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Abstract

A method of principal component analysis (PCA) based on a newL1-norm optimization technique

is proposed. Unlike conventional PCA which is based on L2-norm, the proposed method is robust to

outliers because it utilizes L1-norm which is less sensitive to outliers. It is invariant to rotations as well.

The proposed L1-norm optimization technique is intuitive,simple, and easy to implement. It is also

proven to find a locally maximal solution. The proposed method is applied to several datasets and the

performances are compared with those of other conventionalmethods.

Index Terms

PCA-L1, L1-norm, optimization, principal component analysis, robust.

I. I NTRODUCTION

In data analysis problems with a large number of input variables, dimensionality reduction

methods are typically used to reduce the number of input variables to simplify the problems

without degrading performances. Among them, the principalcomponent analysis [1] is one of

the most popular methods. In PCA, one tries to find a set of projections that maximize the

variance of given data. These projections constitute a low-dimensional linear subspace by which

the data structure in the original input space can effectively be captured.

Although the conventional PCA based on L2-norm (L2-PCA1) has been successful for many

problems, it is prone to the presence of outliers, because the effect of the outliers with a large

norm is exaggerated by the use of L2-norm. In order to alleviate this problem and achieve

robustness, many researches have been performed [2] – [7].

In [5], [6] and [7], each component of the error between a projection and the original data

point was assumed to follow a Laplacian distribution instead of Gaussian and L1-norm PCA

(L1-PCA) was formulated by applying maximum likelihood estimation to the given data. In

order to obtain a solution of L1-PCA, a heuristic estimates for the general L1 problem was used

in [5], while in [6] and [7], the weighted median method and convex programming methods

were proposed. Despite the robustness of L1-PCA, it has several drawbacks. First of all, it is

computationally expensive because it is based on linear or quadratic programming. Secondly, it

is not invariant to rotations.

1In order to prevent confusion, the conventional PCA will be referredto as L2-PCA hereafter.
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In [4], Ding et al. proposed R1-PCA which combines the merits of L2-PCA and those of

L1-PCA. Unlike L1-PCA, it is rotational invariant while it successfully suppresses the effect of

outliers as L1-PCA does. However, the method is highly dependent on the dimensionm of a

subspace to be found. For example, the projection vector obtained whenm = 1 may not be

in a subspace obtained whenm = 2. Moreover, because it is an iterative algorithm based on a

successive use of the power method [8], for a large dimensional input space, it takes a lot of

time to achieve convergence.

The above methods try to minimize the error between a projection and the original data point

in the original input space. If L2-norm is used as a distance measure, this goal can be achieved by

SVD (singular value decomposition) [8] which is also equivalent to finding projections by which

variances are maximized in the feature space2. In this paper, instead of maximizing variance

which is based on L2-norm, a method that maximizes L1-norm inthe feature space is presented

to achieve robust and rotational invariant PCA. The proposedL1-norm optimization algorithm

is intuitive, simple, and easy to implement. It is also proven to find a locally maximal solution.

The rest of this paper is organized as follows. In Section II,the problem is formulated. A

new algorithm for the L1-norm optimization problem is presented and the local optimality of the

algorithm is proven in Section III. The proposed method is applied to several pattern recognition

problems and the performances are compared with those of other conventional methods in Section

IV and conclusion follows in Section V.

II. PROBLEM FORMULATION

Let X = [xxx1, · · ·xxxn] ∈ ℜd×n be the given data wheren andd denote the number of samples

and the dimension of the original input space respectively.Without loss of generality,{xxxi}
n
i=1

is assumed to have zero mean.

