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a b s t r a c t

We propose a novel 2D image-based approach that can simultaneously handle illumination and pose
variations to enhance face recognition rate. It is much simpler, requires much less computational effort
than the methods based on 3D models, and provides a comparable or better recognition rate.
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1. Introduction

Face recognition has received much attention due to its theoret-
ical challenges as well as applications in user identification, surveil-
lance and human–computer interaction. As a result, numerous
methods have been developed for face recognition in the last few
decades. Among them, appearance-based approaches such as
Eigenface (Turk and Pentland, 1991) and Fisherface (Belhumeur
et al., 1997), perform quite well under ideal circumstances.
However, there still remain many problems that must be overcome
to develop a robust face recognition system that works well under
various circumstances such as illumination and pose variations.

In order to overcome the problems due to illumination
variation, many approaches based on 3D models have been
proposed. Basri and Jacobs (2003) represented lighting by using
spherical harmonics and described the effects of Lambertian reflec-
tance as an analogy to convolution. Lee et al. (2007) represented a
face image under arbitrary illumination using a linear combination
of illuminated exemplars which were synthesized from photomet-
ric stereo images of training data. For pose variation, generic 3D
shape models were used by considering a uniform face shape as
a tool for transforming image pixels (Liu and Chen, 2005; Zhang
et al., 2006). In (Jiang et al., 2005), 3D models were reconstructed
from 2D images using feature-based or image-based techniques
to estimate pose. In order to cope with both illumination as well
as pose variations, Georghiades and Belhumeur (2001) presented
the illumination cone model and applied it to various poses using
ll rights reserved.
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an affine warp. Zhou and Chellappa (2005) proposed an image-
based method which unified the Lambertian reflectance model
(Basri and Jacobs, 2003) and the eigen light-field (Gross et al.,
2002). Recently, Zhang and Samaras (2006) presented a statistical
method to deal with illumination and pose variations. The methods
in (Romdhani et al., 2002, 2003; Romdhani and Vetter, 2003)
presented 3D morphable models to characterize human faces.
Since the shadows on a face are generated due to the complex
3D structure of a human head and a pose of a human head can
be characterized by pitch, roll and yaw angles, the above
approaches based on 3D information perform relatively well in
dealing with pose and illumination variations. However, these
methods require a large computational effort (Li et al., 2004) be-
cause they are based on either the knowledge of 3D structure such
as albedos and surface normals or a special physical configuration.
Moreover, the method in (Zhang and Samaras, 2006) requires to
mark numerous image feature points manually to process one
probe image, which is time-consuming. The fitting algorithm in
(Romdhani et al., 2002, 2003; Romdhani and Vetter, 2003) is com-
plicated and 3D face models have to be captured by a 3D laser
scanner or special equipment, which are significant drawbacks in
implementing an online real-time face recognition system.

Other simpler methods for face recognition based on 2D images
have been proposed (Liu et al., 2005; Choi et al., 2007; Ruiz-delSo-
lar and Quinteros, 2008). Shashua and Riklin-Raviv (2001) used the
quotient image, which is an illumination invariant signature, to
generate face images under arbitrary illumination conditions. Xie
and Lam (2005) proposed a method to eliminate the influence
due to illumination variation by using a 2D shape model, which
separates an input image into a texture model and a shape model
for retaining shape information. The methods in (Xie and Lam,
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Fig. 1. The proposed architecture for face recognition.
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2006; Ahonen et al., 2006) tries to alleviate the effect of uneven
illumination by using the techniques of local normalization or local
binary pattern. In order to handle pose variation, Pentland et al.
(1994) proposed a view-based eigenspace method and Huang
et al. (2000) used a neural network with a view-specific eigenface
for face recognition. Gross et al. (2002) presented the concept of
light field to characterize the continuous pose space, and Liu
(2004) proposed a Gabor-based kernel PCA using Gabor wavelets
and a kernel. However, most of 2D image-based methods deal with
either illumination or pose variation, and so it is difficult to apply
them directly when both illumination and pose variations are
present.

In this paper, we propose a new approach based on 2D images
for handling illumination and pose variations simultaneously. We
are motivated by the view-based face recognition methods (Liu,
2004; Pentland et al., 1994) that use different feature space for
each different pose class. We first propose a simple pose estimation
method based on 2D images, which uses a suitable classification
rule and image representation to classify a pose of a face image.
In order to represent the characteristic of each pose class, we trans-
form a face image into an edge image, in which facial components
such as eyes, nose and mouth in the image are enhanced. Then, the
image can be assigned to a pose class by a classification rule in a
low-dimensional subspace constructed by a feature extraction
method. On the other hands, unlike general classification prob-
lems, pose classes can be placed sequentially from left profile to
right profile in the pose space, and we can make use of the order
relationship between classes. Therefore, in order to model the con-
tinuous variation in head pose, we investigate the performance of
feature extraction methods for regression problems (Li, 1991,
1992; Kwak et al., 2008) and classification problems (Belhumeur
et al., 1997; Fukunaga, 1990), where classes have an order relation-
ship. Second, we propose a shadow compensation method that
compensates for illumination variation in a face image so that
the image can be recognized by a face recognition system designed
for images under normal illumination condition. Generally, human
faces are similar in shape in that they are comprised of two eyes, a
nose and a mouth. Each of these components forms a shadow on a
face, showing distinctive characteristics depending on the direc-
tion of light in a fixed pose. By using such characteristics generated
by the shadow, we can compensate for illumination variation on a
face image caused by the shadow and obtain a compensated image
that is similar to the image taken under frontal illumination. Since
the direction of light can change continuously, it is insufficient to
represent the illumination variation with the shadow characteris-
tic from only one discretized light category as in (Choi et al.,
2007; Choi and Choi, 2007). Thus, we use more than one shadow
characteristics to compensate for illumination variation by giving
an appropriate weight to each estimated light category. Further-
more, we extend the compensation method that works not only
for the frontal pose class but also for other pose classes as well.
These shadow compensated images in each pose class are used
for face recognition.

