Y') (24)

and this does not change depending on the representation of
P and X, i.e., there is no ambiguity in AG unlike
PPT sgn(Y’) in (15). With the new update direction AG, we
revise the step size problem (10) as the following:

min ||Y —aAG|; = |Y —aPPsen(Y)|1  (25)
o

where o is determined by the weighted median technique. For
updating P, we can obtain AP in the same manner under the
constraint (||AP/X||%E =¢€2) as

AP =sgn(Y)X™ (26)

and find the optimal step size as in (25).

There is an observation to be made on this updating rule.

This new update direction is analogous to the Gauss—
Newton update direction in the least-squares problem.
The Gauss—Newton direction of | F (x)||% is given as
V. F(x)TF(x). If we regard F(x) as a result of
6||F(x)||%/6F(x) ignoring its scale, then it is similar to the
expression AX = P%sgn(Y’). Hence, we may consider this
update direction as an extension of the Gauss—Newton method
to /1-norm problems and expect it to be better than the normal
gradient direction.

Note that, this procedure is equivalent to changing the rep-
resentation of P and X so that the fixed matrix, either P or X,
is orthonormal. This means that the step size problem (14) of
the normal gradient method becomes the same as (25) when
P and X are chosen so that P is orthogonal. We can easily
find such an orthogonal matrix using the QR decomposition.
We call this as the rectified representation. Hence, it is
better to use ordinary gradient descent in conjunction with
this representation change, which is faster than calculating
a pseudoinverse.

C. Summary of the Proposed Algorithm

First, we update P while X is fixed in (7). To make X
orthonormal, we apply QR decomposition to X7

xT = x'TR

PX = PRTX' =P'X (27)

where orthogonal matrix X'7 and upper triangular matrix R
are obtained from QR decomposition, and P’ = PRT. Then,
we can compute AP using X’ and find the optimal step size
using the weighted median algorithm.

Once the update of P is finished, we update X with P
fixed. Again, we apply QR decomposition to P to change
the representation. The update rule is similar to that of the
P update. Then, we continue to update P and X alternatingly;
the overall procedure is described in Algorithm 1. We call
the method as /j-norm-based alternating rectified gradient
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Algorithm 1 /;-Norm-Based Matrix Approximation Using
the Approximated Alternating Rectified Gradient Method
(1h-ARGy)

1: Input: ¥ € R™*" the subspace dimension r

2: Output: P € R™ X € R™"

3: Initialize P to a zero matrix and X randomly

4:Y <Y

5: while residual Y’ does not converge do

6: ## P update (Fix X, update P)

7:  while residual ¥’ does not converge do

8

9

XTR <« X", P < PRT
AP <« sgn’(Y)Xx'T

(Y, P’) < Update(Y’, P', X', AP)
11:  end while
12:  ## X update (Fix P, update X)
13:  while residual Y’ does not converge do
14: PR < P, X < RX'
15: AX <« PT sgn’(Y)
16: (YT, X7y « Update(Y'T, X7, PT, AXT)
17:  end while

18: end while

Algorithm 2 Function: Update (Y, U, V, Z)
1: Input: Y, U, V, Z: matrices

2: Output: T, R: matrices

3: ## Line-search (by weighted median)

4: a <—argmin, |Y —aZV |
5
6

T <Y —aZV
R« U+aZ

method based on approximation, /1-ARGy, because it find the
gradient by approximated manner. In the algorithm, P and X
are rectified by the QR decomposition at lines 8 and 14,
respectively.

To deal with numerical errors, we modify the signum
function as

1 x>y
sgn’(x) = 10 —y <x <y (28)
-1 x=<—y

where y is a threshold with a small positive value. Using this
modified function, we can find a better solution despite the
difficulties that numerical errors might create.

In Algorithm 1, the update of either P or X is repeated until
convergence, and then the roles of the matrices are switched.
Even though the algorithm can work by just alternating the
updates of P and X one by one, the present approach gave us
a better performance in some of the experiments, such as the
nonrigid motion estimation in Section V-D. This is not exactly
an alternating update, but we still call it alternating rectified
gradient method. The projection and coefficient matrices are
updated by line-search technique using the weighted median
method in Algorithm 2.

As mentioned earlier, the step size o is determined using
the weighted median algorithm. For the weighted median
algorithm, we may use a divide and conquer algorithm such

as quick-select [23], [24], which can find the solution in
linear time on average. However, in practice, it is faster to
use existing sorting functions when the number of elements
is not large. Moreover, since we are applying the weighted
median algorithm to find the step size, which does not need
to be accurate, it is better to calculate the weighted median
of randomly selected samples, when the number of samples is
large. To see how the weighted median depends on the number
of samples, we consider the problem of finding an approximate
weighted median from a set consisting of an infinite number of
elements. To simplify the problem, we assume that elements
have the same weights. Then, the cumulative probability
F(q;2d + 1) that the sample median of 2d + 1 samples is
less than the (100 x ¢)% quantile of original elements is
equal to the cumulative probability that the success is no more
than d for a binomial distribution B(2d + 1, 1 — ¢). Since the
cumulative distribution function of a binomial distribution can
be represented in terms of the regularized incomplete beta
function, the result is given as

F(g;:2d+1)=P(Z<d)=1,(d+1,d+1) (29

where Z is the binomial random variable and [, is the
regularized incomplete beta function. This expression can be
calculated numerically, and we have found that

1 1
F(E +0.005; 10° + 1) — F(E —0.005; 10° + 1) ~ (.998.