In L2-PCA, one tries to find anm(< d) dimensional linear subspace by minimizing the error

function:

E2(W,V ) = ||X −WV ||22 =
n
∑

i=1

||xxxi −

m
∑

k=1

wwwkvki||
2
2 =

n
∑

i=1

d
∑

j=1

(xji −

m
∑

k=1

wjkvki)
2 (1)

whereW ∈ ℜd×m is the projection matrix whose columns{wwwk}
m
k=1 constitute the bases of the

m-dimensional linear subspace (i.e., feature space),V ∈ ℜm×n is the coefficient matrix whose

2We use the termfeature space for the space spanned by projections to differentiate it from the original input space.
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(i, j)-th componentvij corresponds to thei-th coordinate ofxxxj in the m-dimensional feature

space spanned byW , and || · ||2 denotes the L2-norm of a matrix or a vector. By projection

theorem [9], for a fixedW , V that minimizes (1) is uniquely determined byV = W T X.

The global minimum of (1) is provided by SVD [8] whose solution is also the solution of the

following dual problem:

W ∗ = argmax
W

||W T SxW ||2 = argmax
W

||W T X||2, subject to W T W = Im, (2)

whereSx = XXT is the covariance matrix ofX andIm is them×m identity matrix. Note that

(2) searches for a projection matrixW ∗ by which the variances ofW T X are maximized.

It is known that L2-norm is sensitive to outliers and severalapproaches were presented to

resolve this problem. From statistical point of view, the methods based on L1-norm are more

robust to outliers than the methods based on L2-norm and in [5], [6] and [7], instead of L2-

norm, L1-norm was used in the error function. In this case, the problem becomes findingW

that minimizes the following error function:

E1(W,V ) = ||X −WV ||1 =
n
∑

i=1

||xxxi −

m
∑

k=1

wwwkvki||1 =
n
∑

i=1

d
∑

j=1

|xji −

m
∑

k=1

wjkvki|. (3)

Here, || · ||1 denotes the L1-norm of a matrix or a vector.

Although (3) reduces the effect of outliers, it is not invariant to rotations and the shape of

a equidistance surface{xxx : ||xxx||1 = const} becomes very skewed [4]. It is because the above

L1-norm is calculated on the input space. Moreover, the exact solution of (3) is very hard to

achieve.

To resolve this problem, in [4], R1-norm was defined and the approximate solution that

minimizes the following error function was proposed:

ER1(W,V ) = ||X −WV ||R1 ,

n
∑

i=1

(

d
∑

j=1

(xji −

m
∑

k=1

wjkvki)
2

)

1

2

. (4)

However, the solution of (4) depends on the dimensionm of subspace to be found. In other

words, the optimal solutionW 1∗ whenm = 1 is not necessarily a subspace ofW 2∗ whenm = 2.

In addition, the minimization of (4) is also very difficult and a subspace iteration algorithm based

on L1 norm estimation techniques such as Huber’s M-estimator was used in [4].

In this paper, motivated by the fact that the L2 solutions of (1) and (2) are the same, to

obtain a subspace which is not only robust to outliers but also invariant to rotations, instead of
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minimizing the L1 error function (3) in the originald-dimensional input space, we would like

to maximize the L1 dispersion using L1-norm in the feature space as the following:

W ∗ = argmax
W

||W T X||1 = argmax
W

n
∑

i=1

m
∑

k=1

|

d
∑

j=1

wjkxji| subject to W T W = Im. (5)

Here, the constraintW T W = Im is to ensure the orthonormality of the projection matrix. Note

that the solutions of (3) and (5) are different because they are not dual to each other. However,

the two solutions are equally important in representing data as (1) and (2) are equally important.

In a sense, they are like two sides of a coin.

The solution of (5) is invariant to rotations because the maximization is done on the feature

space and it is expected to be more robust to outliers than theL2 solution of (2).

As a downside, the optimali-th projectionwww⋆
i of (5) varies with differentm’s as in R1-PCA

and finding a global solution of (5) form > 1 is very difficult. To ameliorate this problem, we

simplify (5) into a series ofm = 1 problems using a greedy search method. If we setm = 1,

(5) becomes the following optimization problem:

www∗ = argmax
www

||wwwT X||1 = argmax
www

n
∑

i=1

|wwwTxxxi| subject to ||www||2 = 1. (6)

Although the successive greedy solutions of (6) may differ from the optimal solution of (5), it

is expected to provide a good approximation for (5). In the following section, an algorithm to

solve (6) and a greedy search algorithm form > 1 are presented.

