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Introduction

e L2-PCA: Two interpretations
o Other flavors of PCA (L1-PCA, R1-PCA)

PCA-L1
e PCA-L1: Problem formulation
e PCA-L1: Algorithm
o PCA-L1: Examples & Experimental Results
L1-BDA
e L1-BDA: Application of the Theorem to BDA
o L1-BDA: Experimental Results

Conclusions and future works
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Introduction

e PCA (Principal Component Analysis) [1]
Dimensionality reduction technique
Data visualization

Face recognition (eigenface)

A lot of applications

@ Pros and Cons of PCA

o Computationally efficient (SVD)
o Prone to outliers
e Instead of L2-norm, L1-norm is used here.
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o X =[xy, --x,] € R¥™ : dataset
e d: dimension of input space
e n: number of samples
o {z;}! , is assumed to have zero mean.
o W & R¥™™: projection matrix
o m: dimension of feature space (no. of features to be extracted)
o {wy}7 | set of m projection vectors
o V e R™*™: coefficient matrix
o V=WTX
e v;;: ith coordinate of x; after projection
o E=X-WV = (I;— WWT)X: error matrix in the original
input space
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Two interpretations of the conventional L2-PCA |

@ Minimizing the error of the projection (in L2-norm)

W* = argmin Eq (W) (1)
w

subject to WTW = I,,,, where,

Ey(W) = [IX - WVHF*ZH'”Z wamlb

=1

- Z Z (@i = Zwﬂf“k%

i=1 j=1
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Two interpretations of the conventional L2-PCA Il

@ Maximizing the dispersion of the projection (in L2-norm)

W* = argmax Do (W) (3)
w

subject to WTW = I,,,, where

ZHW%HQ—ZZ«%

i=1 k=1 (4)
= |\WTX||F = tr(WTS, W)

S, = XX7T: scatter matrix of X.

@ The two are equivalent!! (Dual)
— solved by EVD (of S;) or SVD (of X).
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PCA utilizing other norms than L2 |

@ L2 norm (Frobenius) is prone to outliers.

@ Instead of L2, use other norm in the optimization
@ Minimization of L1 projection error (input space) [2] — [4]

W* = argmin By (W)  subjectto  WWT =1,. (5)
w

Ex(W) =X =WV = llzi = > wrvkll
i=1 k=1

= ZZ |-sz Zw]kvkz

i=1 j=1

(6)

e Not invariant to rotations of the input space.
o Exact solution of (5) is hard to achieve. (iterative solutions)
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PCA utilizing other norms than L2 Il

@ Minimization of R1-norm of the projection error [5]

W* = argmin Fry (W) subjectto WWT =1,. (7)
w

1
n d m 2
Ep(W) = IX=WV|[m £ | Y (2 — Y wikor)”
k=1

i=1 \j=1

(8)

e Rl-norm is a hybrid of L1 and L2.

e Optimal solution depends on m i.e., W1* £ W?2*,

e Solution is not intuitive, not exact. (Huber's M-estimator is
used.)
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Formulation of PCA-L1 [6] |

e Motivation:
o Previous methods (L1-PCA, R1-PCA) minimizes projection
error (F, 1st interpretation).
o Instead of solving minimization problem, maximize the
dispersion of projection (D, 2nd interpretation).

@ Problem formulation

W* = argmax D1(W) subjectto WIW =1,  (9)
w

ZIIWTmzlll —ZZIwkmzl (10)

=1 k=1

o WTW = I,,,: to ensure orthonormality of the projection
vectors. (not necessary)
e (9) and (5) are not equivalent!
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Formulation of PCA-L1 [6] Il

@ Pros and Cons of (9)

e (9) are invariant to rotations.
e As R1-PCA, the solution depends on m.

o Modified problem: m =1
n
* T T
w" = argmax |[w” X||; = argmax w'x;
[ Xy = engmax 3ot
subject to ||w||2 = 1.
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Algorithm: PCA-L1