This means that if we use 10° samples, then the sample
median resides within the +0.5% range of the true median
with probability 0.998. Even if this result applies for the case
of equally weighted samples, the result is also meaningful for
the weighted median if the weights are moderately distributed.
This is a valid assumption because A G, which is an orthogonal
projection of sgn’(Y’), is bounded by | sgn’(Y')||F. In the
experiments in Section V, we randomly selected 10° samples
if the number of elements is greater than 107, and then applied
an existing sorting function to find the weighted median. There
is a small chance that the weighted median technique may
not reduce the cost function due to random sampling, but the
problem can be resolved by a slight tweak in the algorithm,
such as repeating the random sampling until it reduces the cost
function.

The downside of the proposed algorithm is the difficulty of
guaranteeing whether P®) and X will converge to a local
minimum, due primarily to the assumption that the derivative
of |x| is sgn(x), which is in fact not differentiable at 0. Hence,
there is a possibility that the algorithm may find an update
direction that does not decrease the cost function when many
of the elements of Y’ are zero, even though it is not a local
minimum. In that case, the step size will be zero and the
algorithm will be terminated. Nonetheless, if this happens,
it will be near a local minimum since many of the residual
elements are zero. Besides, there is usually some Gaussian
noise in Y for practical problems, which prevent many of the
residual elements from being zero at the same time. Therefore,
the proposed algorithm will work well in practical problems
and we verify the convergence using real world problems in
Section V.
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D. Weighted Method of 11-ARG 4 With Missing Data

In real applications, there are not only outliers but also
missing data, which can have a negative effect on vision and
recognition systems. We solve the problem of low-rank matrix
approximation using the /{-norm in the presence of missing
data, which is also known as a matrix completion (MC)
problem by extending the result from the previous section.

The problem can be formulated as

I}}i)l(l J(P,XIW) = WO X —PX)h (30)
where © is the component-wise multiplication or Hadamard
product. Here, W € R™*" is a weight matrix, whose element
w;j is 1 if y;; is known, and is O if y;; is unknown. Similar
to the problem (18), we can formulate the weighted low-

rank matrix factorization in the /j-norm under the constraint
IPAX'||% = €* as
rg(r; J(AX'|P, X, W) = |(Wo X’
st [|[PAX'||3% = €2

— PAX)
31

Similarly as in Section III-B, the solution to this problem can
be represented in vector form as

vec(AX) = (I ® PT)Wvec(sgn(W O Y'))

= ®P)vec(WOsgn(WoY)) (32
where ® is the Kronecker product, W = diag(w) € R™"*""
w = (wlT,sz,...,wnT)T e R™>1 4y is the ith column
vector of W, and I denotes an n x n identity matrix. Because
the elements of W are either O or 1, (32) can be rewritten as

vec(AX) = (I ® PT)vec(sgn(W © Y'))

= vec(P T sgn(W © Y')) (33)

and this gives

AX = PTsgn(Wo Y. (34)
Similar to (25), the cost function to find the step size o
becomes

min J(a|P, X, W, AX) =min |[W O (Y —aPAX)|1
(23 (23

=min|[WOY —aW o (PP sgn(WoY)i. (35)
[
Compared with (25), the only difference is the presence of W
in the cost function.
When we vary P for a fixed X, we can obtain AP and the
cost function to find the optimal step size similarly

AP =sgn(WoOY)XT (36)
min J(a'|P, X, W, AP) =min |[W O (Y —a’APX)|1
a’ a’
=min|[WOY —a'Wo (sgn(WoY)XTX)|:. (37)
a/

The step sizes in (35) and (37) can also be solved by the
weighted median algorithm.
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IV. PROPOSED METHOD: [{-ARGp
A. [1-ARGp in the Presence of Outliers

In this section, we propose a second novel method to
find a proper descending direction without the gradient
approximation of AX. Since it is difficult to guarantee that
[1-ARGy4 converges to a local minimum, we propose
the second novel method with a convergence guarantee.
We refer to the algorithm as a [/j-norm-based alternating
rectified gradient method using the dual problem, /1-ARGp.
As mentioned earlier, the problem to find the gradient
of X for a fixed P in low-rank matrix approximation is
formulated as

min ||Y — PAX]|;
P.X

st |[PAX|% =€ (38)

We reformulate (38) to an unconstrained problem as
1
i X,AX)2||Y - PAX —|PAX|]% (39
min £, (X, AX) £ | I+ 5, I1PAXIE (39)

where # > 0 is a weight parameter. Here, we assume
that P is orthonormalized using the QR decomposition, i.e.,
IPAXIF = |AX][F.

We can obtain the Lagrangian of (39) by substituting
[lY — PAX||| to Z as

E(AXAM)—ITZH— ||AX||F+tr(AT(Y/ PAX—27))

+ tr(MT(—Y—i-PAX—Z)) (40)

where 1 € R™ and A,M < 0 are Lagrange multipliers.
By taking a derivative of (40) and solving for Z and AX
at a stationary point, we can obtain 117 — A — M = 0
and AX = yPT(A — M) = nPTV, respectively, where
V & A-— M and —1 < v,] < 1 for all elements of V.
Therefore (40) can be reformulated as

2—1;7||AX||% +tr(V) (Y = PAX))

s.it. —1< i)vij <1. (41)

Hence, the dual problem of (39) is constructed usmg the
corresponding primal solution AX = nPTV and yV =V as
Vv

m"jlx gn(V)

A T’ T 2
:—tr(V Y)——IIP 14l
n 21 i

st —n=<vj =71. (42)

We use the proximal gradient technique [16] to solve this
problem. We convert the sign of (42) and reformulate it as an
unconstrained problem

m‘}n ——tr(V Y)+ ||P V||F+I(V) (43)
n
where 1,(V) is the indicator function for each element of
matrix V

—N=0ij =7

(44)
else.