III. SOLUTION: PCA BASED ON L1-NORM MAXIMIZATION

A. Algorithm: PCA-L1

From now on, we derive a new algorithm to solve (6). The optimization of this objective

function is difficult because it contains absolute value operation, which is nonlinear. In order to

find the projection vectorwww that maximizes this L1 objective function, the following algorithm

is presented. We refer to the algorithm as PCA-L1 to differentiate it from the L1-PCA in [6]

and [7].

(Algorithm: PCA-L1)

1) Initialization: Pick anywww(0). Setwww(0)← www(0)/||www(0)||2 and t = 0.

2) Polarity check: For alli ∈ {1, · · · , n}, if wwwT (t)xxxi < 0, pi(t) = −1, otherwisepi(t) = 1.
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3) Flipping and maximization: Sett ← t + 1 and www(t) =
∑n

i=1 pi(t − 1)xxxi. Setwww(t) ←

www(t)/||www(t)||2.

4) Convergence check:

a. If www(t) 6= www(t− 1), go to Step 2.

b. Else if there existsi such thatwwwT (t)xxxi = 0, setwww(t)← (www(t)+∆www)/||www(t)+∆www||2

and go to Step 2. Here,∆www is a small nonzero random vector.

c. Otherwise, setwww⋆ = www(t) and stop.

Theorem 1: With the above PCA-L1 procedure, the projection vectorwww converges towww⋆,

which is a local maximum point of
∑n

i=1 |www
Txxxi|.

Proof: Firstly, we can show that
∑n

i=1 |www
T (t)xxxi| is a non-decreasing function oft as the

following:
n
∑

i=1

|wwwT (t)xxxi| = wwwT (t)(
n
∑

i=1

pi(t)xxxi) ≥ wwwT (t)(
n
∑

i=1

pi(t− 1)xxxi)

≥ wwwT (t− 1)(
n
∑

i=1

pi(t− 1)xxxi) =
n
∑

i=1

|wwwT (t− 1)xxxi|.

(7)

In the above, the first inequality is due to the fact that{pi(t)}
n
i=1 is the set of optimal polarity

corresponding towww(t), such that for alli, pi(t)www
T (t)xxxi ≥ 0. Note that the inner product of

two vectors is maximized when the two vectors are parallel. Hence, the second inequality holds

because||www(t)||2 = ||www(t−1)||2 (= 1) and the vectorswww(t) (=
∑n

i=1
pi(t−1)xxxi

||
∑n

i=1
pi(t−1)xxxi||

) and
∑n

i=1 pi(t−

1)xxxi are parallel.

Because the objective function is non-decreasing and there are finite number of data points,

the PCA-L1 procedure converges to a projection vectorwww⋆.

Secondly, we show that the objective function has a local maximum value atwww⋆. This can be

shown as follows.

Becausewww(t) converges towww⋆ by the PCA-L1 procedure,www⋆T pi(t)xxxi ≥ 0 for all i. Since

the number of data points is finite andwww⋆Txxxi 6= 0 for all i which is ensured by Step 4b, there

exists a small neighborhoodN(www⋆) of www⋆ such that ifwww ∈ N(www⋆), thenwwwT pi(t)xxxi ≥ 0 for all

i. Sincewww⋆ is parallel to
∑n

i=1 pi(t)xxxi, the inequality
∑n

i=1 |www
⋆Txxxi| >

∑n

i=1 |www
Txxxi| holds for all

www ∈ N(www⋆) andwww⋆ is a local maximum point.