The proposed method consists of three parts which are pose
estimation, shadow compensation and face identification (see
Fig. 1). For a face image with multiple variations, the pose of the
face image is estimated by using the proposed pose estimation
method. After assigning a face image to an appropriate pose class,
the face image is processed by the shadow compensation proce-
dure customized for each pose class. These shadow compensated
images are used for face identification by a classification rule.

The proposed method has the following advantages compared
to other face recognition methods under illumination and pose
variations. Unlike most of 2D image-based methods that deal with
individual variation separately, the proposed method handles both
illumination and pose variations. Moreover, the proposed method,
which is based on 2D images, does not require to estimate the face
surface normals or the albedos, and thus there is no need for any
special equipment such as a 3D laser scanner (Romdhani et al.,
2002, 2003; Romdhani and Vetter, 2003) or complicated computa-
tion. The proposed shadow compensation method also does not in-
clude image warping or iteration process. These make the
proposed recognition system much simpler to implement, and this
simplicity is an important factor for performing a face recognition
system in real-time. Even for the simplicity of the proposed meth-
od, it works quite well and its recognition performance is better
than or comparable to the algorithms based on 3D models which
require 3D information.

The rest of this paper is organized as follows. Section 2 explains
how to assign a suitable pose class to an image. Section 3 explains
how to compensate for the shadow in face images in each pose
class. Section 4 presents the experimental results of the proposed
method and its comparison with other methods. The conclusion
follows in Section 5.
2. Pose estimation

In a view-based face recognition (Liu, 2004; Pentland et al.,
1994), the pose estimation is to classify head orientation into one
of several discrete orientation classes, e.g., frontal, left/right pro-
files, etc. Among the pose estimation methods based on 2D images
such as the geometric methods, detector array methods, appear-
ance template methods and subspace methods (Murphy-Chutorian
and Trivedi, 2009), we use the subspace method that projects a
probe image into a low-dimensional subspace to estimate its pose.
We first divide the pose space into several pose classes from left
profile to right profile. In a view-based face recognition, the pose
estimation stage is important for face recognition performance be-
cause it is at the first stage in face recognition system to determine
the pose class of an image.

To make pose estimation more reliable against the variations in
subjects and environmental changes, it is necessary to find the
characteristics that are mostly affected by pose variation. We use
the geometrical distribution of facial components for pose estima-
tion because the locations of facial components change depending
on the pose. With this information, we can estimate the pose and
determine the pose class by a classification rule.

In order to remove the redundant information for pose estima-
tion, we transform a face image to an edge image. An edge image is
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an effective representation of the distribution of facial compo-
nents. Fig. 2 shows raw images and the corresponding edge images
of different poses. As shown in Fig. 2(a), raw images contain not
only the distribution of facial components but also other informa-
tion such as texture, gray-level intensity, and appearance variation
of subjects, and these can act as noise in estimating pose. On the
contrary, as can be seen in Fig. 2(b) and (c), only the rough shapes
of facial components are present in the edge images, while the
other information disappears, i.e., the locations of facial compo-
nents are enhanced in an edge image.

Shadow produces a large changes in a raw image, which makes
it more difficult to properly classify the pose. There are two types
of shadows that occur on a face image; one is an attached shadow
and the other is a cast shadow. The attached shadow occurs in the
regions of surface facing away from the light source. The cast
shadow is caused by the blockage of light from a light source by
some part of a subject, and projected onto another part of the sub-
ject itself. The edge images are effective especially when shadow is
present on face images due to illumination variation. Since the at-
tached shadow caused by illumination variation changes slowly in
the spatial domain, an edge image, which is a high pass filtered im-
age, reduces the effect of illumination variation. However, the edge
images may be sensitive to cast shadow which contains high fre-
quency components, and some traces of cast shadow may remain
along with facial components in edge images. These traces in edge
images can be alleviated in the process of constructing the sub-
space for pose classification. By adding the edge images under var-
ious illumination conditions in training set, the pose estimation
can be reliably performed for the images under illumination
variation.