© Initialization: Pick any w(0). Set w(0) <— w(0)/||w(0)||2 and
t=0.
@ Polarity check: For all i € {1,---,n}, if w? (t)z; <0,
pi(t) = —1, otherwise p;(t) = 1.
© Flipping and maximization: Set ¢t + ¢t + 1 and
w(t) = S0 pilt — )ay. Set wit) < w(t)/|w()]>
© Convergence check:
a. Ifw(t) Zw(t—1), go to Step 2.
b. Else if there exists i such that w’ (t)z; = 0, set
w(t) « (w(t) + Aw)/||lw(t) + Awl| and go to Step 2. Here,
Aw is a small nonzero random vector.
c. Otherwise, set w* = w(t) and stop.
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Optimality of the Algorithm |

With the above PCA-L1 procedure, the projection vector w
converges to w*, which is a local maximum point of 3 1 | |w”z;|.

Proof

Firstly, we can show that "% | |w” (¢)z;| is a non-decreasing
function of ¢ as the following:

Z‘wT( x2| - sz xz > w t)(Zpi(t - 1).’1,'Z)
- . . (12)
>w(t - 1)) pilt — Dai) = _ jw’(t - 1)ai]
i=1 i=1
w(t) — w* in finite number of iterations. O
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Optimality of the Algorithm Il

Local maximality of w*:

© w'p;(t)z; > 0 Vi. " w(t) converges to w*
@ I a small neighbor N (w*) of w* 3 if w € N(w*), then
’I.DTpi(t).’L‘Z' > 0 Vi.
° Finite number of data points.
o wlz; # 0 Vi. (Step 4b)
© i [wha| > 3L [wha| Yw € N(w*)
w* || 3, pi):

e — w* is a local maximum point.

Therefore, the PCA-L1 procedure finds a local maximum point w™.
O]
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Simple Example (2D case)

15

10+ -

_15 i i i i i
-15 -10 -5 0 5 10 15
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Dependency on Initial Projection Vector w(0)

@ An example with 5 data points (in 2D)

26 7 \ 27
25 ‘\,‘ 26—
1 25
= a - }
pu— | “ yZA
=20 =
s u 5o
T2 | H | —
| ‘\ B “ 22
2 TATA AR DY I I
20 v
-180 -135 -90 -45 0 45 20 135 180 -180 -135 -90 -45 45 90 135 180
o o(0)
(a) Objective function (b) Dependency on initial vector w(0) (F(0))

e Final vector w* depends on initial point w(0).
e Start with various initial points.
o Set ’LU(O) =Wi2_PCA-
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Extracting Multiple Features m > 1

(Greedy search algorithm)

Q wo =0, {:L'? =T}
@ Forj=1tom,

a. Vie{l,---,n} & =2 —w; 1 (wl_ 2] 7).
b. In order to find wj, apply the PCA-L1 procedure to
XJ = [${7... 7:1331]

@ Orthogonality is not necessary.

@ However, to limit the search space, orthogonality is assumed.
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Comparison with other versions of PCA

@ A toy problem with an outlier
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@ At a glance, R1-PCA seems to remove the effect of outliers
most effectively.

@ However, the average residual error is
L2-PCA | R1-PCA | PCA-L1
Average Residual Error | 1.401 1.206 1.200
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Classification Results (UCI datasets)

Table: Average Classification Rates on UCI datasets (%). The last
column is the averages of the best classification rates among the cases
where the number of extracted features was one to half the number of
original inputs

No. of 1 2 3 4 Best
extracted performance
features

L2-PCA 62.49 68.59 73.36 76.79 76.46
R1-PCA 62.44 68.49 73.63 76.52 76.47
PCA-L1 63.94 71.88 74.90 77.43 78.15
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Face Reconstruction Results

Figure: Face images with occlusion and the reconstructed faces: 1st
column: original, 2nd column: PCA-L1, 3rd column: L2-PCA, 4th
column: R1-PCA. (reconstructed with 20 projection vectors)
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Application to BDA: L1-BDA [7]

e BDA (Biased Discriminant Analysis)
e One-class classification problem
o Maximizes the ratio between the positive scatter and negative
scatter matrices.