Therefore, the PCA-L1 procedure finds a local maximum pointwww⋆.
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Because the projection vector is a linear combination of datapointsxxxi’s, i.e.,www(t) ∝
∑n

i=1 pi(t−

1)xxxi, it is naturally invariant to rotations.

The computational complexity of the proposed algorithm isO(nd) × nit where nit is the

number of iterations for convergence. It is clear that the number of iterations does not depend

on the dimensiond of input space but depends only on the number of samplesn. Therefore,

PCA-L1 can be applied to problems with a large number input variables without adding much

computational complexity.

Note that this procedure tries to find a local maximum solution and there is a possibility that

it may not be the global solution. However, considering thatthe initial vectorwww(0) can be set

arbitrarily, by settingwww(0) appropriately, e.g., by settingwww(0) = argmaxxxxi
||xxxi||2 or by setting

it to the solution of the L2-PCA, we expect to find the global maximum point with higher

probability in fewer iterations. In other approach, we can run the PCA-L1 procedure several

times with different initial vectors and output the projection vector that gives the maximum L1

dispersion.

B. Examples

The PCA-L1 procedure is depicted in Fig. 1. In this example, Fig. 1 (a) is the original dataset

which has been created as follows. Firstly, 20 random data points {(ai, bi)}
20
i=1 were generated

in a two dimensional space with the mean distance of 5 from theorigin and the variance of 1

with a uniform random orientation. And the point(ai, bi) is transformed to(2ai, bi) for all i.

If we set the initial projectionwww(0) = [0.8151, 0.5794]T randomly as shown in Fig. 1 (b),

the polarities of the points which are below the line orthogonal to www(0) are set to−1 in the

polarity checking step and these are flipped across the origin and marked as ‘x’. By summing

up all the points marked as ‘o’ and ‘x’ and normalizing it, we get a new projection vector

www(1) = [0.9967,−0.0812]T as shown in Fig. 1 (c). By the same procedure, we getwww(2) =

[0.9826,−0.1859]T as shown in Fig. 1 (d). After this, the polarity of each point does not change

and the convergence condition is fulfilled. Thus,www(2) becomeswww⋆, which is the global maximum

point in this case.

We initialized the sample points as well as the projection vector www(0) randomly for this

example 1,000 times. The solution was found in 3.26 iterations on average with the standard
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(d) Third iteration (Final solution)

Fig. 1. PCA-L1 procedure

deviation of 0.8 for this 1,000 experiments. On the other hand, it required only 3 iterations in

all 1000 experiments when we set the initial vector aswww(0) = argmaxxxxi
||xxxi||2.

Step 4.b plays a crucial role in avoiding the solution to be stuck to a point which is not locally

maximum. Consider the following two-dimensional dataset which consists of 5 data points:

X =





0 9 −9 3 −3

10 −5 −5 0 0



 .

Figure 2 (a) is the objective function||wwwT X||1(=
∑5

i=1 |www
Txxxi|) with respect towww = [cos θ, sin θ]T

for θ ∈ {−180◦, 180◦}.

If the initial projection vector was set towww(0) = [0, 1]T , the polarities of the five data points

will be {1,−1,−1, 1, 1} andwww(1) becomes the same aswww(0). Therefore, if there have not been
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(b) Dependency on initial vectorwww(0) (θ(0))

Fig. 2. Local optimality of the PCA-L1 algorithm

Step 4.b, the resulting projection vector would have beenwww⋆ = [0, 1]T (θ = 90◦) which is

actually the minimum point as can be seen from Fig. 2 (a). WithStep 4.b, we can avoid setting

the initial vector aswww(0) = [0, 1]T .

Figure 2 (b) shows the local optimality of the PCA-L1 algorithm. In the figure, the horizontal

axis represents the angleθ(0) of the initial projectionwww(0) and the vertical axis is the final

objective function||www⋆T X||1 corresponding to the initial projectionwww(0). Comparing it to Fig.