Several edge detection algorithms have been proposed in image
processing area. Among them, we adopt the Sobel edge detector
(Gonzales and Woods, 2002) which uses two convolution kernels,
one to detect changes in vertical contrast and another to detect
changes in horizontal contrast. The Sobel edge detector is very sim-
ple and the edges produced by the Sobel edge detector enhance
only the geometrical distribution of facial components eliminating
unnecessary edge shapes compared to the Canny edge detector
(Canny, 1986), which is another well known edge detector.
Fig. 2. Images under various pose classes (P1
By applying a discriminant feature extraction method to these
Sobel edge images from the images of training set, a subspace is
constructed for each of K pose classes {Pkjk = 1,2, . . . ,K} (K = 7 in
the experiments in Section 4). The subspace for classification of
the pose class is constructed by using a discriminant feature
extraction method. The pose of each image projected into the sub-
space is classified by using the one nearest neighborhood rule with
the l2 norm as the distance metric, and a pose class Pk, k = 1,2, . . . ,K
is assigned to each image.

3. Weighted shadow compensation

3.1. Estimation of the direction of light

Unlike the methods in (Wang et al., 2007; Zhang and Samaras,
2006) which require 3D information to generate novel images,
we obtain the shadow characteristic from 2D images without addi-
tional 3D information and then compensate for the shadow. For
this, we first estimate the direction of light for each pose class.
Since the shape of a human face is more convex in azimuth than
in elevation, we divide the directions of light into L categories
{Cljl = 1,2, . . .,L} (here, L = 7) from the left side to the right side
(see Fig. 6). C4 implies that the light comes from the front. We de-
note the gray-level intensity of a face image (see Fig. 3) of
X(height) � Y(width) pixels as Iðk;lÞm;n ðx; yÞ 2 RX�Y , where the subscripts
m(= 1,2, . . . ,M) and n(= 1,2, . . . ,N(k,l)) denote the nth image of the
mth individual when the direction of light belongs to category Cl

in the pose class Pk. (We used X = 120 and Y = 100 in the experi-
ments in Section 4.) Hence, the superscript (k, l) denotes that the
pose class of the image is Pk and the direction of light belongs to
Cl. To estimate the direction of light, we make a binary image with
a threshold ð1=XYÞ

PX
x¼1

PY
y¼1Iðk;lÞðx; yÞ which is the average value of

the gray-level intensities, for each face image (Choi et al., 2007). In
order to reduce the influence of the background on a face image,
we take a square mask of 80 � 80 (pixels) that only covers the cen-
ter part of a face image of 120 � 100 (pixels).

Fig. 3 shows some examples of raw images and the correspond-
ing binary images. As can be seen in Fig. 3(b), the black area moves
from left to right depending on the light source, and so binary
, . . . ,P7) and corresponding edge images.



Fig. 3. Binary images for different light directions (P4): (a) images under various illuminations; (b) corresponding binary images.
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images can be effectively used to classify the direction of the light.
With these binary images, we assign a category value l(= 1,2, . . . ,L)
to the light category Cl following the same procedure as in the pose
estimation. We constructed the feature space by using PCA + LDA
with the binary images transformed from the images in the
CMU-PIE database (Sim et al., 2003), which was used for training
at the pose estimation stage. We evaluated this light direction clas-
sification system with the Yale B database (Georghiades and Bel-
humeur, 2001), which provides information about the location of
the flashlight for each image. Fig. 4 shows the distribution of the
horizontal angle between the direction of light and the frontal
direction in each light category estimated by the proposed classifi-
cation procedure. The vertical axis represents the angle between
the light source and the frontal direction and the horizontal axis
represents the light category. The positive value in Fig. 4 implies
that the light source was from the right of the subject whereas
the negative value implies otherwise. The category changes from
C1 to C7 as the light source moves from left to right. In the figure,
each vertical bar denotes one standard deviation of the estimated
angle in both sides. As can be seen in Fig. 4, the mean of the angle
that belongs to each category increases linearly as the index of the
category increases, which implies that the direction of light was
estimated very well by using the binary images. For a given angle
in Fig. 4, it may belong to more than two categories, but it does not
matter because the three nearest categories are used in the
weighted shadow compensation that will be explained in the fol-
lowing. For images that belong to other pose classes, the direction
of light was also estimated as the same procedure above.
Fig. 4. The distribution of the angle between the direction of light and the frontal
direction in each light category for P4.
3.2. Weighted shadow compensation

In order to alleviate the influence of the shadow as much as pos-
sible, all the images are pre-processed by the histogram equaliza-
tion (Gonzales and Woods, 2002). Since most human faces are
similar in shape, we can assume that the shadows on facial images
in the same pose class and the same illumination category are also
similar in shape, and the difference image between the images
with and without the shadows contains the information on the
illumination condition. We select one of the images under the fron-
tal illumination in each pose Pk as a reference image Iðk;ref Þ

m

� �
(In the

experiment, ref = 4). The gray-level intensity Iðk;lÞm;n ðx; yÞ at pixel (x,y)
varies depending on the light category, and is different from that of
Iðk;ref Þ
m;n ðx; yÞ. We define the intensity difference between the images

of Iðk;ref Þ
m and Iðk;lÞm;n at each pixel (x,y) as follows.