. tr(WTS,W)
W* = argvr‘r/lax m (13)
8 = 3 (0 = ma) (o — ma)” (14)
i=1
Sy = Z(yz —mg)(y; — mz)Tv (15)
i=1

o {z;}!'*,: positive samples
Ny | .
o {y;},2,: negative samples
e my: mean of the positive samples
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Algorithm: L2-BDA

@ Sphering

a. Solve the EVD problem S, U = UA;.

b. Scale each column u,, of U to make {Z;, = 4L (z; — mz)}12,
have unit variance.
i,,: a scaled version of u,,
If ||w,|| = 1, this is equivalent to setting @, = %, /v/A1,, Where
A1, denotes the n-th eigenvalue of S,.

@ Maximization

a. Find M weight vectors {v,,}} | that maximizes the following
objective function:

V = argmax |[WTS,W|, subjectto W'W =1, (16)
w

where S, = UTS,U.
b. Output W = Uv.

Here, U = [ty, 42, - - -].
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Sphering Operation in BDA
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Figure: Data distribution before and after sphering process
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L1-BDA

@ Problem reformulation: L1-BDA

‘ (i W Ty))?
W = i= . 17
T (WTS,W) (1)

@ Solution: 2-step (Sphering — Maximization)
e Replace L2-norm with L1-norm in the Maximization part
(after sphering)
e The L1-norm maximization technique developed for L1-PCA
can be directly utilized for maximizing the numerator.
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Experimental Results of L1-BDA (FERET Eye Data) |

EEEEEEREEN
BREERsaasEE
IE. BFEEENE
A=ENEEE wnf

Figure: Eye and noneye samples for training
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Experimental Results of L1-BDA (FERET Eye Data) Il

Table: Classification rates for FERET Eye dataset. (1-NN)

# of LDA Cher. BDA SBDA L1IBDA | SL1BDA

fea- LDA (v=1) (y=1)

tures
1 86.875 | 84.625 | 81.875 86.25 87.625 | 86.625
2 = 83.75 88 95 91.125 94.5
3 > 81.375 91.25 96.625 | 96.375 96.75
4 = 78.75 93 97.5 97.125 97.625
5 = 80.625 93 98.25 97.375 98.25
6 = 79.75 94.875 98.625 97.375 98.625
7 = 78 94.75 98.5 97.875 | 98.125
8 = 79.125 95 98.125 98 98.125
9 = 78.625 95 98.375 98 98.5
10 = 79.75 | 95.875 98 97.875 | 98.125
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Experimental Result of L1-BDA (UCI)

Table: Experimental Results on UCI datasets (1-NN classifier)

Data set LDA Chernoff BDA SBDA L1BDA SL1BDA
LDA =1 (v=1)

Austrailian 80.55+1.02 81.354-0.82 80.68+1.28 81.29+0.74 81.57+1.19 81.67+1.19
) () (3) (4) () @3)

Balance 88.0010.49 87.681+0.79 91.254+0.99 95.731+0.62 95.76+0.64 94.3840.87
B @ 3) B) 0 (3)

Breast 96.0340.34 96.344-0.35 05.944-0.44 96.28+0.29 96.05+0.62 96.0940.20
) @) ) 6) B) ©)

Glass 62.85+1.73 63.55+1.43 66.194+2.21 70.65+1.12 67.66+2.32 68.741+1.37
) ) 3) ©) (3) ®)

Heart 76.43+1.19 76.60+1.78 76.73+1.41 76.73+1.41 77.44+1.41 77.44+1.41
) ) ) ) @) @)

Iris 96.9340.72 97.134+0.77 97.20+-0.69 96.871+0.63 97.13+0.77 96.604+0.21
) ) ) 1) 1) (@)

Liver 61.014+3.28 65.651-2.50 65.0442.20 65.42+2.24 65.13+1.39 65.13+1.39
) @) 3) 3) 5) ()

