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Abstract

A method of principal component analysis (PCA) based on alokworm optimization technique
is proposed. Unlike conventional PCA which is based on L&mahe proposed method is robust to
outliers because it utilizes L1-norm which is less sensitiv outliers. It is invariant to rotations as well.
The proposed L1-norm optimization technique is intuitigenple, and easy to implement. It is also
proven to find a locally maximal solution. The proposed mdtieapplied to several datasets and the

performances are compared with those of other conventimeshods.

Index Terms

PCA-L1, L1-norm, optimization, principal component argi$y robust.

. INTRODUCTION

In data analysis problems with a large number of input véembdimensionality reduction
methods are typically used to reduce the number of inpualkes to simplify the problems
without degrading performances. Among them, the princqgmehponent analysis [1] is one of
the most popular methods. In PCA, one tries to find a set of giojgs that maximize the
variance of given data. These projections constitute adomensional linear subspace by which
the data structure in the original input space can effelgtibe captured.

Although the conventional PCA based on L2-norm (L2-PLhAas been successful for many
problems, it is prone to the presence of outliers, becauseffiect of the outliers with a large
norm is exaggerated by the use of L2-norm. In order to altevthis problem and achieve
robustness, many researches have been performed [2] — [7].

In [5], [6] and [7], each component of the error between agutipn and the original data
point was assumed to follow a Laplacian distribution indted Gaussian and L1-norm PCA
(L1-PCA) was formulated by applying maximum likelihood estition to the given data. In
order to obtain a solution of L1-PCA, a heuristic estimatedlie general L1 problem was used
in [5], while in [6] and [7], the weighted median method ancheex programming methods
were proposed. Despite the robustness of L1-PCA, it has alesteawbacks. First of all, it is
computationally expensive because it is based on lineauadmtic programming. Secondly, it

is not invariant to rotations.
Yn order to prevent confusion, the conventional PCA will be refetreds L2-PCA hereafter.
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In [4], Ding et al. proposed R1-PCA which combines the merits of L2-PCA and those of
L1-PCA. Unlike L1-PCA, it is rotational invariant while it soessfully suppresses the effect of
outliers as L1-PCA does. However, the method is highly depenhdn the dimensiom: of a
subspace to be found. For example, the projection vectaird whenm = 1 may not be
in a subspace obtained when= 2. Moreover, because it is an iterative algorithm based on a
successive use of the power method [8], for a large dimeakimput space, it takes a lot of
time to achieve convergence.

The above methods try to minimize the error between a piojeend the original data point
in the original input space. If L2-norm is used as a distaneasure, this goal can be achieved by
SVD (singular value decomposition) [8] which is also eqglewa to finding projections by which
variances are maximized in the feature spade this paper, instead of maximizing variance
which is based on L2-norm, a method that maximizes L1-northénfeature space is presented
to achieve robust and rotational invariant PCA. The propdskdorm optimization algorithm
is intuitive, simple, and easy to implement. It is also prove find a locally maximal solution.

The rest of this paper is organized as follows. In Sectiorthié problem is formulated. A
new algorithm for the L1-norm optimization problem is pretsel and the local optimality of the
algorithm is proven in Section Ill. The proposed method igliegol to several pattern recognition
problems and the performances are compared with those @f cdinventional methods in Section

IV and conclusion follows in Section V.

[I. PROBLEM FORMULATION
Let X = [z, --x,] € R¥" be the given data where andd denote the number of samples
and the dimension of the original input space respectiwdighout loss of generality{z;}! ,
is assumed to have zero mean.
In L2-PCA, one tries to find am(< d) dimensional linear subspace by minimizing the error
function:

n m n d m
Ex(W,V) = [|X =WVII5 =z = Y wiowil[3 = D) (w5 — Y wpow)® (1)
=1 k=1 k=1

i=1 j=1
where W € R4™ is the projection matrix whose columrsv, }* , constitute the bases of the

m-dimensional linear subspace (i.e., feature space, R*" is the coefficient matrix whose

2\We use the ternfieature space for the space spanned by projections to differentiate it from the origiiaitispace.
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(4, j)-th componenty;; corresponds to thé-th coordinate ofz; in the m-dimensional feature
space spanned by, and|| - || denotes the L2-norm of a matrix or a vector. By projection
theorem [9], for a fixedV, V that minimizes (1) is uniquely determined by= W7 X.

The global minimum of (1) is provided by SVD [8] whose solutis also the solution of the

following dual problem:
W* = argmax ||[W? S, W||, = argmax ||[W? X||,, subjectto W'W = 1I,,, 2)
w w

whereS, = X X7 is the covariance matrix ok and/,, is them x m identity matrix. Note that
(2) searches for a projection matriX* by which the variances ofi’” X are maximized.

It is known that L2-norm is sensitive to outliers and sevexpproaches were presented to
resolve this problem. From statistical point of view, thetinoels based on L1-norm are more
robust to outliers than the methods based on L2-norm and]ingband [7], instead of L2-
norm, L1-norm was used in the error function. In this case, globlem becomes finding’
that minimizes the following error function:

n m n d m
EW, V) =X =WV|li =) & = Y wevnilli = DDl = Y wipvw.— (3)
i=1 k=1 i=1 j=1 k=1
Here,|| - ||; denotes the L1-norm of a matrix or a vector.

Although (3) reduces the effect of outliers, it is not ineart to rotations and the shape of
a equidistance surfacgr : ||z||; = const} becomes very skewed [4]. It is because the above
L1-norm is calculated on the input space. Moreover, the tegalttion of (3) is very hard to
achieve.