0
I(vij) = [oo
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Denoting U as the V in the previous step, the proximal
approximation [16] of (43) is given as

1 L
5 (v = (=Y + PPTU)) + il Ullx
(45)

1 1
+ o IPTUIE = —a(UTY) + 1,(V)
n n

where L is the Lipschitz constant of (43) and is 1 in this case
because P is orthogonal.

Equation (45) can be simplified as

1
2—n||v ~U—Y' + PPTU||% + I,(V) + constant  (46)

and this gives the following result:
no V'i>nq
V=43V  —p<V <y 47)
-n V' <-ng
where
V =Y +U-PPTU. (48)

Since this iterative process itself can take a nonignorable
amount of time, we perform the iteration just enough to find
a good descending direction, rather than calculating the exact
optimal solution. We update the solution V and corresponding
primal solution AX = PTV until the ratio between the
difference of the previous and current primal cost values and
the difference of the previous primal and current dual cost
values is no less than a positive scalar 0 < f <1 as

fn(X, AXy) — fn(X, AXit1)
fn(Xa AXy) — gn(VkJrl)

Let AX* = argminax f;(X, AX), then we obtain the follow-
ing relation:

fﬂ(X’O) -

> B. (49)

fn(X, AX) > ,B(fn(X,O) - gn(V))
> B(f(X,0) — f(X, AX™)). (50)

Note that during the proximal optimization, g,(Viy1) is
always not larger than f;, (X, AXyy). After finding a solution
that satisfies (49), we apply the weighted median method
as an exact line-search! to find the optimal step size of the
gradient. The overall procedure is described in Algorithm 3.
In the algorithm, # is decreased during the iteration and is
bounded by 0 < #min < # < Hmax < 00 where #yin and
Nmax are predefined constants. P and X are rectified by the
QR decomposition at lines 7 and 11 in the algorithm, respec-
tively. We find the gradient of P or X by Algorithm 4.

The main difference between the two proposed methods is
that we can formally guarantee that [;-ARGp converges to
a subspace-wise local minimum (see Section IV-B), whereas
a local minimum is not guaranteed for /{-ARG4 due to
the approximation of the I; cost function. Although both
algorithms may reach similar cost values, they can find differ-
ent solutions, as shown in Section V.

Here, we assume that an exact line-search is performed to simplify the
proof in the below.

Algorithm 3 /;-Norm-Based Matrix Approximation Using the
Exact Alternating Rectified Gradient Method (/;-ARGp)

1: Input: ¥ € R™*" low-rank r, f = 1074
2: Output: P € R™", X € R™*"

3: Initialize P to a zero matrix and X randomly, # = oo
4:Y <Y

5: while residual Y’ does not converge do

6: # P update (Fix X, update P)

7. XTR <« X', P’ <~ PRT
8
9

> Mmin = 10_6

APT « findGradient(X'", PT, YT, VT, 5, imin, )
(Y’, P") < Update(Y’, P/, X, AP)

# X update (Fix P, update X)
11: PR« P/, X < RX'
12 AX <« findGradient(P, X, Y', V, 5, B)
132 (YT, XT) < Update(Y'T, xT, PT, AXT)
14: end while

Algorithm 4 Function: findGradient (K, L, Y, V, #, #imin, )

1: Input: K, L, Y, and V: matrices; #, #min, S: scalars
2: Output: AS: a matrix

3: Description:

4: n < max(min(y, ||Y||1/mn), 4min), k=1, Vo =0
50 fy(K, ?{f(O)AK f;)y(lff(KAKl) =Y, g4(V1) =0

& while 2y < B do

7o <~ Inax(2 Nmin)

8 Vi< Y+ Vi| —Vi1LTL and by (47)

9: AKp < VLT

10 fy(K, ARi1) < 1Y = AL + o 2 || A KK F
1 gy (Vi) < w(YT Vi) — 2 11AK 7

122 k< k+1

13: end while

14: AS < AKj_

B. Proof of Convergence

Regardless of the initial point, the proposed method,
[1-ARGp, which is a descent algorithm, converges to a
subspace-wise local minimum according to the Zangwill’s
global convergence theorem [25], [26]. Subspace-wise local
minimum is defined as follows.

Definition 1 (Subspace-Wise Local Minimum): Let the cost
function of /;-ARGp be J(P, X) £ ||Y — PX]||;. If there is
no AX or AP such that |[|Y — P(X + AX)||; < ||Y — PX||;
or [[Y — (P + AP)X||1 < ||Y — PX]||;, then (P,X) is a
subspace-wise local minimum.

A local minimum is a subspace-wise local minimum. If a
cost function is smooth, a subspace-wise local minimum is
also a local minimum [26]. However, the cost function (7) is
not smooth, and consequently, a subspace-wise local minimum
may not be a local minimum. Nonetheless, it is worth finding a
subspace-wise local minimum because a subspace-wise local
minimum is a necessary condition to be a local minimum.
It also minimizes the cost function as well as the other state-
of-the-art methods in the experiments of Section V.

