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In this paper, we propose a couple of new feature extraction methods for regression problems. The first

one is closely related to the conventional principle component analysis (PCA) but unlike PCA, it

incorporates target information in the optimization process and try to find a set of linear transforms

that maximizes the distances between points with large differences in target values. On the other hand,

the second one is a regressional version of linear discriminant analysis (LDA) which is very popular for

classification problems. We have applied the proposed methods to several regression problems and

compared the performance with the conventional feature extraction methods. The experimental results

show that the proposed methods, especially the extension of LDA, perform well in many regression

problems.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Regression which is the process of estimating a real-valued
function based on a finite set of noisy samples is one of the classical
problems in the statistics, machine learning and pattern recognition
societies. With classification problems, regression problems are
classified as supervised learning. In supervised learning, we are given
a set data consisting of pairs of input objects and desired outputs. The
input objects and the desired outputs are normally called as the input

features and the target variables respectively.
Nowadays many real world problems such as biomedical data

analysis and image processing involve very large number of input
features. On the other hand, there are many cases where the number
of the features may be smaller, but of the same order of magnitude as
the number of samples. In both cases, supervised learning faces the
so-called curse of dimensionality where overfitting easily appears and
the supervised learning may be ill-posed. In addition, irrelevant or
redundant input features tend to complicate the learning process,
thereby resulting in a poor generalization performance [1]. Even
when the features presented contain sufficient information on the
problem, the result may become erroneous because the dimension of
the feature space could be too large.

For these reasons, it is desirable to reduce the number of input
features through dimensionality reduction techniques such as
feature selection or feature extraction. Reducing the dimension-
ality of the feature space may improve the learning process by
considering only the most important data representation, possibly
with elements retaining the maximum information on the
original data and with better generalization capabilities [2].

Dimensionality reduction is quite desirable not only in the aspect
of the number of required data, but also in terms of data storage
and computational complexity.

In this paper, we focus on the linear feature extraction
methods for regression problems to reduce the dimensionality
of the input feature space.

Many studies have been performed to solve the feature
extraction problems among which the principal component
analysis (PCA) [3] and the independent component analysis
(ICA) [4] have been widely used. Although PCA is one of the most
popular and widely used methods, which is very useful in
reducing the dimension of a feature space to a manageable size,
it can still be improved for supervised learning problems since it
is an unsupervised learning method that does not make use of the
target information. Likewise, ICA, which is another unsupervised
learning method, leaves much room for improvement to be used
for supervised learning problems.

Unlike PCA and ICA, linear discriminant analysis (LDA) [5] is
originally developed for supervised learning especially for
classification problems to find the optimal linear discriminating
functions. The LDA tries to find a linear combinations of original
input features by maximizing the ratio of between-class scatter
and within-class scatter. This optimization problem can be nicely
interpreted in the recently developed spectral regression frame-
work [6]. There are quite a lot of variants of LDA for improving the
performance and coping with the limitation of LDA that it cannot
produce more than Nc�1 features, where Nc is the number of
classes [7–10].

Recently, instead of using only up to the second order statistics as
in LDA and its variants, ICA-FX which is an extension of ICA that
utilizes higher order statistics by maximizing the mutual informa-
tion between the class and the features has been proposed for
classification problems [11]. Neighborhood component analysis
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(NCA) [12] and tensor based algorithms [13–15] have also been
proposed as feature extraction methods for classification problems.

As was overviewed, although many feature extraction methods
have been developed for classification problems, relatively little
attention has been taken on the feature extraction methods for
regression problems in the machine learning society. Recently, a
Gaussian process regression (GPR) [16] was introduced and was
proved to be a very successful regression method. Though this
method can be regarded as a nonlinear feature extraction method,
the nature of kernel trick prohibits it from being used as a
dimensionality reduction technique. In [12], NCA was extended to
regression problems to estimate the degrees of rotation and
scaling of a face image.

In statistics, several algorithms have been developed as
dimensionality reduction techniques for regression problems
among which classical multivariate linear regression (MLR) [17]
can be the basic. Although MLR is the optimal in the sense of least
squared error, it has the limitation that it can only produce one
feature. To overcome this limitation, a local linear dimensionality
reduction method based on the nearest neighbor scheme has been
proposed [18]. Sliced inverse regression (SIR) [19] and principal
Hessian directions (PHD) [20] are also very popular dimension-
ality reduction techniques for regression problems in statistics.

In our previous work, ICA-FX was extended to regression
problems [21] and showed good performance for various regres-
sion problems. However, because ICA based methods are iterative
methods, the speed of convergence may become a problem for
ICA-FX. Another limitation is that it has a good chance of
overfitting because it naturally utilizes higher order statistics
and the training and test sample distributions are not always the
same, especially when the size of training data is small.

In this paper, we propose a couple of linear feature extraction
methods for regression problems. The first one is quite related to
the conventional PCA but, unlike PCA, it utilizes the target
information to find a set of features that maximizes the distances
between samples with large differences in target values. Thus,
this can be regarded as a weighted version of PCA. The second one
is a generalization of LDA to regression problems which tries to
maximize the ratio of distances of samples with large differences
in target value and those with small differences in target value.
The experimental results show that the proposed methods
especially the second one perform well for many regression
problems. In addition, because both methods involve in the
singular value decomposition (SVD), it is relatively faster than
iterative methods such as ICA-FX.

The paper is organized as follows. In Section 2, we briefly
overview the conventional feature extraction methods especially
for regression problems. The two new feature extraction methods
are presented in Section 3 and the experimental results are shown
in Section4. Finally, in Section 5, the conclusions follow.

2. Conventional methods: linear feature extraction for
regression

Consider a set of predictor/response1 pairs fðxi,yiÞg
n
i ¼ 1 where

xiARd�1,yiARt�1 and n denotes the number of given predictor/
response pairs. Here, d is the number of original features and t is
the number of target variables which will in most problems be equal
to 1.2

In this regression setting, we would like to find a set of linear
transformations of x, that constitute sufficient statistics of the
target vector y. This transformation can be denoted as fi ¼wT

i x,
where fi is the i-th extracted feature and wiARd�1 is the
corresponding coefficient or weight vector.

In this section, we would like to introduce several conventional
methods developed for this purpose.

2.1. Principal component analysis (PCA)

In PCA, the k-th maximum variance direction wk is searched by
solving the following eigenvalue decomposition problem

Sxwk ¼ lkwk, l1Zl2Z � � �Zld ð1Þ

where Sx ¼ ð1=nÞ
Pn

i ¼ 1ðxi�xÞðxi�xÞT is the covariance matrix of x
and x is the mean of x.

As can be seen, PCA does not utilize the target information and
is very sensitive to the scaling of input features.

2.2. Multivariate linear regression (MLR)

In MLR, we try to find a direction w that results in the least
squared error by solving the following optimization problem:

w¼ argmin
w

Xn

i ¼ 1

ðyi�wT xiÞ
2

ð2Þ

and the solution is simply the vector

w¼
Xn

i ¼ 1

xix
T
i

 !�1 Xn

i ¼ 1

xiðyi�yÞ ð3Þ

where y is the mean of the response variable.
In the sense of least squared error, f ¼wT x gives the optimal

linear approximation to the y and as such w can be interpreted as a
good dimension reducing linear transformation. However, using MLR
one can only obtain a single feature which will, in many cases, not be
sufficient to perform an accurate prediction of the target variable.