2 (a), we can see that regardless of the initial projectionwww(0), the local optimality of the

algorithm is guaranteed asTheorem 1 states. However, we can also see that in the figure, the

global optimality is not achieved. With the initial angle around±90◦ it only converges to a

local maximum point but not to a global maximum point. If we set the initial projection as

www(0) = argmaxxxxi
||xxxi||2 = [9,−5]T (θ(0) ≃ −30◦), it converges to a global maximum point.

C. Extracting Multiple Features (m > 1)

Until now, we have shown that we can extract one best projection or feature3 that maximizes

the L1 objective function (6). The proposed method can be easily extended to extract arbitrary

number of features by applying the same procedure greedily to the remainder of the projected

samples as follows:

3Given a projection vectorwww, the corresponding feature is defined asf = wwwTxxx wherexxx denotes a sample point.
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(Greedy search algorithm)

www0 = 000, {xxx0
i = xxxi}

n
i=1.

For j = 1 to m,

For all i ∈ {1, · · · , n}, xxxj
i = xxxj−1

i −wwwj−1(www
T
j−1xxx

j−1
i ).

In order to findwwwj, apply the PCA-L1 procedure toXj = [xxxj
1, · · · ,xxx

j
n].

end

By this procedure, the orthonormality of the projection vectors are guaranteed as follows:

1) Becausewwwj is a linear combination of the samplesXj, it is in the subspace spanned by

Xj.

2) By multiplying wwwT
j−1 to the right side ofXj, we get

wwwT
j−1X

j = wwwT
j−1X

j−1 −wwwT
j−1wwwj−1www

T
j−1X

j−1 = wwwT
j−1X

j−1 −wwwT
j−1X

j−1 = 0.

3) From 2),wwwj−1 is orthogonal toXj, which again shows thatwwwj is orthogonal towwwj−1 by

1). �

Note that even if this greedy algorithm does not provide the optimal solution of (5), it is

expected to provide a set of good projections that maximizesL1 dispersion.

In conventional L2-PCA, the relative importance of a featureis usually computed by the

corresponding eigenvalue of the covariance matrixSx in (2) because thei-th eigenvalue is

equivalent to the variance of thei-th feature. Since the total variance of a dataset is the same

as the sum of all the variances of each feature, the number of extracted featurem is usually set

by comparing the sum of variances up tom features and the total variance, i.e., if the sum of

variancess(j) =
∑j

i=1 λi exceeds e.g. 95% of the total variance,m is set toj. Here,λi is the

i-th largest eigenvalue ofSx.

Likewise, in PCA-L1, oncewwwj is obtained, the variance of thej-th featureχj =
∑n

i=1
(wwwT

j xxxi)
2

n
can

be computed and the sums(j) =
∑j

i=1 χi can be compared with the total variances =
∑n

i=1
||xxxi||

2

2

n

to set an appropriate number of extracted features.

IV. EXPERIMENTAL RESULTS

In this section, we applied the proposed PCA-L1 algorithm to several pattern recognition

problems and compared the performance with those of R1-PCA [4]and L2-PCA. In all the

experiments, Huber’s M-estimator was used for R1-PCA and the convergence condition for
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Fig. 3. A toy problem with an outlier

R1-PCA was set if the difference between the norms of Lagrangian multipliers in successive

iterations was less than10−3 or maximum number of iterations of 50 was reached [4]. All the

experiments were performed byMATLAB on a Pentium D 3.40GHz processor.

A. A toy problem with an outlier

Consider the following measurement matrixX consisting of eleven data points in a two

dimensional space.

X =





−6 −5 −4 −3 −2 10 0 1 2 3 4

−5 −4 −3 −2 −1 0 1 2 3 4 5





It is obvious that the sixth data point in boldface is an outlier and if we discard the data point,

the projection vector should bewww ∝ [1, 1]T (θ = 45◦).