Let us denote A : (P,X) — (P,X) as a point-to-set
mapping [25], [26] that describes the behavior of [1-ARGp,
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where P and X are the domains of P and X, respectively.
According to the Zangwill’s theorem, a descent algorithm
is globally convergent under the following three conditions
(converges to a subspace-wise local minimum irrespective of
the initial point).
1) All (Pg, Xi) should be contained in a compact set.
2) For cost function J(P, X) = ||Y — PX||;:
a) if (P, X) is not in the solution set consisting
of subspace-wise local minimums, J(P’, X') <
J(P, X) for all (P’,X’)e A(P, X).
b) if (P,X) is in the solution set, J(P',X’) <
J(P, X) for all (P’,X’)e A(P, X).
3) Mapping A is closed at points that are not subspace-wise
local minimum.
We will show that /1-ARGp satisfies these conditions to prove
its global convergence. We prove the conditions only for the
case of updating X while P is orthogonal, without loss of
generality, and the condition for updating P can be proved
similarly.
Proposition 1: The sequence (P, Xi)
[1-ARGp is contained in a compact set.
Proof: Since [1-ARGp is a descent algorithm, it only
chooses a point that does not increase the cost function, and
always satisfies the relation ||Y — P Xi|[1 < [|Y]|1 for an
appropriate choice of Py and Xg. Since Py is orthogonal

produced by

Y13 > 1Y — PeXill} = 1Y — PeXell3

> (1Y 1lr = 1PeXellP)* = (1Y [1F = [IXkllF)2. (5D
From this, we obtain the following relation:
NY1lF =Y < UXkllr < Y 1IF + Y1 (52)

Therefore, X is contained in a bounded and closed set, i.c.,
a compact set. Similarly, we can show P is contained in a
compact set. Therefore, (Pr, Xi) is contained in a compact
set. |

Condition 2) can also be proved as follows.

Proposition 2: J(Py, Xi) is strictly decreasing for (Py, Xx)
that is not subspace-wise local minimum.

Proof: 1f (P, X) is not a subspace-wise local minimum,

[lY — P(X + AX)||1 < ||]Y — PX||; for some AX. Since
J(P,X) is a convex function for a fixed P, the following
relation is satisfied for any constant v, 0 <v < 1:

Y — P(X +vAX)|h

= (L =w)IY = PX[li +v[IY = P(X + AX)ll1. (53)

Now, we consider the following:
fn(X,0) = f(X,vAX)
2
v
=Y = PX|l1 = |IY — P(X +vAX)|[1 — 2—;7IIAXII%

> |Y — PX|l1 — (1 = v)||Y — PX|s
2
V
—v[|Y = P(X + AX)||1 — 2—n||AX||%
2
V
= v{||Y — PX|li — |IY — P(X + AX)|1} — Z—nquu%
Uz
=va; — — 54
vaj 2a2 54)
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where a; = ||Y — PX||; — ||Y — P(X + AX)||; and ap =
%||AX||%. If0o < v < 2[%, H(X,0) — f(X,vAX) is
larger than 0, which means that there exists v A X that satisfies
(X,0) > f(X,vAX) > f;(X, AX™). Therefore, according
to (50), [1-ARGp will find a direction AX'(= vAX) that
satisfies

fn(X,0) = fy(X, AX") = B(fy(X,0) — f(X, AX™)) > 0
1Y — PX|li > [IY = P(X + AX)|I + %”IIAX/II% (55)

which is a strictly descending direction when (P, X) is not
in the solution set. [ ]

Now, to prove the condition 3), we first show that AX™ is
a continuous function with respect to X and 7.

Proposition 3: If X, — X and 5y — 7, then AXE —
AX" = argmina y fﬁ(f, AX).

Proof: We first state some facts to prove the proposition.

First, the optimal sequence {A X[} is obviously contained in
a bounded and closed set

1
Z—WIIAXZII% < fu Xk, AXF) < fr (X, 0)

= [IY = PXillh = 1Yl (56)

(This can also be deduced from the fact that the domain
of Xj is compact.) Second, AX,’{k satisfies the relation
e Xy AXY) < fy (X, AX) for any AX, which is the
very definition of AX}. Third, f,(X, AX) is a strictly convex
function with respect to AX for a given (X, 7) because of
the term 2L||AX ||%. Hence, f,(X, AX) has a unique optimal
AX*. Since {AX}} is bounded, there must exist a convergent
subsequence {AX;{"”}, i.e., AX]*;’ — AX. Then, for any AX,
we can obtain the following relation:

X, AX) = lim fy, (X, AX])
n—o0
lim fy, (Xy,, AX) = f3(X, AX). (5T)

IA

The only AX that satisfies the relation is AX . Thus, any
convergent subsequence of {AX;} has the same limit AX".
Since AXj is bounded and all the convergent subsequences
has the same limit, AX,’(k converges to the limit AX. |

Next, we define a function K (X, , AX) assuming that X
is not a local minimum

A ff'](Xa O) - f”I(Xa AX)
fﬂ(X’O) - fﬂ(X» AX*)

Proposition 4: K(X, 5, AX) is continuous for nonlocal-
minimum X.

Proof: K(X,n, AX) is composed of f;(X,0),
f(X, AX), and f,(X, AX*) with subtraction and division
operations. Also, f,(X,0) and f;(X, AX) are continuous
functions with respect to X, AX, and # (Hmin < 4 < Wmax);
and so is f,(X,AX*) by Proposition 3. Moreover,
f(X,0) > f(X, AX*) when X is not a local minimum.
Therefore K (X, n, AX) is also continuous. [ ]

Now finally, we prove that /;-ARGp satisfies condition 3).
Since [;-ARGp uses an exact line-search, which is a closed
mapping [26], we only need to prove that the procedure
for finding a descent direction is a closed mapping at a