2.3. Sliced inverse regression (SIR)

In this dimensionality reduction scheme, unlike conventional
forward regression problems where one tries to estimate the
target variable y given input variable x, inverse regression
problem is considered which tries to estimate x for given y. It is
argued that the inverse regression is much simpler than the
forward regression and can effectively alleviate the curse of
dimensionality, because in most cases, the dimension of input
features d is much larger than that of target variables t [19].

The following is the standard SIR algorithm. For simplicity, let
us assume that t ¼ 1 and the covariance matrix Sx of input
features x is d� d identity matrix.3

Step 1: Sort the data by y in the increasing order.
Step 2: Divide the data set into L slices as equally as possible.

Let nl be the number of examples in slice l.
Step 3: Within each slice, compute the sample mean of x,

x l ¼ ð1=nlÞ
P
ðiÞA slice lxðiÞ.

Step 4: Compute the covariance matrix for the slice means of x,
weighted by the slice sizes

SZ ¼
1

n

XL

l ¼ 1

nlðx l�xÞðx l�xÞT ð4Þ

1 Note that instead of the terms predictor and response, input and target can be

used without notification.
2 From now on, we will assume t¼1 and instead of the vector form y, the

scalar form y will be used without notification.

3 This is possible by the sphering process that will be discussed in the next

section.

N. Kwak, J.-W. Lee / Neurocomputing 73 (2010) 1740–1751 1741



Author's personal copy
ARTICLE IN PRESS

Here, x denotes sample mean of x such that
x ¼ ð1=nÞ

Pn
i ¼ 1 xi.

Step 5. Find the k-th SIR direction wk by conducting the
eigenvalue decomposition of SZ:

SZwk ¼ lkwk, l1Zl2Z � � �Zld ð5Þ

Note the similarity of SIR to PCA that it takes L points each of
which is the sample mean of nl points in each slice l and then
performs the PCA to this L points. However, the difference is that
in generating the L points, x’s that are associated with similar y

values are averaged out to capture the relationship between the
input x and the target y.

2.4. Principal Hessian directions (PHD)

As in SIR, let us assume that t¼1 and let f ðxÞ be the regression
function EðY jxÞ, which is a d dimensional function. Here, Eð�Þ

denotes expectation. Consider the Hessian matrix HðxÞ of f ðxÞ
whose (i,j) component is as follows:

HijðxÞ ¼
@2

@xi@xj
f ðxÞ ð6Þ

where xk is the k-th component of the vector x.
Hessian matrices are important in studying multivariate

nonlinear functions and PHD focuses on the utilization of the
properties of Hessian matrices for dimensionality reduction. In
PHD algorithm, instead of calculating the Hessian matrix at each
location of x, which is quite difficult and time-consuming, average
Hessian H ¼ EHðxÞ is considered and principal Hessian directions
are defined as the eigenvectors wk’s (k ¼ 1, y, d) of the matrix
HSx where Sx is the covariance matrix of x:

HSxwk ¼ lkwk, jl1jZ jl2jZ � � �Z jldj ð7Þ

By using Stein’s lemma [22], it is shown in [20] that the
average Hessian matrix H for normal x with mean x and
covariance Sx is related to the weighted covariance matrix

Syxx ¼ EfðY�yÞðx�xÞðx�xÞT g ð8Þ

through the identity

H ¼ S�1
x SyxxS�1

x ð9Þ

Without loss of generality, we can assume Sx as the d� d

identity matrix4 and the principal Hessian directions wk’s (k ¼

1,y,d) can be obtained by solving the following eigenvalue
decomposition problem:

Syxxwk ¼ lkwk, jl1jZ jl2jZ � � �Z jldj ð10Þ

where Syxx in (8) can be estimated by

Syxx ¼
1

n

Xn

i ¼ 1

ðyi�yÞðxi�xÞðxi�xÞT ð11Þ

2.5. Gaussian process with linear regression model (GPL)

This method is a simplified version of the more general
regression method GPR [16]. In this method, the target variable y

is assumed to be a linear combination of input variables x and an
additive noise e as follows:

y¼wT xþe ð12Þ

If we assume that the noise is independent, identically distributed
Gaussian distribution with zero mean and variance s2

n, the

likelihood of the observation given the parameters w can be
calculated as

pðyjX,wÞ ¼
Yn

i ¼ 1

pðyijxi,wÞ ¼
Yn

i ¼ 1

1ffiffiffiffiffiffi
2p
p

sn

exp �
ðyi�wT xiÞ

2

2s2
n

 !

¼
1

ð2ps2
nÞ

n=2
exp �

1

2s2
n

jy�XT wj2
� �

¼N ðXT w, s2
nIÞ ð13Þ

where n is the number of training examples, XARd�n is the
training data matrix, yARn�1 is the target vector of the training
data and jzj denotes the Euclidian norm of the vector z. In the
Bayesian estimation, we assume that w has a zero mean Gaussian
prior with covariance matrix Sp, i.e.,

w�N ð0,SpÞ ð14Þ

Using the likelihood (13) and prior (14), the posterior probability
of w can be obtained as

pðwjX,yÞ �N 1

s2
n

A�1Xy,A�1

� �
ð15Þ

where A¼ s�2
n XXT

þS�1
p .

The maximum a posteriori estimate of w becomes the mean
value of (15), i.e., wMAP ¼ ð1=s2

nÞA
�1X.

From this derivation, f ¼wT x in itself can be interpreted as a
new feature obtained from the linear combination of input
variables x. Like MLR, this method can extract only one feature.

The GPR extends this linear regression model to a nonlinear
version by replacing (12) with

y¼wTfðxÞþe ð16Þ

where fðxÞ is a nonlinear function of the input vector x. Because
our focus is on the linear feature extraction, we stop the
discussion on GPR here. The interested readers may consult [16]
for more detail.

2.6. Linear discriminant analysis (LDA)

Unlike other methods previously introduced in this section,
LDA focuses on classification problem where instead of contin-
uous target variable y, discrete class identifier cAf1, . . . ,Ncg is
used. Here, Nc is the number of classes.

In LDA, we try to optimize the following Fisher’s criterion
such that the ratio of the between-covariance matrix Sb ¼

ð1=nÞ
PNc

c ¼ 1 ncðxc�xÞðxc�xÞT and the within-covariance matrix
Sw ¼ ð1=nÞ

PNc

c ¼ 1

P
iA fclass ¼ cgðxi�xcÞðxi�xcÞ

T is maximized

W ¼ argmax
W

jWT SbWj

jWT SwWj
ð17Þ

Here, x ¼ ð1=nÞ
Pn

i ¼ 1 xi is the total mean of the samples, nc is the
number of samples belonging to the class c and
xc ¼ ð1=ncÞ

P
iA fclass ¼ cgxi is the mean of the samples belonging to

the class c.
The optimization problem in (17) is equivalent to the following

generalized eigenvalue problem:

Sbwk ¼ lkSwwk, l1Zl2Z � � �ZldZ0 ð18Þ

where w1 is the most discriminant component, w2 is the second
and so on.