For this data, L2-PCA, R1-PCA and PCA-L1 were applied and the projection vectorswwwL2 =

[0.8507, 0.5257]T (θL2 = 31.7◦), wwwR1 = [0.7483, 0.6634]T (θR1 = 41.6◦) andwwwL1 = [0.8, 0.6]T

(θL1 = 36.9◦) were obtained respectively as shown in Fig. 3(a). In this experiment, PCA-L1

was randomly initialized and only 2 iterations were taken for convergence. On the other hand,

R1-PCA converged in 7 iterations.

Figure 3(b) shows the residual errorei of each data point where it was calculated asei =

||xxxi−wwwwwwTxxxi||2. The average residual errors of PCA-L1, L2-PCA and R1-PCA were 1.200, 1.401,

and 1.206 respectively. With this result, we can see that L2-PCA was much influenced by the
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TABLE I

UCI DATASETS USED IN THE EXPERIMENTS

Data set No. of variables (d) No. of classes No. of instances

Australian 14 2 690

Balance 4 3 625

Breast cancer 9 2 683

Dermatology 34 6 358

Heart disease 13 2 297

Ionosphere 33 2 351

Liver 6 2 345

Sonar 60 2 208

Waveform 21 3 4999

Yeast 8 10 1484

outlier while R1-PCA and PCA-L1 suppressed the effect of the outlier efficiently. Considering

that the object of R1-PCA is to minimize the average residual error, it is quite impressive that

the average residual error of PCA-L1 is smaller than that of R1-PCA. The reason is that R1-PCA

does not solve the exact L1-norm minimization problem in (4)but an approximated one using

L1-norm estimation techniques. Although it cannot be proven in this paper, this example shows

a clue that the minimum residual error problem is closely related to maximizing L1 dispersion.

B. UCI datasets

We also applied PCA-L1 to several datasets in UCI machine learning repositories [10] and

compared the classification performances with those of L2-PCA and R1-PCA. In all the exper-

iments, the initial projection of PCA-L1 was set to the samplewith the largest L2-norm, i.e.,

www(0) = argmaxxxxi
||xxxi||2.

Table I shows a brief summary of the datasets used in this paper. These datasets have been used

in many studies [11] [12] [13]. As a classifier, one nearest neighborhood (1-NN) classifier was

used. For each dataset, we performed 10-fold cross validation (CV) 10 times and computed the

average classification rate. Before training, each input variable in the training set was normalized

to have zero mean and unit variance. The variables in the testset were also normalized using

the means and the variances of the training set.
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(h) Sonar
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(i) Waveform
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Fig. 4. Correct Classification Rates for UCI datasets
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TABLE II

AVERAGE CLASSIFICATION RATES ON UCI DATASETS (%). THE LAST COLUMN IS THE AVERAGES OF THE BEST

CLASSIFICATION RATES AMONG THE CASES WHERE THE NUMBER OF EXTRACTED FEATURES WAS ONE TO HALF THE

NUMBER OF ORIGINAL INPUTS

No. of extracted features 1 2 3 4 Best performance

L2-PCA 62.49 68.59 73.36 76.79 76.46

R1-PCA 62.44 68.49 73.63 76.52 76.47

PCA-L1 63.94 71.88 74.90 77.43 78.15

Figure 4 shows the average correct classification rates of each dataset with various numbers of

extracted features. The number of extracted featuresm was varied from one to the dimension of

original input spaced. For datasets with a large number of input variables such as ‘Dermatology’,

‘Ionosphere’, and ‘Sonar’ datasets, the numbers of extracted features in the figure were truncated

at 20 for clear view.

Comparing the performance of PCA-L1 and other methods, we can see that in many cases,

PCA-L1 outperformed L2-PCA and R1-PCA when the number of extracted features was small.

This phenomenon is clear in Table II which shows the average classification rate of these 10

datasets for a fixed number of extracted features from one to four. The last column of the table

shows the averages of the best classification rates among thecases where the number of extracted

features was one to half the number of original inputs. In thetable, we can see that PCA-L1

outperformed other methods by more than 1% on average when the number of extracted features

was one to three.