K(X,n, AX) (58)
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TABLE I
PERFORMANCE OF THE PROPOSED METHODS WITH/WITHOUT APPLYING RECTIFICATION

m=n=500, r=40 m=n=1,000, r=80 m=n=2,000, r=160
Algorithm Error Time (sec) Iterations Error Time (sec) Iterations Error Time (sec) Iterations
11-ARG 4 0.867 1.1 £0.0 6 £ 0.0 0.869 28 £ 0.1 6.1 03 0.869 10.0 + 0.1 6 £ 0.0
11-ARG 4(no QR) || 0.870 6.5+ 0.7 36.7 + 3.7 0.871 16.6 £ 0.7 364 + 3.9 0.872 60.2 + 1.1 356 £ 1.5
11-ARGp 0.868 0.7+ 0.2 19.2 &+ 45 0.869 1.8 + 0.1 152 + 0.9 0.869 7.6 £ 0.5 153 £ 1.6
11-ARGp(no QR) || 0.870 | 157.8 &£ 25.1 | 365.1 £ 45.1 | 0.871 | 9703 + 60.0 | 358.1 & 164 | 0.871 | 5526.7 £ 240.5 | 365.2 £ 13.7

nonlocal minimum. To do this, we define two point-to-set
mappings G and H. AX € G(X, #) determines the descending
direction, and %' € H (#) determines 7, where #’ is the value of
n in the next iteration. H (%) is defined as H (1) = [#min, fimax]
(#' is determined independently, regardless of #), and G(X, 7)
is defined as

G(X,n)
={AX|f(X,0) — f(X, AX) = B(f(X,0) — g,(V))}.

If X is not a local minimum, then this is the same as
G(X,n) = (AXIK(X, 7, AX) = ).

Proposition 5: Let Q be a point-to-set mapping defined as
(AX, %) € Q(X,n), where AX € G(X,#') and ' € H(n).
Then, Q is a closed mapping.

Proof: Here, H is obviously a closed mapping and the
domain of # is a bounded set, hence Q(X, ), which is a
composition of G and H, is a closed mapping if G is a closed
mapping. Since K is a continuous function with respect to
(X, n, AX), K(Y’ , AY) = limg_ 00 K (X, Mk, AXp) > IB
if X »> X, ne — 7, and AXy — AX. Therefore, G is a
closed mapping. ]

Q describes the behavior of finding the descent direction
in [1-ARGp. The proposed method is globally convergent by
the proofs for the three conditions. The local convergence rate
is hard to find, but we show empirically that /{-ARGp gives
fast convergence in Section V. Table I shows the comparison
between the proposed methods with and without applying
rectification (QR decomposition) for three reconstruction prob-
lems with 5% outliers over 10 independent runs. As shown in
the table, the methods using rectification take much shorter
execution time and need less number of iterations, and give
lower reconstruction error.

C. Weighted Method of 11-ARGp With Missing Data

The proposed method, /1-ARGp, can be applied to real
application problems in the presence of missing data. We solve
the problem of low-rank matrix approximation using the
[1-norm by extending the proposed method as a weighted low-
rank approximation problem.

The problem can be formulated as

1
||W®(Y/—PAX)||1+2—n||PAX||% (59)
where # is a small positive constant. We assume that P is
orthonormalized by the QR decomposition.

The dual problem of (59) is constructed in the similar
fashion as in the previous section

1 1
max —tr(WoV)TY)— —|PT(Wo V)|
v n 2n

st. —n=<V;=<ng (60)

and this gives the following unconstrained minimization
problem as a proximal mapping operator:

1 1
min ZIIPT(W © v>||%—;tr((w OWVY)+1,(V) (61)

where 1,(V) is an indicator function. Now, we consider the
following approximation of (61):

%tr((V U =W oY +WoPPT(WoU))

L
+ 2—||V — U||% + I,(V) + constant  (62)
n

where L is the Lipschitz constant (L = 1). Then, this can be
reformulated as

1
SV -v-wo Y +Wo(PPT(WoU)*
n

+1,(V) + constant.  (63)

Therefore, we obtain the result in the same form as (47) with
V=U+Y +Wo (PPTU).

V. EXPERIMENTAL RESULTS

We evaluated the performance of the proposed methods
(11-ARG,4 and /1-ARGp) by experimenting with various data.
We compared the proposed algorithms with other meth-
ods (Inexact ALM (IALM) and Exact ALM (EALM) [12],
ALADM [8], [1-AQP [3], Regl/;-ALM [10]) in terms of the
reconstruction error and execution time. The initial projection
and coefficient matrices were set to zero and Gaussian random
numbers, respectively, for the proposed methods and /{-AQP.
All the elements of the weight matrix for Regl;-ALM were set
to 1 for nonweighted factorization problems. In addition, the
weighted median method used in the proposed methods was
implemented, as described in Section III. We set p = 107
in the stopping condition and y as the same as p for
all of the proposed methods. The trace-norm regularizer of
Regli-ALM was set to 20, which gave the best performance
in the experiments, if not stated otherwise.

We also performed experiments with missing data using
the weighted version of the proposed methods (W/i-ARGy4
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TABLE II
AVERAGE PERFORMANCE FOR 25% OUTLIERS

m=n=500, r=40 m=n=1,000, r=80 m=n=2,000, r=160 m=n=5,000, r=400 m=n=8,000, r=640 m=n=10,000, r=800
Algorithm Error Time Error Time Error Time Error Time Error Time Error Time (sec)
11-ARG 4 5.202 2.719 15.294 9.761 28.595 30.437 83.911 | 224.023 | 112.936 | 685.967 156.335 1657.59
l1-ARGp 2.583 0.693 6.453 2.002 11.791 8.872 35.678 73.718 49.728 194.967 71.658 387.328
IALM 3.814 2.973 9.371 25921 | 21.378 | 209.978 | 172.153 | 3054.72 | 623.671 | 19402.41 - -
EALM 3.375 83.237 7.340 | 694.947 | 14.455 | 5337.55 - - - - - -
ALADM 6.141 0.159 19.937 0.848 33.435 4.045 179.167 | 38.449 | 236.770 | 136.919 | 387.052 447.013
Regli-ALM 2.757 31.443 5.142 | 165.049 | 14.154 | 926.017 | 636.373 | 8760.74 - - - -
l1-AQP 21.984 | 422222 - - - - - - - - -
0.85r 120 T T T
08 —+— L1-ARG,, (m=500) —a— L1-ARG,