In [23], the relationship between LDA and MLR was studied
and the LS-LDA (least squares LDA) was proposed which showed
almost the same classification performances as those of LDA.

4 This is possible by the sphering process that will be discussed in the next

section.
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3. Methods

In this section, we propose two new feature extraction
methods for regression problems. These are quite related to the
conventional methods described in the previous section and the
relationship will be discussed.

3.1. Weighted PCA for regression

In this approach, we would like to incorporate the target
information in the structure of PCA in order to obtain good
features suitable for regression.

For this purpose, we propose to solve the following eigenvalue
decomposition problem:

Syxwk ¼ lkwk, l1Zl2Z � � �Zld ð19Þ

where

Syx ¼
2

nðn�1Þ

Xn�1

i ¼ 1

Xn

j ¼ iþ1

gðyi�yjÞðxi�xjÞðxi�xjÞ
T

ð20Þ

Here, weight function gð�Þ is a positive even function whose output
does not decrease as the absolute value of the input increases.
Typical examples are gðxÞ ¼ jxj and gðxÞ ¼

ffiffiffiffiffiffi
jxj
p

. Note that the matrix
Syx in (20) is the weighted version of the covariance matrix Sx, and
replacing Syx with Sx, (19) becomes identical to (1) for PCA.
Furthermore, if we use constant weight function, i.e., g(x)¼1,
then Syx becomes identical to the covariance matrix Sx and the
proposed algorithm becomes identical to PCA. In this case, by
sphering process which will be discussed later, Sx can be made to be
Id and the extracted feature will be of little importance because any
random directions will be selected as extracted features. Hereafter,
we will refer to the proposed algorithm as WPCA.

The intuition of the proposed algorithm is very simple. In
computing the weighted covariance matrix Syx, it emphasizes the
contribution of pairs of samples whose difference in the target
values is large and reduce the effect of pairs of samples which
show small differences in the target values.

Note the similarity of the weighted covariance matrix Syx and
that of PHD in (11). However, unlike Syxx in PHD which can have
negative eigenvalues, Syx is positive semi-definite matrix whose
eigenvalues are all non-negative.

Although WPCA takes the target information into account when
generating the weighted covariance matrix Syx, the drawback of PCA
that the extracted features are not invariant under transformation
remains still. By merely scaling one of the input features the
extracted features can be different. This is not only true for PCA and
WPCA but also applies to SIR and PHD.

To resolve this problem, we preprocess the given data with the
well known sphering process as follows:

(Sphering): Solve the eigenvalue decomposition problem of PCA
in (1). Rewriting (1) in a matrix form it becomes
SxW1 ¼W1L1. Then, scale each column
w1k ðk¼ 1, . . . ,d0Þ of W1 to make fx̂ik ¼ ŵ

T
1kðxi�xÞ :

i¼ 1, . . . ,ng have unit variance. Here ŵ1k is a scaled
version of w1k and d

0

is the number of non-zero
eigenvalues of Sx. If Jw1kJ¼ 1, this is equivalent to
setting ŵ1k ¼w1k=

ffiffiffiffiffiffiffi
l1k

p
for l1ka0.5

By the above sphering process, the original input features are
transformed to a set of orthonormal random variables which does
not show any preference for a specific direction and WPCA can be
performed on this new set of features reflecting the effect of
target information as much as possible while suppressing the
negative effect of underlying structure of the original input
features.

The computational complexity of WPCA can be decomposed
into two parts. The first part is related to obtaining the covariance
matrix shown in (20) and it is proportional to the square of the
number of examples and the square of the input dimension, i.e.,
C1 ¼ O(n2d2). The second part is related to solving the eigenvalue
decomposition problem in (19) and it is typically proportional to
the cubic of the input dimension, i.e., C2 ¼ O(d3).

Comparing this to the complexity of PCA, because the second
part is common to PCA and WPCA, we can see that WPCA is more
computationally complex than PCA which requires O(nd2) opera-
tions in obtaining the covariance matrix. However, in case where
n is very large, a subset of samples can be selected to obtain the
weighted covariance matrix Syx.

3.2. LDA for regression

3.2.1. Algorithm

In the classification problems, LDA has been a very successful
dimensionality reduction method and many variants have been
developed so far. As described in the previous section, the gist of
LDA lies in maximizing the Fisher’s criterion which tries to
maximize the between-class scatter while minimizing the within-
class scatter simultaneously.

In this section, we extend this idea to the regression problems
and a new feature extraction algorithm for regression is proposed.
From now on, the new method will be referred to as LDAr, which
is an abbreviation for linear discriminant analysis for regression.

Consider a set of input/target pairs fxi,yig
n
i ¼ 1 as described in

Section 3. In this regression setting, we are to find a set of features
fi’s ð ¼wT

i xÞ, which are linear transformations of x such that they
contain much information about the target variable y. In doing so,
we focus on Fisher’s criterion (17) and modify it appropriately to
fit in the regression problems.

Firstly, we incorporate the classification problems in this
regression setting by regarding the class label as a discrete
variable y. Then, the between-scatter Sb and within-scatter Sw

matrices in LDA (Section 2.5) can be rewritten up to a constant
scaling as

S0b ¼
1

nb

X
ði,jÞAAb

ðxi�xjÞðxi�xjÞ
T

S0w ¼
1

nw

X
ði,jÞAAw

ðxi�xjÞðxi�xjÞ
T

ð21Þ

where Ab and Aw are the sets of index pairs with different class
labels and the same labels respectively:

Ab ¼ fði,jÞjyiayj,io jg ¼ fði,jÞjyi�yja0,io jg

Aw ¼ fði,jÞjyi ¼ yj,io jg ¼ fði,jÞjyi�yj ¼ 0,io jg ð22Þ

and nb and nw are the number of elements in Ab and Aw

respectively. Note that nbþnw ¼ ð
n
2Þ ¼ nðn�1Þ=2.

Unlike classification problems which have discrete target
variable, or classes, in regression problems it is difficult to define
between-class scatter and within-class scatter matrices because
target variable is continuous. However, by regarding y in the
classification problem as a continuous variable and introducing a
soft class instead of the hard class, we can modify (22) to fit in the

5 We can get d non-zero eigenvalues only if Sx is nonsingular. If Sx is singular,

the sphering process can be performed only for the eigenvectors whose

corresponding eigenvalues are non-zero. By this, the original d-dimensional input

space is reduced to d0od dimensional space. If we do not want to reduce the

original dimension by the preprocessing, the regularization technique which will

be treated in the next subsection can be utilized.
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regression setting. The modified set of index pairs Abr and Awr are
defined as follows:

Abr ¼ fði,jÞj jyi�yjjZt,io jg

Awr ¼ fði,jÞj jyi�yjjot,io jg ð23Þ

Here, t is a threshold separating an index pair into Abr or Awr and
nw ¼ jAwrj and nb ¼ jAbrj. Note that if t¼ 0, the sets of index pairs
become identical to that used in LDA for classification problems
(hard class).