Regarding the computational cost, Table III shows the average time taken for L2-PCA, R1-

PCA and PCA-L1. For R1-PCA and PCA-L1, average numbers of iterations are also shown.

Because thei-th projection vector of R1-PCA varied with different numbersof extracted features,

the reported time and iterations for R1-PCA are the average values of different numbers of

extracted features. On the other hand, the time and iterations for L2-PCA and PCA-L1 were

obtained when the number of extracted features is equal to the number of input variables. For

example, in obtaining Fig. 4(d), R1-PCA took 25,500ms (750 ms × 34), while L2-PCA and

PCA-L1 took 62ms and 750ms on average respectively. In the table, we can see that the PCA-L1
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TABLE III

COMPUTATIONAL COST (TIME & AVERAGE NUMBER OF ITERATIONS FORUCI DATASETS)

Average time (msec) Average number of iterations

Data sets L2-PCA R1-PCA PCA-L1 R1-PCA PCA-L1

Australian 0 583 343 42.29 7.14

Balance 0 36 47 2.00 1.00

Breast cancer 0 547 266 45.44 9.78

Dermatology 62 750 750 45.47 12.82

Heart disease 0 239 141 36.61 6.53

Ionosphere 64 816 625 47.30 10.15

Liver 0 125 79 24.67 5.67

Sonar 47 1533 734 34.50 10.30

Waveform 16 6480 24063 46.00 52.52

Yeast 0 340 531 14.63 10.75

was faster than R1-PCA in many cases and PCA-L1 converged in lessthan 15 iterations except

for ‘waveform’ dataset. For ‘waveform’ dataset, the time and average iterations were greatly

increased because of the large number of samples (4,999).

C. Face reconstruction

In this part, the proposed PCA-L1 algorithm was applied to face reconstruction problems and

the performances were compared with those of other methods.As in the previous subsection,

the initial projection of PCA-L1 was set to the sample with thelargest L2-norm.

The Yale face database consists of 165 gray-scale images of 15 individuals. There are 11

images per subject with different facial expressions or configurations. In [14], the authors report

two types of databases: a closely cropped set and a full face set. In this paper, the full face set

whose size is 100× 80 pixels was used. Each pixel was regarded as an input variable which

constitutes an 8,000 dimensional input space.

In the first experiment, among 165 images, 20% were randomly selected and occluded with

a rectangular noise consisting of random black and white dots whose size was at least 15×

10 located at a random position. The left column of Fig. 5 shows typical examples of occluded

images.
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To these image set, we applied L2-PCA (eigenface [15]), R1-PCA and PCA-L1 and extracted

various numbers of features. By using only a fraction of features, we could reconstruct images

such as the ones shown on the second to the fourth columns of Fig. 5 and computed the average

reconstruction error with respect to the original unoccluded images as follows:

ē(m) =
1

n

n
∑

i=1

||xxxorg
i −

m
∑

j=1

wwwkwww
T
k xxxi||2. (8)

Here,n is the number of samples which is 165 in this case,xxxorg
i andxxxi are thei-th original

unoccluded image and thei-th image used in the training respectively, andm is the number of

extracted features.

Figure 6(a) shows the average reconstruction errors for various numbers of extracted features.

In the figure, when the number of extracted features was small, the average reconstruction

errors for different methods were almost the same. However,from around 10 features, the

difference among different methods became apparent and PCA-L1 started to be better than

the other methods. Figure 5 shows the original and the reconstructed images using 20 projection

vectors respectively. In the figure, we can see that the reconstructed images by L2-PCA have

lots of dots compared to those of other methods resulting in bad quality. Although the qualities

of the reconstructed images by PCA-L1 and those of R1-PCA are notdistinct in the figure,

average reconstruction error of PCA-L1 was smaller than thatof R1-PCA when 20 projection

vectors were used.