— - — L1-ARG, (m=500)
— = L1-ARG, (m=1000
— % — L1-ARG, (m=1000

0.75

> —e— L1-ARG, (m=2000
> 065 A
a° - © — L1-ARG, (m=2000
= 06
X
<
a* 0.55
:,’
0.5
0.45
0.4
0'35 1 1 1 1 1 J
5 10 15 20 25 30
Execution time (sec)
Fig. 1. Normalized cost function of the proposed algorithms for three

examples (500 x 500, 1000 x 1000, and 2000 x 2000).

and WI-ARGp) in Sections IV and V, and the perfor-
mances were compared with those of other methods that
can handle missing data (ALADM-MC, which is a matrix
completion (MC) version of ALADM [8], Regl/;-ALM [10]).
We did not evaluate the methods [;-AQP [3] for large-
scale data because of its heavy computational complexity and
memory requirement. We set the parameters of ALADM and
ALADM-MC as described in [8], and all of the parameters of
the proposed methods were the same as those of nonweighted
versions. To show the usefulness of the proposed algorithm,
we also applied the proposed methods to the nonrigid SFM
problem [10]. All the experiments were conducted using
MATLAB on a computer with 8-GB RAM and a 3.4-GHz
quad-core CPU.

A. Synthetic Data With Outliers

First, we applied the proposed methods to synthetic exam-
ples with outliers. We generated an (m X r) matrix B and an
(r x n) matrix C whose elements were uniformly distributed
in the range [—1, 1]. We also generated an (m X n) noise
matrix N whose elements had the Gaussian distribution with

—eo— L1 —ARGD

—x—1ALM
— A — EALM

— + — ALADM
- RegL1-ALM

Reconstruction error

Execution time (sec)

Fig. 2. Reconstruction error as a function of the execution time (m = 1000,
n = 1000, and r = 80).

zero mean and variance of 0.01. Based on Yy = BC + N,
we constructed the observation matrix Y by replacing 25%
of the elements from the 25% randomly selected samples in
Yo by outliers that were uniformly distributed in the range
[—10, 10]. We generated six sets from small-size to large-scale
examples (500 x 500-10000 x 10000). We set the rank of
each example matrix to min(m, n) x 0.08. We compared the
proposed methods with IALM, EALM, ALADM, Reg/{-ALM,
and /1-AQP in terms of the reconstruction error and execution
time. We used the global parameter for IALM and EALM, as
in [12].

In the experiment, the average reconstruction error Ep(r)
was calculated as

1
Er(r) = || — ylow-rank||, (64)

where n is the number of samples, Y°'2 is the ground truth,
ylow-rank j¢ the matrix approximated by an algorithm.

The average reconstruction errors and execution times
are shown in Table II. We did not evaluate the methods
[1-AQP, EALM, and Regl/{-ALM for large-scale data because
of their heavy computational load. Unlike the fixed-rank
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Original Cicclusion L1-ARG-A, L1-ARG-D

Fig. 3. Face images with occlusions and their reconstructed faces.

TABLE III
RECONSTRUCTION ERROR WITH RESPECT TO VARIOUS r
FOR A 1000 x 1000 MATRIX WITH RANK 80

Algorithm r=70 r=75 r=80 =85 r=90
11-ARG 4 202.74 | 141.64 | 14.88 | 15.08 | 19.68
11-ARGp 188.28 | 126.03 | 6.16 | 23.19 | 45.03
ALADM 199.76 | 144.13 | 17.16 | 30.61 | 46.63
Regli-ALM || 193.06 | 129.19 | 5.01 12.39 | 21.39

approximation methods that give the matrix whose rank is
approximately 8% of the original matrix dimension, JALM
and EALM give the matrix whose rank is approximately 55%
of the original matrix dimension on average in this section.
In the table, /{-ARGp gives the best result in terms of the
reconstruction error and execution time. Although ALADM
takes a shorter execution time compared with the proposed
methods, it gives a poor reconstruction performance. The
proposed methods are superior to the other methods especially
for large-scale problems because it uses the weighted median
algorithm to handle large-scale problems efficiently. The com-
putational complexities of the proposed methods, ALADM,
and [;-AQP are O(rmn) for each iteration. However,
[1-AQP have to perform a whole convex optimization in each
iteration, which is very inefficient in terms of processing time.
The computational complexity is O(min(m, n) max(m, n)?)
for IALM and EALM, and O (r max(m, n)?) for Regli-ALM,
for each iteration. IALM, EALM, and Reg/{-ALM perform
SVD in each iteration, and hence, need much computation
time for a large-scale matrix. Fig. 1 shows the cost function
of the proposed methods at each iteration for three examples
(500 x 500, 1000 x 1000, and 2000 x 2000). As shown in the
figure, the cost function of /;-ARGp decreases much faster
than that of /{-ARG,4, and both methods converge to nearly
the same value. Fig. 2 shows the reconstruction error with

11

Regl1-ALM ALADM

TABLE IV
AVERAGE PERFORMANCE FOR FACE DATA WITH OCCLUSIONS

m=12,000, n=830, r=100

Algorithm Error (F1) | Time (sec)
11-ARG 4 276.957 71.164
11-ARGp 279.442 29.760
TALM 261.895 275.426

EALM 257.392 10543.432
Regli1-ALM 287.749 478.168

ALADM 314.298 9.902

respect to the execution time for an example (1000 x 1000).
In the figure, the proposed method /1-ARGp outperforms other
methods. Table III shows the reconstruction error with respect
to various r for a 1000 x 1000 matrix with rank 80. As shown
in the table, /1-ARGp gives the best results when r is lower
than or equal to the exact rank, whereas /;-ARG,4 shows
good results when r is larger than the exact rank. It can be
explained as follows. Since [;-ARGp tries to find a solution
that minimizes the cost function for a given r, the performance
can be a little bit poorer when r is not correct. [{-ARG4 finds
an approximate solution to the original problem, hence, its
result may be worse than /{-ARGp. However, /1-ARG4 is
less sensitive to the rank uncertainty.