In this modification, the simple idea that the samples with
small differences in the target values can be considered as
belonging to the same class and the ones with large differences
should be considered as belonging to the different classes is used.
Therefore, the sets Awr and Abr can be regarded as the sets of close-

and far- pairs respectively.
By using Awr and Abr and incorporating a weight for each pair,

the modified within-class and between-class scatter matrices for
LDAr can be given as follows:

Swr ¼
1

nw

X
ði,jÞAAwr

f ðyi�yjÞðxi�xjÞðxi�xjÞ
T

Sbr ¼
1

nb

X
ði,jÞAAbr

f ðyi�yjÞðxi�xjÞðxi�xjÞ
T

ð24Þ

Here, the function f ð�Þ is a weight function which takes on a
positive value. The discussion on f ð�Þ will follow later.

Using this modified scatter matrices, Fisher’s criterion (17) can
be rewritten for regression problems as

W ¼ argmax
W

jWT SbrWj

jWT SwrWj
ð25Þ

Eqs. (23)–(25) constitute the LDAr problem and as before,
maximizing the above Fisher’s criterion (25) is equivalent to
solving the following generalized eigenvalue problem:

Sbrwk ¼ lkSwrwk, l1Zl2Z � � �Zld ð26Þ

which is again equivalent to the following eigenvalue decom-
position problem:

S�1
wr Sbrwk ¼ lkwk, l1Zl2Z � � �Zld ð27Þ

where w1 is the most important component, w2 is the second and
so on. Note that Sbr and Swr are positive semi-definite and all the
eigenvalues li’s are non-negative.

In modifying LDA for regression problems, we could have
segmented the given dataset into several virtual classes based on
the target values with fixed boundaries and could have applied
conventional LDA for classification problems. Although this
method is simpler, the results can be highly dependent on the
segmenting boundaries and the number of virtual classes. In
addition, this approach cannot take the levels of similarity among
different classes into account. Therefore, in LDAr, a soft boundary
which differs from sample to sample is adopted by using t .

Note that the threshold parameter t plays an important role in
setting the boundary. If t is small, nw becomes small while nb

becomes large and vise versa. In the limit, if t¼ 0, Swr ¼ 0 and Sbr

becomes identical to Syx in WPCA. The threshold t can be
represented as a multiple of the standard deviation sy of target
variable y such that t¼ asy. Typical range for a is 0.1–1.0.

Although the weight function f ð�Þ can be set as a constant, i.e.,
f(x) ¼ 1, it is reasonable to force it to take on different values for
different inputs. Because jyi�yjj ¼ t sets a boundary whether the
pair (i,j) should belong to Awr or Abr, the effect of (i,j)-pair which is
near this boundary can be reduced by setting f ðxÞC0 for jxjCt.
Typical examples of f ð�Þ fulfilling this requirement are
f ðxÞ ¼ jjxj�tj and f ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjxj�tj
p

.

As LDA, LDAr is not invariant to the transformation of input
features and susceptible to the scaling of any input features.
Therefore, it is desirable to preprocess the given dataset by the
sphering technique presented in the previous subsection.

As in WPCA, the computational complexity of LDAr can be
decomposed into two parts. The first part is related to obtaining
the scatter matrices shown in (24) and it is proportional to the
square of the number of examples and the square of the input
dimension, i.e., C1 ¼ O(n2d2). The second part is related to solving
the eigenvalue decomposition problem in (26) and it is typically
proportional to the cubic of the input dimension, i.e., C2 ¼ O(d3).

Comparing this to the complexity of LDA, because the second
part is common to LDA and LDAr, we can see that LDAr is more
computationally complex than LDA which requires O(nd2) opera-
tions in obtaining the scatter matrices. However, as stated in the
previous subsection, for large n, a subset of samples can be
selected in computing the scatter matrices to reduce the
computational complexity.

3.2.2. Coping with small sample size (SSS) problem

In many real world problems, the dimension of the input space
d can be so large compared to the number of available samples n

that the scatter matrix Swr or Sbr in LDAr becomes singular. In this
case, especially when Swr is singular, taking inverse in (27) is
impossible and alternative method should be devised. The same
problem also arises due to an unappropriate setting of t such that
nw becomes so small.

This kind of problems are well known as the small sample size
(SSS) problem for LDA and there has been much effort to solve this
problem for LDA (see [24]). Note that the SSS is also a problem for
WPCA and other conventional methods such as SIR and PHD
presented in the previous section especially when the dimension
of the input space is too large.

Preprocessing by PCA-like transform: The first approach to
resolve the SSS problem is to reduce the dimension of the input
space from d to the order of n by removing the space which does
not contribute to the objective function. Looking at Eq. (25), we
can see that the common null space of Sbr and Swr does not
contribute to the objective function and by removing this we can
alleviate the SSS problem. Because Sbr and Swr are positive semi-
definite, the common null space of Sbr and Swr can be removed by
preprocessing the given data using PCA-like technique as follows:

1. Solve the eigenvalue problem and find W0:

SaW0 ¼W0L0 subject to WT
0 W0 ¼ I ð28Þ

where Sa ¼ aSwrþð1�aÞSbr for any 0oao1.
2. Transform the original data by multiplying the eigenvectors
fw0ig

l
i ¼ 1 whose corresponding eigenvalues are not zero.

Note that if we set a¼ 2nw=nðn�1Þ, Sa becomes covariance of x,
i.e., Sa ¼ Sx ¼ ð1=nÞ

Pn
i ¼ 1ðxi�xÞðxi�xÞT and this process becomes

exactly identical to the sphering process which serves both to
suppress the effect of the underlying imbalance among the
original input features and to resolve SSS problem. With this
technique, we can reduce the dimension of the input space from d

to lrn.
Regularization: The second approach to resolve SSS problem is

normally called as a ‘regularization’ method. For LDA, it is well
known that the null space of the within covariance matrix Sw is
very important because it makes the objective function to infinity.
However, because the sphering operation is not possible for zero
eigenvalues, in some implementations of LDA, the null space is
removed and the optimal weight vectors are searched for only in
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the range space of Sw. In other implementation [25], a user has to
decide whether to find optimal direction in the range space of Sw

or in the null space. In this case, if the range space is selected, the
sphering operation is performed on it, while the normalized
weight is used if the null space is selected. Also in [25], the
weighted average of the two projections are used in the
classification step without justification.

The same problem also applies to LDAr in utilizing the null
space of Swr. And it can be solved by the following regularization
methods. They try to avoid singularity of Swr by adding a small
quantities to the diagonal of Swr as in [26]:

S0wr ¼ ð1�mÞSwrþ
m
d

tr½Swr �Id ð29Þ

or as used in RDA [27]:

S0wr ¼ SwrþgId ð30Þ

Here small scalars m and g are regularization parameters, tr½�� is a
trace of a matrix and Id denotes d dimensional identity matrix.

These regularization methods have the effect of decreasing the
large eigenvalues and increasing the small ones, thus counter-
acting the biased estimation of the eigenvalues. However, if d is
very large, this approach is very heavy because we have to deal
with d� d matrix operations.