Dðk;lÞm;n ðx; yÞ ¼ Iðk;ref Þ
m ðx; yÞ � Iðk;lÞm;n ðx; yÞ

x ¼ 1;2; . . . ;X; y ¼ 1;2; . . . ;Y
ð1Þ

The intensity difference Dðk;lÞm;n of one person is insufficient to com-
pensate for the intensity differences of another person’s images
under various illumination conditions because Dðk;lÞm;n contains infor-
mation about the illumination condition as well as unique features
of each individual. In order to compensate for the intensity differ-
ence due to illumination variation, we need to eliminate the influ-
ence of features that are innate to each individual. Therefore, we
define the average intensity difference Dðk;lÞA for the category Cl in
the pose class Pk as follows:

Dðk;lÞA ðx; yÞ ¼
1

MNðk;lÞ

XM

m¼1

XNðk;lÞ

n¼1

Dðk;lÞm;n

Note that there are no subscripts m or n in Dðk;lÞA . Since this average
intensity difference represents the general characteristic of the sha-
dow in a face image for the direction of light belonging to category
Cl, it can be applied to any face image in compensating for the sha-
dow formed by the light belonging to the category Cl in the pose
class Pk. The average intensity difference, which is shown in Fig. 5,
was made from the images for each pose class in the CMU-PIE
database.

Since the direction of light can change continuously, it is too
optimistic to expect that one average intensity difference contains
sufficient information for shadow compensation in each pose class
and light direction category. In the case of the example shown in
Fig. 6, the direction of light for the test image is on the border be-
tween two categories C2 and C3. Even though the direction of light
belongs to category C2, the shadow on the image has shadow char-
acteristics of both C2 and C3. Thus, in order to handle such cases, we



Fig. 5. Two average intensity differences for each pose (top, bottom).

Fig. 6. Light direction categories.
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assign weights to the average intensity differences depending on
the category. After calculating the distances between the binary
image of a test image and the binary images in each category Cl,
the three nearest distances distNN

i ; i ¼ 1;2;3
� �

and their corre-
sponding categories Cli ; i ¼ 1;2;3 are selected. The weight wli ,
which implies the degree of contribution to the compensation, is
determined based on these three nearest distances as the
following.

wli ¼
distNN

ð4�iÞP3
i¼1 distNN

i

ð2Þ

Then, we obtain the shadow compensated image, ICðk;lÞ
m;n of Iðk;lÞm;n with

the average differences as follows:

ICðk;lÞ
m;n ðx; yÞ ¼ Iðk;lÞm;n ðx; yÞ þ

X3

i¼1

wli D
ðk;liÞ
A ðx; yÞ ð3Þ

Fig. 7 shows some examples of the raw images from the CMU-PIE
database and their shadow compensated images in various poses
by using (3). As can be seen in Fig. 7(b), most of the shadow in
raw images is removed in the shadow compensated images.
Although the compensated images are slightly blurred in the com-
pensation process, it does not compromise the final face recognition
rates because most of the useful information for classification are
located in the low frequency region (Jing et al., 2005). This shadow
compensation method works well even for the images when there
are horizontal and vertical variations in light source directions as
in the Yale B database (see Table 8).

Fig. 8(a) shows three images, which are the raw image, the his-
togram equalized image and the compensated image. Fig. 8(b)
shows probability mass functions (pmf), which are normalized his-
tograms, of gray-level intensity values corresponding to these
images. For the raw image, the components of the histogram are
concentrated in the low side of the intensity scale. Although the
components with small intensity values spread over a wider range
by the histogram equalization, a large portion still remains in the
low side of the intensity scale. In the histogram of the shadow
compensated image, pixels are quite uniformly distributed over
the entire range of intensity values. It is known that an image,
whose pixels tend not only to occupy the entire range of gray levels
but also to be distributed uniformly, will have an appearance
of high contrast and will exhibit a large variety of gray tones
(Gonzales and Woods, 2002). Therefore, a face recognition system
is expected to perform better with the shadow compensated
images than the histogram equalized images. This will be con-
firmed in the experiments in Section 4.

4. Experimental results

We applied the proposed method to the CMU-PIE and Yale B
databases to evaluate its performance. The facial components,
i.e., the center of each eye and the bottom of the nose, were man-
ually marked and their coordinates were recorded. Each face was
cropped to include only the face and rotated based on these coor-
dinates, and then rescaled to a size of 120 � 100 (pixels).