Pima 69.13+1.32 69.78+0.51 69.791+0.74 70.01+0.56 70.424+1.55 70.42+1.55
) ®) 5) 5) @) @)

Sonar 73.034+2.27 81.061+2.25 78.561+2.03 84.86+1.59 80.86+1.28 84.90+1.51
) (54) 5) (18) (5) (a7

Vehicle 74.33+1.10 81.551+0.51 73.451+0.66 76.321+0.75 74.65+0.46 80.0140.50

3) © 5) (15) B @)

Average | 77.83 [ 80.07 [ 79.48 [ 81.41 [ 80.67 [ 81.54-
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Conclusion

e PCA-L1

finds projections that maximizes L1-norm in the projected
space.

is proven to find a local maximum point.

is robust to outliers.

is simple and easy to implement.

is relatively fast with small number of iterations.

The number of iterations does not depend on the dimension of
input space.

The same technique can be applied to other feature extraction
algorithm.
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Recent developme

@ Non-greedy version extension

@ F. Nie, H. Huang, C. Ding, D. Luo, and H. Wang, "Robust principal component analysis with
non-greedy L1-norm maximization”, in Proc. 22nd International Conf. on Artificial Intelligence,
2011, pp. 1433 — 1438.

@ 2D & tensor extension

@ X. Li, Y. Pang, and Y. Yuan, “L1-norm based 2DPCA", IEEE Trans. on SMC-B, vol. 38, no. 4,
pp. 1170 — 1175, Aug. 2010.

@ Y. Pang, X. Li, and Y. Yuan, “Robust tensor analysis with L1-norm”, IEEE Trans. Circuits Syst.
Video Techn., vol. 20, no. 2, pp. 172.178, 2010.

@ Mean or Median? - Generalized mean
@ Jiyong Oh, Nojun Kwak, Minsik Lee and Chong-Ho Choi, “Generalized mean for feature extraction
in one-class classification problems”, submitted to Pattern Recognition.
@ Generalization to Lp-norm
@ Nojun Kwak, “Principal component analysis by Lp-norm maximization”, submitted to IEEE Trans.
on SMC-B.
@ Applications to other subspace methods (e.g., LDA)

@ Jae Hyun Oh and Nojun Kwak, “Generalization of linear discriminant analysis using Lp-norm”,
submitted to Pattern Recognition Letters.

Nojun Kwak (nojunk@ajou.ac.kr) L1-norm Optimization in Subspace Learning Methods



References

(1]

[2]

3]

[4]

5]

(6]

[7]

I.T. Jolliffe,
Principal Component Analysis,
Springer-Verlag, 1986.

A. Baccini, P. Besse, and A.D. Falguerolles,

“A L1l-norm pca and a heuristic approach,”

in Ordinal and Symbolic Data Analysis, E. Diday, Y. Lechevalier, and P. Opitz, Eds. 1996, pp. 359-368,
Springer

Q. Ke and T. Kanade,

“Robust subspace computation using 11 norm,”

Tech. Rep. CMU-CS-03-172, Carnegie Mellon University, Aug. 2003,
http://citeseer.ist.psu.edu/ keO3robust.html

Q. Ke and T. Kanade,

“Robust |1 norm factorization in the presence of outliers and missing data by alternative convex
programming,”

in Proc. IEEE Conference on Computer Vision and Pattern Recognition, June 2005.

C. Ding, D. Zhou, X. He, and H. Zha,
“R1-pca: rotational invariant I1-norm principal component analysis for fobust subspace factorization,”
in Proc. International Conference on Machine Learning, Pittsburgh, PA, June 2006

N. Kwak,
“Principal component analysis based on L1 norm maximization,”
IEEE TPAMI, vol. 30, no. 9, pp. 1672-1680, Sep. 2008

N. Kwak and J. Oh,
“Feature extraction for one-class classification problem: Enhancements to biased discriminant analysis,”
Pattern Recognition, vol. 42, no. 1, pp. 17-26, Jan. 2009

Nojun Kwak (nojunk@ajou.ac.kr)