Small variant of the above approach is used in R-LDA [24]. In
this method, instead of adding a small diagonal matrix to within-
covariance scatter matrix, it is added to the eigenvalue matrix and
the modified eigenvalues are used in the sphering process. Unlike
the conventional regularization methods, this method only
focuses on the small eigenvalues and can be carried out faster.

Note that all the regularization techniques presented so far can
be utilized for LDAr.

3.3. Examples

To show the effectiveness of the proposed methods, two
simple examples are shown in the following.

3.3.1. Example 1: linear target

Consider we have two independent input features x1 and x2

which have normal distribution with zero mean and variance of 1.
In addition, suppose the target output variable y has the following
linear relationship with the input x:

y¼ 2x1þx2: ð31Þ

For this problem, the optimal feature is f ¼ 2x1+x2 which
corresponds to the optimal weight vector w� ¼ ½2,1�T .

In Fig. 1, we have plotted 1000 samples. Its contour map which
connects the points that have the same y value is also drawn in
slanted lines. For this empirical data, we have applied SIR, PHD,
WPCA and LDAr.

Considering that the area between the neighboring slanted
lines can be considered as a slice in SIR, there will be significant
differences in the mean values x l ðl¼ 1, . . . ,LÞ of each slice and we
can expect the SIR will work well for this problem. As expected,
SIR resulted in w¼ ½0:89,0:45�T which is very close to the optimal
value w�. The number of slices was set to L¼10 in this case.

Regarding PHD, because y is linear to x, all the elements in the
Hessian matrix of this problem are zeros and we can expect the
PHD will fail to this problem. As a matter of fact, for the empirical
data shown in Fig. 1, PHD produced w¼ ½0:88,�0:51� which is far
from w�.

When we applied WPCA to this problem with weight function
gðxÞ ¼

ffiffiffiffiffiffi
jxj
p

, we could get w¼ ½0:90,0:44�T which is very close to
the optimal value w�. Considering the similarity between Syx in
(20) and Syxx in (11), the result may look odd.

The reason WPCA succeeds while PHD fails to this problem lies
in the form of the weight function. In PHD, the weight function is
just the deviation from the target mean y. Therefore, the points in
the lower left part in Fig. 1 will have negative weights (yi�yo0)
and the other points which are located in the upper right part will
correspond to the positive weights (yj�y40). As a result,
contributions of any two points of symmetry about the center
cancel out each other in the formation of Syxx and the eigenvalues
of Syxx will be very small resulting in the failure of PHD.

On the other hand, in WPCA, because there will be no negative
weight (gð�ÞZ0), instead of cancelling out, in computing Syx, the
contribution of any pair of points of symmetry about the center
adds up and the eigenvalues of Syx become large enough to reflect
the gradient direction.

For this example, LDAr is also applied with weight function
f ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjxj�tj
p

and a¼ 0:3. LDAr resulted in w¼ ½0:89,0:45�T

which is very close to the optimal weight. Note that in LDAr,
the scatter matrices are all positive semi-definite.

3.3.2. Example 2: quadratic target

As in Example 1, suppose we have two independent input
features x1 and x2 which have normal distribution with zero mean
and variance of 1. However, in this case, suppose that the target
output variable y has the following quadratic relationship with
the input x:

y¼ 4ðx1�2x2Þ
2
þð2x1þx2Þ

2
ð32Þ

As can be seen from the equation, for a fixed y, (x1, x2) constitutes
an ellipsoid whose major axis is in the direction of (2,1) and the
minor axis is in (�1,2).

If we are to extract only one feature among the set of linear
combinations of input variables x1 and x2, the major axis is the
best projection which corresponds to a feature f ¼ x1 �2x2, i.e.,
w� ¼ ½1,�2�T .

For this problem, we have generated 1000 samples as shown in
Fig. 2 and applied SIR, PHD, WPCA and LDAr. In the figure, the
ellipses are the contour map which connects the points that have
the same y value.

As was expected, SIR does not work out for this problem
because all the mean values of different slices are near zero and
random direction which are highly dependent on a specific data
will be chosen. For example, for the empirical data shown in Fig. 2,
SIR with L¼10 extracted the first weight vector w¼ ½�0:84,0:52�T

which is far from the optimal value w� ¼ ½1,�2�T .
Unlike SIR, PHD works well for this problem because y is

quadratic to x and the principal Hessian directions are easily
calculated. Calculating the Hessian matrix, it becomes
H¼ ½ 16

�12
�12
34 � and the principle Hessian direction is [1, �2]T as

expected. For the empirical data shown in Fig. 2, PHD algorithm
resulted in w¼ ½0:44,�0:90�T which is very close to the optimal
value.

WPCA also works well for this example. Consider a random
sample point xa and two other samples xb and xc located on the
same distance from xa but in the directions of major axis and
minor axis respectively. In this case, the contribution of xa�xc to
the Syx in (20) is much more than that of xa�xb because the y

value in xc will be much more different from that in xa than the
one in xb from that in xa. Averaging out these effects for all the
samples, the eigenvector corresponding to the maximum eigen-
value of Syx will be the direction of minor axis and it will be
chosen as the best feature. For the empirical data shown in Fig. 2,
we applied WPCA with weight function gðxÞ ¼

ffiffiffiffiffiffi
jxj
p

and could get
w¼ ½0:44,�0:90�T as in PHD.

N. Kwak, J.-W. Lee / Neurocomputing 73 (2010) 1740–1751 1745



Author's personal copy
ARTICLE IN PRESS

For this example, LDAr is also applied with weight function
f ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjxj�tj
p

and a¼ 0:3. LDAr resulted in w¼ ½0:44,�0:90�T

which is the same value as in PHD and WPCA.

3.4. Sensitivity to parameters

In this part, we test the sensitivity of the proposed algorithms
to model parameters and the sub-sampling scheme is checked to
confirm that for large number of samples, sub-sampling can be
used to speed up the process without degrading the performance.
Examples 1 and 2 in the previous subsection are used as datasets.
All the tests were performed on Pentium III processor with
MATLAB.

3.4.1. WPCA

The only undetermined parameter in WPCA is the weight
function gð�Þ. In Section 3.1, we recommend the readers to use
gðxÞ ¼ jxj or gðxÞ ¼

ffiffiffiffiffiffi
jxj
p

. For Examples 1 and 2, in addition to these
two weight functions, g(x) ¼ x2 was also tested and the angles
between the optimal weight w� and the weight w obtained by
WPCA were measured in degree. Table 1 shows the angles. In both
the examples, we can see that the performance of WPCA is rather
good and does not much depend on the choice of weight function.

For these examples, we also tested the effect of subsampling
and show the result in Table 2. We randomly selected 20, 50, 100,
200 and 400 samples from 1000 original data for both examples
20 times and show the average angles between wWPCA and w� and
standard deviations. The average elapsed times are also provided
in the table. For all the tests, the weight function gðxÞ ¼

ffiffiffiffiffiffi
jxj
p

was
used.