4.1. Pose estimation

In order to show the effectiveness of the proposed pose estima-
tion method, we evaluated the performance of pose classification
on the CMU-PIE database. The CMU-PIE database contains more
than 40,000 facial images of 68 individuals, 21 illumination condi-
tions, 13 poses and four different expressions. Among them, we se-
lected the images of 65 individuals with seven pose indices
(c22,c02,c05,c27,c29,c14,c34), so that the entire set consists of
21 images in 7 pose classes of 65 individuals (21 � 7 � 65 images
in total). The training set was constructed by randomly choosing
3 images from each pose for each individual (3 � 7 � 65 images),
while the test set consisted of all the other images (18 � 7 � 65
images). In order to estimate the pose of a face image, each of
the seven pose classes was assigned a numerical target value from
1 (left profile) to 7 (right profile). We repeated this test three times
by changing the composition of training and test sets, and com-
puted the average classification rate (image indices: ‘02’, ‘08’, ‘17’
for the first training set; ‘05’, ‘08’, ‘14’ for the second training set;
‘03’, ‘07’, ‘18’ for the third training set).

Unlike the general classification problem, since the pose classes
can be placed sequentially from left profile to right profile in the
pose space, there is an order relationship between classes and
the distance between classes can be used as a measure of class sim-
ilarity. For example, consider a pose estimation problem which



Fig. 7. Examples of the shadow compensated images in each pose.
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Fig. 8. Normalized histograms of the images: (a) three images; (b) normalized histograms corresponding to the images.
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consists of three pose classes ‘front (0�)’, ‘half profile (45�)’ and
‘profile (90�)’. Then, a ‘profile’ image is closer to the ‘half profile’
image than the ‘front’ image. If a classifier happens to misclassify
a ‘profile’ image, it would be better to classify it into a ‘half profile’
image than a ‘front’ image. Thus, we can make use of the order
relationship between classes in extracting features. These types
of classification problems can be also considered to be similar to
regression problems by assigning a numerical target value to each



Table 3
The number of misclassified poses for various distance dp.

Method dp = 1 dp = 2 dp = 3 dp = 4 dp = 5

Raw image 120 12 7 50 2
Edge image (Canny) 136 8 4 1 1
Edge image (Sobel) 58 13 9 0 0
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of the pose classes. Therefore, in order to extract useful features for
discriminating the pose of a face image, we investigated the perfor-
mance of feature extraction methods for regression problem such
as the Sliced Inverse Regression (SIR) (Li, 1991) and the Principal
Hessian Directions (PHD) (Li, 1992), along with the conventional
LDA which has been very successful for classification problems
and LDA-r (Kwak et al., 2008), which is a variant of LDA to effec-
tively handle classification problems with order relationship be-
tween classes.

When the pixels of an image are used as input variables of a
12,000-dimensional input space, and the Small Sample Size (SSS)
problem occurs in extracting the features for pose estimation. To
resolve this problem, in all the feature extraction methods, we pre-
processed the dataset with PCA to reduce the dimension of input
space. In SIR, the parameter S (number of slices) was set to 10,
and in LDA-r, the weight function was used as f ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjxj � sj

p
where the threshold s was a multiple of the standard deviation
ry of target variable y such that s = ary and a was set to 0.1.

Table 1 shows the classification rates of pose estimation for the
test images using several feature extraction methods. The numbers
in the parentheses are the number of features. As can be seen in
Table 1, the overall classification rates of PHD and SIR (S = 10),
which makes use of order relationship between classes and are
good for regression problems, are both below 50.0%. This is be-
cause the order relationship between pose classes is obscured in
the subspace obtained with raw images which contain not only
the information related to pose variation but also other informa-
tion such as texture and individual characteristics. On the contrary,
LDA and LDA-r, which are good for classification problems, give the
overall classification rates of more than 84.0% and 88.0%,
respectively.

Table 2 shows the classification rates for the edge image of the
test images. As can be seen in Table 2, the overall classification
rates for all the feature extraction methods are higher than their
counterparts in Table 1. This is because the order relationship be-
tween classes becomes more prominent in edge images than in
raw images, improving the classification performance for all the
feature extraction methods. Note that the classification rates for
SIR and PHD are 79.1% and 81.2%, respectively, which are better
Table 1
Classification rates in pose estimation for raw images (%).

Feature
extraction

c22 c02 c05 c27 c29 c14 c34 Overall

LDA(6) 84.1 88.8 85.0 82.1 90.6 95.5 91.2 88.2
LDA-r(200) 79.2 86.7 81.9 77.8 85.0 92.9 88.8 84.6
SIR(1200) 62.0 37.9 39.4 30.9 37.0 48.9 51.9 44.0
PHD(1200) 61.9 42.5 41.0 31.5 38.6 49.9 53.3 45.4

Table 2
Classification rates in pose estimation for edge images by the Canny and Sobel edge
detectors (%).