B. Face Reconstruction

We applied various methods to face reconstruction prob-
lems and compared their performances. In the experiments,
we used 830 images having five different illuminations for
166 people from the Multi-PIE face database [27], which
were resized to 100 x 120 pixels. The intensity of each pixel
was normalized to have a value in the range of [0, 1]. Each
2-D image was converted to a 12000-dimensional vector.
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TABLE V
AVERAGE PERFORMANCE FOR 20% OUTLIERS AND MISSING DATA

m=n=500, r=40 | m=n=1,000, r=80 | m=n=2,000, r=160 m=n=5,000, r=400 m=n=8,000, r=640
Algorithm Error Time Error Time Error Time Error Time Error Time (sec)
WIi1-ARG 4 3.966 | 4.188 8.619 11.565 | 19.506 43.357 51.087 | 308.300 76.690 968.353
Wi1-ARGp 2.384 | 0.877 4.967 3.116 10.104 13.272 26.197 95.394 40.127 302.015
ALADM-MC || 3.214 | 0.251 10.122 1.184 25.891 5.748 67.453 48.059 92.389 325.493
Regli1-ALM 2575 | 9.402 | 45.074 | 53.152 | 69.273 | 264.823 | 89.772 | 2528.845 | 191.142 8111.565
TABLE VI

AVERAGE PERFORMANCE FOR FACE DATA WITH
OCCLUSIONS AND MISSING BLOCKS

m=12,000, n=830, r=100

Algorithm Error (E1) | Time (sec)
Wi1-ARG 4 305.893 262.976
Wii1-ARGp 319.462 82.671
ALADM-MC 387.628 11.872
Regli-ALM 327.556 538.014

We only considered an occlusion case for the experiments of
the images and measured the average reconstruction error for
occluded images. To generate occlusions, 50% of the images
were randomly selected, and each of selected images was
occluded by a randomly located rectangle, whose size varied
in the range 20 x 20 pixels—60 x 60 pixels, with each pixel
of the rectangle having a value randomly selected from [0, 1].
We could not apply /;-AQP and EALM to these problems
because they required too much computation time (more than
an hour).

Fig. 3 shows some examples of face images with occlusions
and their reconstructed faces with 100 projection vectors.
In the figure, we can observe that the occlusion blocks
have almost disappeared for most of the cases. JALM and
EALM tend to produce blurry images, and ALADM gives
the poorest results among the methods. Table IV shows the
average reconstruction errors E| for the face images. In the
table, we can observe that our methods show competitive
performance in both of the reconstruction error and processing
time compared with the other methods. IALM and EALM give
a little bit smaller errors than our methods, because the ranks
of their reconstructed matrices are higher (around 200) than
the others (100). Except ALADM, which gives the poorest
reconstruction error, all the compared methods are about four
to 350 times slower than our methods.

C. Experiments With Missing Data

We performed experiments with simple examples in the
presence of missing data using the proposed methods
WI-ARG,4 and WI;-ARGp compared with the other state-
of-the-art methods, ALADM-MC [8] and Regl/;-ALM [10],

which can handle missing data. We generated five examples,
as in Section V-A. Here, we did not perform the experiment
for a matrix of 10000 x 10000 because of memory limitation.
To construct the weight matrix, we randomly selected 20%
of the elements of matrix W for each example and set
them to zero (missing), while the other elements were set
to one.

Table V shows the average result for the five examples
with outlier and missing data. In the table, WI/{-ARGp
gives the best performance and needs much shorter execution
time than the other methods except ALADM-MC. Although
ALADM-MC gives the shortest execution time, its perfor-
mance is much worse than the proposed methods. Because
of the execution time and the performance, Regli-ALM is
impractical to use for large-scale data.

We also performed a face image reconstruction experiment
using the proposed methods and the other methods in the
presence of occlusions and missing data. Occlusion blocks
were generated as described in Section V-B in 50% ran-
domly selected images. To generate missing blocks, 50%
of images were randomly selected again, and a randomly
located square block, whose side length varied from 30 to
60 pixels, was considered as missing in each image. The
values of the block elements were set to zero. The number
of projection vectors was set to 100. The average recon-
struction error E; and execution time for various methods
are shown in Table VI. In the table, WI;-ARGp shows
good performance in both of the reconstruction error and
execution time compared with the other methods. Although
Regl;-ALM gives the comparable reconstruction error with
the proposed methods, its computation time is longer than
the proposed methods. Fig. 4 shows the reconstructed face
images in the presence of occlusions and missing data.
We do not see much difference between the reconstructed
images of the proposed methods and Regl/;-ALM in this
figure.

D. Nonrigid Motion Estimation

Nonrigid motion estimation [28] with outliers and missing
data from image sequences can be considered as a factor-
ization problem. In this problem, [/j-norm-based factoriza-
tion can be applied to restore 2-D tracks contaminated by
outliers and missing data. In this experiment, we used the
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Fig. 4. Face images with occlusions and missing blocks, and their reconstructed faces.