For both examples, as the number of samples decreases, the
deviation of wWPCA from the optimal weight w� increases, while
the elapsed time decreases much. If we permit 53 error from the
optimal weight, over 50 samples are acceptable for Ex. 1 while
more than 200 samples are needed for Ex. 2. This shows that the
easier problem Ex. 1 needs less samples than the more difficult
problem Ex. 2.

3.4.2. LDAr

In LDAr, there are two user determined parameters. The first
one is the weight function f ð�Þ and the second is the threshold
parameter t. Table 3 shows various experimental results obtained
by varying both the parameters simultaneously. In Table 3, weight
functions f(x) ¼ 1, f ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjxj�tj
p

and f ðxÞ ¼ jjxj�tj was tested for
t¼ asy with aAf0:1,0:2, . . . ,1:0g. In the table, we can see that in
all the cases, the performance is good and does not depend much
on the parameters.

We also tested the effect of subsampling in LDAr as we did for
WPCA. In Table 4, out of 1000 original data, 20, 50, 100, 200 and
400 samples were randomly selected 20 times for both examples
and the average angles between wLDAr and w� and standard
deviations are presented. The average elapsed times are also
provided in the table. For all the tests, the weight function
f ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjxj�tj
p

was used with t¼ 0:3sy.
From the table, we can see that as the number of samples

decreases, the elapsed time decreases much while the perfor-
mance degrades a bit. If we permit 53 deviation from the optimal
weight w�, even 20 samples are enough for Ex. 1 while at least 100
samples are needed for Ex. 2. Comparing the results with those in
Table 2, we can see that the performance of LDAr is better than
that of WPCA, especially when the number of samples is small.

4. Experimental results

In this section, the proposed algorithms are applied to several
regression problems and the performances of the proposed
algorithms are compared to those of other conventional methods.

As regression systems, the weighted 5 nearest neighborhood

(5NN) regression [28] as well as the Gaussian process regression

(GPR) [16] were used.
In the weighted version of the 5 nearest neighborhood

regression, the estimation of the target variable t̂ðzÞ with input
variables z is obtained as follows:

t̂ðzÞ ¼
1P

iABðzÞqðz,ziÞ

X
iABðzÞ

qðz,ziÞti ð33Þ
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Fig. 1. Example 1: 1000 random points drawn from N(0, I2). The slanted lines are

the contour map which connects the points that have the same y value.
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Fig. 2. Example 2: 1000 random points drawn from N(0, I2). The ellipses are the

contour map which connects the points that have the same y value.
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Here, BðzÞ is the set of indices of 5 nearest neighbors of z in the
training set and qðz,ziÞ is a weight function which was set
qðz,ziÞ ¼ 1=ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jz�ziJ

p
Þ.

The basic prediction model of GPR is

t̂ðzÞ ¼ kT
� ðKþs

2
nÞ
�1t ð34Þ

Here, k� denote the n-dimensional vector of covariances between
the test point z and n training points, the kernel matrix K is an
n� n matrix whose (i,j) element is the covariance between the
i-th training point and the j-th training point, s2

n is the noise
variance, and t is the n-dimensional target vector of the training
points.

In our experiments, independent covariance function (i.e.,
white noise) was added to squared exponential covariance
function with adaptive relevance determination (ARD) to give
the composite covariance function [16].

For all the experiments, the weight function gðxÞ ¼
ffiffiffiffiffiffi
jxj
p

was
used for WPCA. For LDAr, f ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jxj�tj
p

and a was set to 0.3. In
SIR, the number of slices was set to be L¼15.

4.1. Artificial problems

4.1.1. Linear case

Suppose we have five independent input features x1 � x5

which have normal distribution with zero mean and variance of 1.
Also suppose that the target output variable t has the following
relationship with the input x:

t¼ 2x1þ3x3:

For this problem, 1000 samples were generated. Tenfold cross-
validation was applied to report the performances of various
feature extraction methods such as PCA, MLR, GPL, SIR, PHD,
WPCA and LDAr in Table 5. As regression systems, weighted 5
nearest neighborhood regressor in (33) and GPR are used. The
performances are the root mean square (rms) errors on the test
data. The numbers in the parentheses are the standard deviations.

From the table, we can see that when the number of extracted
features is one, all the feature extraction methods except PCA, GPL
and PHD perform well and resulted almost the same rms around
0.16 for 5NN and 0.11 for GPR. GPL was better than PCA and PHD,
but it resulted in poorer performance than the other methods.

Table 1
Angle between wWPCA and the optimal weight w� (deg).

gðxÞ ¼
ffiffiffi
x
p

gðxÞ ¼ jxj g(x) ¼ x2

Ex. 1 0.48 0.63 0.88

Ex. 2 1.20 1.10 0.86

Table 2
Average angle between wWPCA and the optimal weight w� (deg) and elapsed time (s) for various numbers of samples (average of 20 random tests).

No. samples 20 50 100 200 400 1000

Ex. 1 Avg. angle (deg) 11.37 4.27 2.44 1.44 0.66 0.48

(11.19) (3.49) (1.65) (1.33) (0.66) (0.00)

Elap. time (s) 0.01 0.02 0.09 0.35 1.42 8.87

Ex. 2 Avg. angle (deg) 24.36 12.54 7.61 4.10 2.31 1.20

(15.43) (11.60) (4.46) (3.19) (1.72) (0.00)

Elap. time (s) 0.00 0.02 0.08 0.35 1.42 8.87

The numbers in the parentheses are the standard deviations.

Table 3
Angle between wLDAr and the optimal weight w� (deg).

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ex. 1 f(x)¼1 0.01 0.01 0.04 0.08 0.08 0.09 0.10 0.14 0.14 0.17

f ðxÞ ¼
ffiffiffi
x
p

0.01 0.01 0.02 0.05 0.07 0.08 0.10 0.12 0.14 0.16

f(x) ¼ x 0.01 0.01 0.01 0.03 0.06 0.07 0.09 0.11 0.12 0.14

Ex. 2 f(x)¼1 1.83 1.75 1.65 1.72 1.73 1.51 1.65 1.97 2.03 1.86

f ðxÞ ¼
ffiffiffi
x
p

1.73 1.70 1.64 1.63 1.62 1.54 1.56 1.63 1.66 1.62

f(x) ¼ x 1.59 1.60 1.57 1.53 1.51 1.47 1.44 1.44 1.45 1.44

Table 4
Average angle between wLDAr and the optimal weight w� (deg) and elapsed time (s) for various numbers of samples (average of 20 random tests).

No. samples 20 50 100 200 400 1000

Ex. 1 Avg. angle (deg) 0.97 0.28 0.14 0.10 0.03 0.02

(0.84) (0.17) (0.10) (0.09) (0.03) (0.00)

Elap. time (s) 0.01 0.02 0.09 0.36 1.45 9.07

Ex. 2 Avg. angle (deg) 19.37 10.31 4.63 3.32 2.44 1.64

(12.60) (9.37) (2.87) (2.78) (1.34) (0.00)

Elap. time (s) 0.01 0.02 0.09 0.37 1.45 9.08

The numbers in the parentheses are the standard deviations.
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Note that the MLR is the optimal in the least square sense, but
the LDAr performed slightly better than MLR when 5NN was used
as a regressor. This is due to the fact that the reported rms error is
on the test data. Actually, on the training data, MLR performed the
best but the performance differences between that of MLR and

those of SIR, WPCA and LDAr were not significant. The reason PHD
performs poor can be explained by the fact that there is no
Hessian direction because the target value is linear to the input
features as in Example 1. As the number of extracted features
increased, the performances of all the other methods except PCA

Table 5
Performance for the simple linear dataset (rms error).