Feature
extraction

c22 c02 c05 c27 c29 c14 c34 Overall

(a) Canny detector
LDA(6) 97.1 87.4 89.8 87.2 89.1 87.0 98.5 90.9
LDA-r(200) 90.7 84.8 92.5 87.9 88.3 91.7 97.5 90.5
SIR(1200) 73.9 75.9 76.0 70.3 78.5 89.0 90.1 79.1
PHD(1200) 77.5 77.9 77.4 72.4 79.9 88.2 94.9 81.2

(b) Sobel detector
LDA(6) 96.7 94.3 90.8 88.0 90.0 90.8 98.5 92.7
LDA-r(200) 95.8 95.3 92.9 88.3 88.1 92.5 98.5 93.1
SIR(1200) 87.1 88.2 84.2 79.9 84.3 86.1 96.8 86.6
PHD(1200) 87.6 88.9 84.8 81.0 85.3 86.0 96.1 87.1
by more than 35% compared to those in Table 1. As expected, the
Sobel edge detector performs better than the Canny edge detector
for the pose classification problem. This is because, as shown in
Fig. 2(b) and (c), the location change of the facial components
depending on the pose class is more apparent by the Sobel edge
detector than by the Canny edge detector. For the edge images pro-
duced by the Sobel edge detector, among all the feature extraction
methods, LDA-r gives the best classification rate of 93.1%, which is
6.5%, 6.0% and 0.4% more than those of SIR, PHD and LDA,
respectively.

In order to evaluate the effectiveness of using edge images in-
stead of raw images in pose classification, we checked the distance
dp between the correct and misclassified pose class for each mis-
classified pose. An image in P4 is closer to the images in P5 com-
pared to the images in P6, and if a classifier misclassifies an
image in P4, it would be better to be classified into P5 than P6.
The distance dp shows how bad the classification result is when a
pose class is misclassified. In Table 3, the numbers are the number
of misclassified poses for distance dp = s, s = 1, 2, 3, 4, 5 when
applying LDA-r to the raw images in the first training set (‘02’,
‘08’, ‘17’) and their edge images produced by the Canny and Sobel
edge detectors. When dp = s, it implies that there are (s � 1) pose
classes between the correct and assigned pose classes. As can be
seen in Table 3, most classification errors for the edge images pro-
duced by both the Canny and Sobel edge detectors occur for dp = 1,
whereas the classification errors for the raw images occur in large
numbers for dp = 2, 3, 4, 5, which can severely degrade the perfor-
mance of a view-based face recognition system.
4.2. Illumination variation

We selected the images of 65 individuals with seven pose indi-
ces (c22,c02,c05,c27,c29,c14,c34) as in Section 4.1 to evaluate the
performance of the proposed shadow compensation. For each pose
index, eighteen images of each individual, which were not used for
training, were tested. Among the test images, one image under the
frontal illumination for each pose index was used as a gallery
image and the other seventeen images were used as probe images.
The performance of a face recognition system is greatly affected by
the selection of training images for face identification. Therefore,
we selected three different groups of training sets for face identifi-
cation, depending on the intensity of illumination variation (see
Fig. 9).

The features were extracted from the shadow compensated
images by the null space method (NLDA) (Cevikalp et al., 2005),
which is widely used for face recognition. With the features, the
one nearest neighborhood rule was used as a classifier with the
Euclidean distance (l2) as the distance metric.

Table 4 shows the recognition rate for the images under illumi-
nation variation when the pose class information was already gi-
ven. As can be seen in Table 4, training with the images under
intense illumination variations (the first group) gives the best re-
sults for all the image sets. This is because large illumination var-
iation in training images can help to deal with various illumination
conditions. Even when the correct pose class is given, the recogni-
tion rates for the raw images (IRaw) in the top rows for each group
drops drastically to 65.5% in average for the third group, in which



Fig. 9. Training images in each group: (a) first group; (b) second group; (c) third group.

Table 4
Recognition rates under illumination variation (%).

Group Data set c22 c02 c05 c27 c29 c14 c34 Overall

1 IRaw 98.7 94.6 82.6 90.5 83.6 90.8 99.2 91.4
IHist 99.7 99.7 99.7 100 99.1 99.9 99.9 99.7
IC 100 100 100 100 99.7 100 100 100

2 IRaw 93.3 95.7 82.7 90.7 77.7 99.0 98.6 91.1
IHist 99.3 99.4 98.7 98.7 99.1 99.2 99.0 99.1
IC 99.6 99.7 99.5 99.7 99.4 99.8 99.9 99.7

3 IRaw 64.1 60.9 60.9 66.2 66.9 68.2 71.0 65.5
IHist 91.2 91.0 80.3 88.3 95.8 96.6 94.8 91.1
IC 93.9 91.9 89.8 90.6 96.9 98.3 98.0 94.2
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the illumination variation in the training images is the smallest. On
the other hand, after the shadow compensation procedure, the
overall recognition rates are much better (100%, 99.7% and
94.2%), i.e., the recognition rates for the proposed shadow compen-
sated images decrease more slowly than those for the raw images
or the histogram equalized images. This implies that the proposed
shadow compensation procedure prevents the recognition rate
from degrading rapidly even when the training images taken are
under small illumination variation.