TABLE VII
RECONSTRUCTION RESULTS FOR GIRAFFE SEQUENCE
IN THE PRESENCE OF ADDITIONAL OUTLIERS

10% outliers 20% outliers
Algorithm Error | Time (sec) Error Time (sec)
WIi1-ARG 4 2.910 3.623 3.006 1.589
WIi1-ARGp 3.224 1.217 3.950 0.895
WIi1-ARGayp || 2.847 4.051 2.979 1.754
Regli-ALM 3.792 0.810 3.939 0.820
ALADM-MC 9.835 0.017 21.908 0.013

well-known giraffe sequence” consisting of 166 tracked points

and 120 frames. The data size is 240 x 166 and 30.24% of
entries are missing. In this section, we also present another
algorithm, WI;-ARG44p, which is WI;-ARGp using the
result of WI/1-ARG4 as an initial value. The goal of using
WI1-ARG44p is to verify the superiority of WI;-ARGp
compared with WI/;-ARG4 by showing that W/1-ARGp can
improve the quality of the solution beyond what is possible by
WI1-ARGy.

To demonstrate the robustness of the proposed methods,
we replaced 10% of the points in a frame by outliers in the
range [—1000, 2000], whereas the data points are in the range
[127, 523]. In another experiment, we constructed the data by
replacing 20% of the points in a frame by outliers. The number
of shape bases was set to 2, which gave a matrix of rank 6 =
2 x 3 (for x, y, and z coordinates). We compared the weighted
versions of the proposed algorithms with ALADM-MC and
Regl|-ALM. We set the stopping condition p to 107% and S

2 Available at http://www.robots.ox.ac.uk/~abm/

in (49) to 10~!. The result of reconstruction error’> for the
observation data can be observed in Table VII. As shown
in the table, WI/;-ARG4 gives a better performance than
WI-ARGp but poor than WI/;-ARG44p in this problem.
We suspect that W/1-ARGp is more sensitive to the ini-
tial value and can be trapped in a local minimum for a
complex problem. Thus, WI/1-ARG,4 can sometimes find a
better solution than W/;-ARGp. However, when we apply
WI;-ARGp with a good initial value, such as a solution found
by WI1-ARG,4, we can improve the quality of the solution
further. It suggests that the combination WI/{-ARG44+p can
be a good approach for many complex problems. Although
ALADM-MC takes shorter execution time than the other
methods, it gives poor reconstruction results. Regli-ALM
gives the competitive results compared with W/1-ARG4 with
respect to to the error and execution time in this experiment.

We also performed the nonrigid motion estimation problem
using the shark sequence [28] which consists of 91 tracked
points for each nonrigid shark shape in 240 frames. In this
data, we examine how robust the proposed methods are for
various missing ratios in the presence of outliers. We replaced
10% of the points in each frame by outliers in the range
[—1000, 1000], whereas the data points were located in the
range [—105, 105]. We set from 10% to 70% of tracked points
as missing in each frame. The number of shape basis for each
coordinate was set to two, thus it can be formulated as a rank-6
approximation problem.

The average performance for the various methods are shown
in Table VIII. Similar to Table VII, W/;-ARG,4 gives better
reconstruction results than W/1-ARGp for this problem but
performs worse than W/{-ARG44p due to the approximated
nature of WI;-ARG,. Although Regl/{-ALM gives an excellent
reconstruction error when 10% and 30% of data were missing,

3Reconstruction error is calculated as stated at http://www.robots.
ox.ac.uk/~abm/
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TABLE VIII
AVERAGE PERFORMANCE FOR SHARK SEQUENCE WITH 10% OUTLIERS AND MISSING DATA

missing 10% missing 30% missing 50% missing 70%
Algorithm Error | Time (sec) | Error | Time (sec) | Error | Time (sec) Error Time (sec)
WI1-ARG » 0.069 0.562 0.106 0.819 0.460 0.660 1.767 1.590
W!1-ARGp 0.266 0.078 0.366 0.217 0.929 0.233 3.101 0.895
WIi1-ARG A4 p || 0.063 0.615 0.087 0.895 0.443 0.744 1.676 1.889
Regli-ALM 0.032 0.805 0.039 0.815 2.739 0.872 24.806 0.364
ALADM-MC 0.402 0.025 0.942 0.023 7.449 0.206 10.015 0.029

Missing 10%

Missing 30%

50

0

WL1-ARG A

-50

-100 0 100 100

50

0

WL1 —ARGD

-50

-100

50

0

RegL1-ALM

-50

-100 0 -100 0 100

50

0

ALADM-MC

-50

-100 0 100 -100 0 100

Fig. 5.

but its performance gets worse as the missing data increases.
The reconstruction results for a few selected frames are shown
in Fig. 5.

VI. CONCLUSION

In this paper, we have proposed two novel methods,
[1-ARGy4 and [1-ARGp, for low-rank matrix approximation
problems, using the /1-norm-based alternating rectified gra-
dient method. We also have shown how to apply the pro-
posed methods when some of the data are missing. For
[1-ARGp, an alternating rectified gradient method based on
dual formulation, we have proved the convergence of the
algorithm to the subspace-wise local minimum using the
global convergence theorem. Although it is hard for /;-ARGy@
to guarantee convergence to a local minimum, it works well
in practical problems. The experimental results have shown
that the proposed methods provide an excellent reconstruction

Missing 50% Missing 70%

-100 0

100

-100 0 100

Nonrigid shape estimation from shark image sequences for various missing ratios.

performance and a shorter execution time compared with the
other methods except for a few cases. Even in such cases,
the performance difference is insignificant. We have shown the
superiority of the proposed methods for large-scale problems.
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