No. of features 1 2 3 4 5

Original 5NN – – – – 1.09 (0.07)

GPR – – – – 0.10 (0.01)

PCA 5NN 3.03 (0.70) 2.46 (0.63) 2.31 (0.69) 1.66 (0.71) 1.09 (0.07)

GPR 2.74 (0.29) 2.60 (0.24) 2.57 (0.23) 2.55(0.28) 0.10 (0.01)

MLR 5NN 0.16 (0.08) – – – –

GPR 0.10(0.01) – – – –

GPL 5NN 0.36 (0.03) – – – –

GPR 0.32 (0.05) – – – –

SIR 5NN 0.16 (0.07) 0.43 (0.07) 0.69 (0.06) 0.90 (0.05) 1.11 (0.04)

GPR 0.11 (0.01) 0.11 (0.01) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01)

PHD 5NN 3.01 (0.87) 2.67 (0.80) 2.05 (0.62) 1.69 (0.57) 1.11 (0.04)

GPR 2.63 (0.34) 2.55 (0.33) 2.14 (0.58) 1.10(0.87) 0.10 (0.01)

WPCA 5NN 0.18 (0.06) 0.44 (0.07) 0.70 (0.06) 0.92 (0.05) 1.11(0.04)

GPR 0.11 (0.01) 0.11 (0.01) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01)

LDAr 5NN 0.15 (0.08) 0.17 (0.07) 0.18 (0.07) 0.20 (0.06) 0.20 (0.06)
GPR 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01)

Averages of 10-fold CV. Numbers in the parentheses are the standard deviations.

Table 6
Performance for the nonlinear dataset (rms error).

No. of features 1 2 3 4 5

Original 5NN – – – – 0.46 (0.02)

GPR – – – – 0.09 (0.01)

PCA 5NN 0.77 (0.02) 0.76 (0.05) 0.61 (0.16) 0.51 (0.14) 0.46 (0.02)

GPR 0.70 (0.01) 0.70 (0.01) 0.68 (0.03) 0.60 (0.08) 0.13 (0.02)

MLR 5NN 0.52 (0.07) – – – –

GPR 0.53(0.05) – – – –

GPL 5NN 0.54 (0.06) – – – –

GPR 0.54(0.05) – – – –

SIR 5NN 0.56 (0.09) 0.50 (0.08) 0.48 (0.09) 0.44 (0.06) 0.46 (0.01)

GPR 0.57 (0.05) 0.56 (0.05) 0.45 (0.08) 0.37 (0.12) 0.09 (0.01)

PHD 5NN 0.72 (0.14) 0.66 (0.19) 0.59 (0.20) 0.54 (0.15) 0.46 (0.01)

GPR 0.69 (0.02) 0.67 (0.02) 0.63 (0.04) 0.50 (0.15) 0.16 (0.04)

WPCA 5NN 0.48 (0.07) 0.48 (0.08) 0.45 (0.08) 0.43 (0.05) 0.46 (0.01)

GPR 0.58 (0.05) 0.53 (0.06) 0.48 (0.07) 0.46 (0.08) 0.10 (0.02)

LDAr 5NN 0.47 (0.10) 0.44 (0.11) 0.37 (0.07) 0.38 (0.03) 0.44 (0.02)
GPR 0.48 (0.06) 0.47 (0.06) 0.43 (0.08) 0.32 (0.11) 0.10 (0.01)

Averages of 10-fold CV. Numbers in the parentheses are the standard deviations.
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and PHD become worse while those of PCA and PHD become
better when 5NN was used. On the other hand, when GPR was
used, the performances were rather a constant and did not
depend on the number of extracted features. This is due to the
effect of ARD in GPR which estimates the real covariance matrix
while in 5NN Euclidian distance (i.e., identity covariance matrix)
is used.

From the table, we can infer that all the feature extraction
methods except PCA, GPL and PHD extracted a near best feature as
the first feature and the added features from the second to the
fifth do not contribute to the enhancement of the regression
performance. On the other hand, PCA and PHD fail to extract a
good feature as the first one and the added information in the
additional features contributes to the performance enhancement
of the regression system.

Note that when 5NN is used, the performance of LDAr does not
degrade much compared to those of SIR and WPCA as the number
of extracted features increases and regardless of the number of
extracted features, LDAr performs the best. This shows that the
LDAr is better fitted to the nearest neighbor regressor.

4.1.2. Nonlinear case

Suppose we have five independent input features x1 � x5

which have normal distribution with zero mean and variance of 1.
Furthermore, suppose that the target output variable t has the
following nonlinear relationship with the input x:

t¼ sinðx2þ2x4Þ

For this problem, 1000 samples were generated. Tenfold cross-
validation was applied to this dataset and the rms errors of
various feature extraction methods on the test data are reported
in Table 6. As regression systems, weighted 5 nearest
neighborhood regressor in (33) and GPR are used. The numbers
in the parentheses are the standard deviation.

As can be seen from the table, when only one feature is
extracted, LDAr and WPCA outperform other methods for 5NN.
Regarding GPR, when the number of extracted features is one,
LDAr was the best. As the number of extracted features is
increased, the WPCA and SIR show the same performance trends.

Note that the rms error of LDAr is the smallest for most of the
cases as in the previous problem.

4.2. Real world datasets

4.2.1. Housing—Boston

In this section, we have applied the proposed feature
extraction methods to the Housing (Boston) dataset in UCI
Machine Learning Repository [29].

The dataset contains 13 input features, 12 continuous and
1 binary, and one continuous target variable. There are total 506
instances. We have randomly divided this dataset into 90%
training and 10% test sets 10 times and reported the average
rms error on the test data in Table 7.

As in the previous experiments, weighted 5 nearest neighbor-
hood regressor is used as a regression system. In the table, the
numbers in the parentheses are the standard deviation of 10
experiments.

From the table, we can see that the LDAr is better than other
methods, except for the case when only one feature is extracted
where the MLR performed the best. This is somewhat expected
because MLR is optimal in the sense of least squared error.
However, the performance difference is not much even for the
case when the number of extracted features is one. For this
problem, SIR is slightly better than WPCA for all the numbers of
extracted features.

4.2.2. Orange juice

Orange juice dataset was obtained from the UCL machine
learning database [30], which is to estimate the level of
saccharose of an orange juice from its observed near-infrared
spectrum. It consists of 150 training and 68 test examples with
700 input features. The target is a continuous variable which
corresponds to the level of saccharose.

As can be seen, this problem is a typical example of SSS
problem whose input dimension d (¼700) is much larger than the
number of training examples n (¼150). To resolve this SSS
problem, for all the feature extraction methods except PCA, we
have preprocessed the dataset with PCA and reduced the
dimension of input space into 149 (¼n�1). In addition, for LDAr,
we have applied the regularization technique in (30) with g¼ 0:01
after applying PCA.