In addition, we computed the relative distance drel = d2/d1 for
the images in the third group, where d1 and d2 are the distances be-
tween a probe image and its first and second nearest neighbors in
the gallery images, respectively. drel shows the robustness of the
face recognition system, and log10(d2/d1) is called the confidence
measure (Price and Gee, 2005). Thus, a higher drel indicates that
the recognition result is more reliable. As drel decreases to a value
near one, the probability of incorrect recognition increases. We can
improve the confidence of a decision made on face recognition by
accepting the results when drel is greater than a certain threshold
value and rejecting the results otherwise. In other words, if drel is
lower than a predefined threshold, the probe image is considered
to be inadequate for face identification and is rejected by the clas-
sifier. Fig. 10 shows the correct recognition rate versus the rejec-
tion rate for various stages of compensation in the third group.
As illustrated in the figure, the recognition rates improve as the
rejection rate increases. For a given rejection rate in all the poses,
the recognition rates for the shadow compensated images are al-
ways higher than those for the histogram equalized images. This
means that the recognition system becomes more reliable through
the proposed shadow compensation procedure in all pose classes.

We compared the proposed method with two other shadow
compensation methods, which are mLBP (Modified Local Binary
Pattern) (Froba and Ernst, 2004) and SQI (Self-Quotient Image)
(Wang et al., 2004). Table 5 shows that the recognition rates for
training images of the second group. As can be seen from Table
5, IRaw, ISQI and ImLBP give the average recognition rates of 91.1%,
96.0% and 98.4% for overall pose indices, respectively, whereas
the average recognition rate for the images compensated by the
proposed method (IC) increases by 8.6%, 3.7% and 1.3% compared
to IRaw, ISQI and ImLBP, respectively.

4.3. Illumination and pose variations

In order to deal with both illumination and pose variations, a
face recognition system was constructed with some of the images
from the CMU-PIE database. For pose estimation, the features were
extracted from the first training set in Section 4.1 by using LDA-r.
And the appropriate features to determine the direction of light
were extracted following to the procedures described in Section
3.1. For face identification, which is the third stage in Fig. 1, three
images under different illumination conditions for seven pose indi-
ces (c22,c02,c05,c27,c29,c14,c34) were used for each individual as
training images in constructing the feature space by using NLDA.
Since the face identification stage comes after the pose classifica-
tion stage as shown in Fig. 1, the error in pose classification can
directly affect the result of face recognition. Since most of the mis-
classified poses were the immediate neighbor of the correct pose
class as confirmed in Section 4.1, we used all the images of the cor-
rect pose class and its neighboring pose classes to construct the
feature space in each pose class in the face identification stage.
We expect that the resultant feature space makes the performance
of face recognition more robust. For example, even if a probe image
that actually belongs to pose class P1 is classified to pose class P2,
we can reduce the recognition error due to pose misclassification
because the feature space for P1 partially reflects the information
of P2. We tested the rest of the images of the seven pose indices,



Fig. 10. Recognition rate versus rejection rate: (a) pose class P1; (b) pose class P2; (c) pose class P3; (d) pose class P4.

Table 5
Recognition rates under illumination variation of different methods (%).

Method c22 c02 c05 c27 c29 c14 c34 Overall

IRaw 93.3 95.8 82.7 90.7 77.7 99.0 98.6 91.1
SQI (ISQI) 94.8 96.8 97.4 97.8 94.9 95.3 94.8 96.0
mLBP (ImLBP) 98.0 97.8 98.6 99.6 98.2 98.0 98.7 98.4
Proposed method (IC) 99.6 99.7 99.5 99.7 99.4 99.8 99.9 99.7

Table 6
Recognition rates under illumination and pose variations (%).

Pose of probe c22 c02 c05 c27 c29 c14 c34

Recognition rate 99.1 99.8 99.2 99.6 99.9 99.8 98.5

Pose of probe c25 c37 c09 c07 c11 c31 Overall

Recognition rate 97.0 97.8 99.9 97.9 99.0 98.4 98.9
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which were not used for training, and additionally tested the
images of 62 individuals in the other six pose indices (c25,c37,
c09,c07,c11,c31). Among 65 individuals in the six pose indices,
three individuals did not have all the images of all pose and
illumination variations, and so we excluded the images of those
individuals in this experiment.

Table 6 shows the recognition rates for the images of the CMU-
PIE database under both illumination and pose variations. As can
be seen in Table 6, the average recognition rate over all the poses
and illumination categories is 98.9% and the recognition rate does
not change much depending on the pose class of the probe image.
After investigating incorrectly recognized images, the cause of
wrong recognition can be categorized into the following three
cases which are: (1) the images with the pose misclassification dis-
tance dp P 2 were severely distorted in the shadow compensation
procedure; (2) although most shadows in the face images were re-
moved through the weighted shadow compensation, some cast
shadows still remained around the nose; (3) in the process of face
alignment by using the three coordinates of the facial components
(both eyes and nose), inaccurate alignment caused distortion in the
compensated image.

There are some noteworthy results in the face recognition
under illumination and pose variations using the 3D models
(Romdhani et al., 2006), and so we also compared the proposed
method with the methods based on 3D models. Table 7, which
gives the comparison results, shows that the proposed method is



Table 7
Recognition rates of different methods on the CMU-PIE database (%).

Method Pose of a probe image Time taken for
identification

Front
(c27)

Half
profile
(c05)

Profile
(c22)

3DMM (Romdhani and
Vetter, 2005)

99.9 99.3 89.4 2.5 min

Spherical-basis MM (Zhang
and Samaras, 2006)

96.5 96.7 80.6 4 min

Zhou and Chellappa (2005) 97.0 88.0 52.0 1.5 s
The proposed method 99.5 99.4 99.0 1.5–1.7 s.