Note that this problem is a typical example of small sample size problems where the dimension

of input space is higher than the number of samples. For this kind of problems, there exists a

high dimensional null space where all the samples are projected to the origin (zero). Considering

that PCA-L1 involves only summation and negation of given samples, it can easily be shown that

the result of PCA-L1 does not change whether it is performed onthe original input space or on

the subspace excluding the null space. Therefore, to expedite PCA-L1, in this experiment, L2-

PCA was first performed to exclude the null space and then PCA-L1procedure were performed.

By doing this, the operation time of PCA-L1 was reduced from 11,342 ms to 2,453ms (which

includes 1.719ms, the operation time of L2-PCA). Note that for such methods as L1-PCA which

are not invariant to rotations, this kind of preprocessing cannot be performed because the solution

will be altered. The average number of iterations for PCA-L1 was 7.51 regardless whether the

data were preprocessed by L2-PCA or not. For this problem, R1-PCA was also preprocessed by

May 5, 2008 DRAFT



17

Fig. 5. Face images with occlusion and the reconstructed faces: 1st column: original, 2nd column: PCA-L1, 3rd column:

L2-PCA, 4th column: R1-PCA. (reconstructed with 20 projection vectors)
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(a) Dataset with occluded images
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(b) Dataset with dummy images

Fig. 6. Average reconstruction errors for Yale dataset
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L2-PCA and it took 14,898ms on average, i.e., to obtain Fig. 6(a), R1-PCA took 1,042,860ms

(= 14,898ms × 70).

As a second experiment, to the original 165 Yale images, we added 30 dummy images which

consist of random black and white dots and performed L2-PCA, R1-PCA and PCA-L1. Figure

6(b) shows the average reconstruction error of each method with various numbers of extracted

features. In the computation of average reconstruction error, (8) was used withn = 165, i.e., 30

dummy images were excluded. In this case,xxxorg
i andxxxi were the same.

In the figure, when the number of extracted features is from 6 to 36, the error of L2-PCA is

almost constant. This shows that the dummy images affected the 6th up to the 36th projection

vectors seriously and these vectors were tuned to explain the dummy data. For R1-PCA, this

phenomenon started later at around 13th projection vector while R1-PCA did not suffer from

this phenomenon and the reconstruction error was smallest of the three after the 14th projection

vector. The fluctuation of R1-PCA might be due to the fact that the whole projection vectors

were replaced as the number of extracted features was varied.

Figure 7 shows the reconstructed images with 20 projection vectors as well as the original

face images. The figure clearly shows that PCA-L1 is better than other methods in reconstructing

original images when there are outliers.

The average number of iterations of PCA-L1 was 7.61 and it took3,078ms including 2,172

ms which was the time took for preprocessing by L2-PCA. For this problem, R1-PCA took

26,555ms on average.

V. CONCLUSION

In this paper, we proposed a method of principal component analysis based on L1-norm

optimization. The proposed PCA-L1 tries to find projections that maximizes L1-norm in the

projected space instead of the conventional L2-norm. In duecourse, a new method of L1-norm

optimization was introduced and was proven to find a local maximum point. The proposed L1-

norm optimization technique is intuitive, simple, and easyto implement. In addition, it not only

successfully suppresses the negative effects of outliers but also is invariant to rotations.

The computational complexity of the proposed method is proportional to the number of

samples, the dimension of input space, and the number of iterations. Considering that the number
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Fig. 7. Face images trained with dummy images and the reconstructed faces: 1st column: original, 2nd column: PCA-L1, 3rd

column: L2-PCA, 4th column: R1-PCA. (reconstructed with 20 projectionvectors)

of iterations does not depend on the dimension of input space, it is expected to perform well

for the problems with large input dimension such as the ones that deal with images.

The proposed method was applied to several pattern recognition problems including face

reconstruction problems and the performances were compared with those of the conventional

L2-PCA and R1-PCA. The experimental results show that the proposed method is usually faster

than R1-PCA and robust to outliers.
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