Table 8 shows the performances of various feature extraction
methods on the test dataset. Weighted 5 nearest neighborhood
regressor is used as a regression system.

For this problem, the performance enhancement of WPCA over
PCA was not significant. On the other hand, LDAr performed far
better than the other methods regardless of the number of
extracted features. The best performance was reported by LDAr
when nine features were extracted.

Table 7
Performance for the Housing dataset (rms error).

No. of features 1 3 5 7 9 11 13

Original – – – – – – 4.02 (0.48)

PCA 7.98 (0.82) 4.44 (0.63) 4.10 (0.55) 4.03 (0.50) 3.98 (0.57) 3.90 (0.50) 4.02 (0.48)

MLR 4.04 (0.50) – – – – – –

GPL 6.82 (1.24) – – – – – –

SIR 4.26 (0.56) 4.15 (0.48) 3.66 (0.53) 3.77 (0.58) 3.98 (0.67) 4.01 (0.60) 4.17 (0.66)

PHD 8.25 (0.81) 5.16 (0.77) 4.57 (0.39) 4.32 (0.72) 4.23 (0.61) 4.19 (0.60) 4.17 (0.66)

WPCA 4.68 (0.51) 4.18 (0.66) 3.89 (0.59) 3.78 (0.70) 4.06 (0.60) 4.08 (0.59) 4.17 (0.66)

LDAr 4.19 (0.64) 3.98 (0.61) 3.60 (0.73) 3.55 (0.60) 3.48 (0.67) 3.49 (0.66) 3.52 (0.67)

Averages of 10 experiments. Numbers in the parentheses are the standard deviations.

Table 8
Performance for the orange juice dataset (rms error).

No. of features 1 3 5 7 9 11 13 700

Original – – – – – – – 8.92

PCA 9.89 9.38 9.11 9.10 8.92 8.91 8.91 –

MLR 7.46 – – – – – – –

GPL 9.04 – – – – – – –

SIR 9.32 9.38 9.15 8.91 8.92 8.93 8.92 –

PHD 10.38 9.20 9.36 9.05 9.20 8.93 8.92 –

WPCA 9.61 9.38 9.09 9.09 8.91 8.91 8.91 –

LDAr 6.39 6.83 6.85 6.52 6.15 6.41 6.54 –
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4.2.3. SARCOS robot arm

The dataset is to learn the inverse dynamics of a seven degrees-
of-freedom SARCOS anthropomorphic robot arm. It consists of 21
input features (7 joint positions, 7 velocities, 7 joint accelerations)
and 7 output variables (the corresponding 7 joint torques). The
dataset has previously been used to study regression algorithms
[16,31]. There are 48,933 input–output pairs in the dataset, of
which 44,484 were used as a training set and the remaining 4,449
were used as a test set in [16,31].

In our experiment, we test various feature extraction methods
for each of the seven output variables separately. To reduce the
computational complexity, we randomly selected 1000 examples
from the 44,484 training set 20 times and report the perfor-
mances on the 4449 test data in Table 9 and Fig. 3. As a regression
system, weighted 5 nearest neighborhood regressor was used in
all the tests. In the figure, due to space limitation, only the rms
errors of the first two target variables with PCA, SIR, PHD, WPCA
and LDAr are shown. For each feature extraction methods, 1, 3, 5,
7 and 10 features were used for the regression. The standard
deviations were also drawn for each of the points, however in
most cases, they are very small and difficult to be distinguished in
the figure.

In both Fig. 3(a) and (b), when the number of extracted
features is one, the performances of SIR and LDAr were better than
those of other methods. However, as the number of features
increases, the RMS error of LDAr drops slowly while that of SIR
increases, especially from the case of five extracted features.
These trends also hold for other target variables not shown in the
figure. The performance of WPCA was better than PHD in many
cases but sometimes it performed poorer than PHD. On the other
hand, WPCA consistently outperformed PCA in all the cases.

In the table, we show the best performances of various feature
extraction methods. The best number of extracted features is also
indicated in the table. For PCA, SIR, PHD, WPCA and LDAr the 1, 3,

5, 7 and 10 extracted features were used for the weighted
5NN regressor and the best performance was shown. Note that
MLR and GPL can extract only one feature. From the table, we can
see that the best performance of LDAr was better than those of
other methods for all the seven target variables. MLR and SIR
performed relatively well and PCA, PHD and GPL showed poor
performances.

5. Conclusions

In this paper, we have proposed two new methods for linear
feature extraction for regression problems. The first one is WPCA
which is closely related to the conventional PCA but unlike PCA, it
incorporates target information in the optimization process and
try to find a set of linear transforms that maximizes the distances
between points with large differences in target values. The second
one is a regressional version of LDA which is very popular for
classification problems.

We have applied the proposed methods to several regression
problems and compared the performance with the conventional
feature extraction methods.

The two examples in Section 3 show the advantage of WPCA
and LDAr compared to the conventional methods such as SIR and
PHD. Both methods show good performance on the two examples
while PHD fails to the problem where the target is a linear
combination of input features and SIR fails to the problem where
the target is a quadratic function to the input variables.

On the real world problems shown in Section 4, although
the performance of WPCA was better than that of PCA, it shows
little or no performance enhancement over other conventional
methods such as SIR or PHD. On the other hand, for all the
problems, LDAr outperforms the other methods. This shows the
ability of LDAr to merge the samples with similar target values in

Table 9
Performance for the SARCOS robot arm dataset (rms error).

Target 1 2 3 4 5 6 7

Original 9.79 (21) 5.92 (21) 3.49 (21) 4.51 (21) 0.37 (21) 0.70 (21) 0.86 (21)

PCA 10.21 (10) 6.21 (10) 3.65 (10) 5.29 (10) 0.39 (10) 0.73 (10) 1.01 (10)

MLR 6.18 (1) 5.23 (1) 3.36 (1) 3.42 (1) 0.40 (1) 0.94 (1) 0.72 (1)

GPL 15.28 (1) 8.65 (1) 5.14 (1) 6.58 (1) 0.59 (1) 1.20 (1) 1.29 (1)

SIR 6.55 (1) 5.01 (3) 3.22 (3) 3.50 (3) 0.37 (5) 0.69 (10) 0.71 (3)

PHD 10.20 (10) 6.33 (10) 4.13 (10) 4.55 (10) 0.40 (10) 0.81 (10) 0.84 (10)

WPCA 8.07 (5) 5.54 (5) 3.56 (5) 3.59 (5) 0.39 (10) 0.70 (10) 0.74 (3)

LDAr 5.79 (10) 4.44 (10) 2.73 (10) 2.78 (10) 0.33 (10) 0.66 (10) 0.58 (10)

The numbers in the parentheses are the best number of extracted features.
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Fig. 3. RMS error for the first two target variables of SARCOS robot arm dataset.
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the transformed space helps improving the performance of the
regression system.

The computational complexity of both methods is proportional
to the square of the number of the examples but this can be
reduced to a manageable quantity for a large dataset if appro-
priate sample selection is utilized.
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