Table 8
Recognition rates of different methods on the Yale B database (%).

Method Pose of a probe image

front
(Pose1)

12�(Pose2 � 6) 24�(Pose
7 � 9)

Correlation (Brunelli and Poggio, 1993) 70.9 24.2 12.8
Cone Appox. (Georghiades and

Belhumeur, 2001)
100 34.7 18.0

Correlation with Planar
Transformations (Georghiades and
Belhumeur, 2001)

62.4 53.0 36.4

Cone Approx. with Planar
Transformations (Georghiades and
Belhumeur, 2001)

99.3 84.5 51.9

Cone Approx. with Full Pose
(Georghiades and Belhumeur, 2001)

99.1 97.3 94.5

Proposed method 95.8 94.8 92.3
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better than all the other methods. Although the experiments in
(Romdhani and Vetter, 2005; Zhang and Samaras, 2006; Zhou
and Chellappa, 2005) were performed with the CMU-PIE database,
their results can not be directly compared to Table 7 due to the dif-
ference in the architecture of the recognition system. However, the
method in (Romdhani and Vetter, 2005) requires much more com-
putational effort in fitting 3D models to the gallery and probe
images. Since it compares a probe image, which is frontal, to gal-
lery images, which may not be frontal, the recognition rate varies
from 89.4% to 99.9% depending on the pose matching between
the gallery and probe images (Romdhani et al., 2006). The method
in (Zhang and Samaras, 2006) requires a set of 60 manually marked
image feature points on the inner part of a face in order to estimate
the 3D shape, and its performance was also sensitive (80.6%–
96.7%) to the pose matching between the gallery and probe images
as in (Romdhani and Vetter, 2005). Even though the method in
(Zhou and Chellappa, 2005) gave a recognition rate of 97% when
the gallery and probe images were in frontal pose, the recognition
rate degrades to 52% when the probe images were profile and the
gallery images were frontal. On the other hand, the proposed
method does not need the pose matching between the gallery
and probe images because the pose for the probe image is esti-
mated first, and then the probe image is projected to the feature
space of its pose class. Table 6 shows that the variation of recogni-
tion rates in the proposed method is very small throughout all the
pose classes. The running time is also an important factor in imple-
menting a real face recognition system. The proposed method took
1.5–1.7 s to identify one input image by using MATLAB, whereas
the methods in (Romdhani and Vetter, 2005) and (Zhang and Sam-
aras, 2006) took 2.5 min and 4.5 min, respectively (Romdhani et al.,
2006). Although the experiments were performed on different ma-
chines, the two orders of difference in processing time shows that
the proposed method requires much less computational effort than
those based on 3D models.

In order to see whether the face recognition system constructed
with the CMU-PIE database can perform reliably for a different
database, we tested the system with the images in the Yale B data-
base. The Yale B database contains images of ten individuals in
nine poses and 64 illuminations per pose. We used 45 face images
for each subject in each pose which were further subdivided into
four subsets (subset i, i = 1,2,3,4) depending on the direction of
light as in (Georghiades and Belhumeur, 2001). The direction of
light source varied in both horizontally and vertically. The index
of the subset increases as the light source moves away from the
front during picture taking. Table 8 shows the comparison of recog-
nition rates for the Yale B database. The proposed method gave rec-
ognition rates of 92.3%–95.8% for all of the poses. Only the fourth
method in (Georghiades and Belhumeur, 2001) performed better,
resulting in recognition rates of 94.5%–99.1%, but it was necessary
to construct 3D models which required large computational effort.
Also, it is important to note that the training set and the test set
came from different databases in this experiment while these sets
were from the same database in the others experiments in Table 8.
This indicates that the performance of the proposed method is still
expected to provide a good recognition rate for images from differ-
ent database not used for training.
5. Conclusions

This paper proposes a novel approach to reduce the perfor-
mance degradation of face recognition caused by illumination
and pose variations. We constructed a feature space for each pose
class by using a feature extraction method and compensated for
illumination variation in each pose class. In order to estimate the
pose and direction of light, we determined the pose class and light
direction category based on the edge images and binary images,
respectively. Since human faces are similar in shape, we can com-
pensate for shadow variation in a face by adding a weighted aver-
age intensity difference depending on the direction of light. These
compensated images can be used without making any modifica-
tion to any other face recognition algorithms based on 2D images.
By using appropriate feature spaces and the shadow compensation
method, the recognition rate reached almost 99% on average for
the CMU-PIE database under illumination and pose variations.
Moreover, the compensated image makes the face recognition sys-
tem reliable for all pose classes. Since the proposed method is
based on 2D images and does not need to estimate 3D shape, it
is computationally much more efficient than the other methods
based on 3D models. Its recognition rate is also better than or com-
parable to other face recognition systems based on 3D models. This
paper demonstrates that the face recognition system based on 2D
images can be more efficient and effective under pose and illumi-
nation variations.
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