To resolve this problem, in [4], R1-norm was defined and ther@pmate solution that
minimizes the following error function was proposed:

2

n d m
Er(W,V) = [[X =WV £ (Zw -2 ijkif) - )
k=1

i=1 \j=1
However, the solution of (4) depends on the dimensiorof subspace to be found. In other
words, the optimal solutiofl’'* whenm = 1 is not necessarily a subspacel&f* whenm = 2.
In addition, the minimization of (4) is also very difficult dm subspace iteration algorithm based
on L1 norm estimation techniques such as Huber's M-estimaés used in [4].
In this paper, motivated by the fact that the L2 solutions Df énd (2) are the same, to

obtain a subspace which is not only robust to outliers bui aigariant to rotations, instead of
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minimizing the L1 error function (3) in the original-dimensional input space, we would like
to maximize the L1 dispersion using L1-norm in the featuracgpas the following:
n o m d
. _ T _ i Ty —

W = argvrvnax WX, = arerVnaX; ; | ;wjkxﬂ\ subjectto W W =1,,. (5)
Here, the constraintl’ W = I,, is to ensure the orthonormality of the projection matrix.t&o
that the solutions of (3) and (5) are different because tmeynat dual to each other. However,
the two solutions are equally important in representing @at (1) and (2) are equally important.
In a sense, they are like two sides of a coin.

The solution of (5) is invariant to rotations because the im&ation is done on the feature
space and it is expected to be more robust to outliers thah2hsolution of (2).

As a downside, the optimaitth projectionw; of (5) varies with differentn’s as in R1-PCA
and finding a global solution of (5) fan > 1 is very difficult. To ameliorate this problem, we
simplify (5) into a series ofn = 1 problems using a greedy search method. If werset 1,
(5) becomes the following optimization problem:

w* = argmax ||w’ X||; = argmaxzn: lw"z;| subject to ||jw||, = 1. (6)
w w i=1
Although the successive greedy solutions of (6) may differrf the optimal solution of (5), it
is expected to provide a good approximation for (5). In théovang section, an algorithm to

solve (6) and a greedy search algorithm for> 1 are presented.

[1l. SoLUTION: PCABASED ONL1-NORM MAXIMIZATION
A. Algorithm: PCA-L1

From now on, we derive a new algorithm to solve (6). The omation of this objective
function is difficult because it contains absolute valuerapen, which is nonlinear. In order to
find the projection vectow that maximizes this L1 objective function, the followinggatithm
is presented. We refer to the algorithm as PCA-L1 to diffeatatit from the L1-PCA in [6]
and [7].

(Algorithm: PCA-L1)

1) Initialization: Pick anyw(0). Setw(0) « w(0)/||w(0)||>» andt = 0.
2) Polarity check: For alt € {1,--- ,n}, if w?(t)z; <0, p;(t) = —1, otherwisep;(t) = 1.
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3) Flipping and maximization: Set — ¢ + 1 andw(t) = > p;i(t — 1)z;. Setw(t) —
w(t)/||w(®)]]2-
4) Convergence check:
a. Ifw(t) Zw(t—1), go to Step 2.
b. Else if there exists such thatw’ (t)z; = 0, setw(t) « (w(t) + Aw)/||w(t) + Aw||;
and go to Step 2. Here\w is a small nonzero random vector.

c. Otherwise, setv* = w(t) and stop.

Theorem 1. With the above PCA-L1 procedure, the projection veatorconverges tow*,
which is a local maximum point of ;" | [w”z;]|.
Proof: Firstly, we can show tha}_ ! | [w’(¢)z;| is a non-decreasing function ofas the

following:

> " (tai] =w" (1) pit) > w6 pit — 1)z;)
=1 i:nl ni:l (7)
> w’(t — 1)(Zpl-(t —1)z;) = Z lw” (t — 1)z,

In the above, the first inequality is due to the fact thatt)}? , is the set of optimal polarity
corresponding taw(t), such that for alli, p;(t)w”(t)z; > 0. Note that the inner product of
two vectors is maximized when the two vectors are parallehds, the second inequality holds
becausefw(t)||» = [[w(t—1)|[> (= 1) and the vectors(t) (= petLi=0=0) and o7, pit —
1)z; are parallel.

Because the objective function is non-decreasing and threrérate number of data points,
the PCA-L1 procedure converges to a projection veeator

Secondly, we show that the objective function has a localimam value atw*. This can be
shown as follows.

Becausew(t) converges tav* by the PCA-L1 procedurew*Tp;(t)z; > 0 for all i. Since
the number of data points is finite amd”z; # 0 for all i which is ensured by Step 4b, there
exists a small neighborhool (w*) of w* such that ifw € N(w*), thenw”p;(t)z; > 0 for all
i. Sincew* is parallel to>_" | p;(t)z;, the inequality} " | [w*'z;| > Y " | |w”z;| holds for all
w € N(w*) andw* is a local maximum point.

Therefore, the PCA-L1 procedure finds a local maximum paint [ |
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Because the projection vector is a linear combination of pasatsz;’s, i.e.,w(t) oc >\ | p;(t—
1)z;, it is naturally invariant to rotations.

The computational complexity of the proposed algorithmd&wd) x n;,; wheren; is the
number of iterations for convergence. It is clear that thenler of iterations does not depend
on the dimensioni of input space but depends only on the number of sampleBherefore,
PCA-L1 can be applied to problems with a large number inputalsées without adding much
computational complexity.

Note that this procedure tries to find a local maximum sotuaiad there is a possibility that
it may not be the global solution. However, considering tinat initial vectorw(0) can be set
arbitrarily, by settingw(0) appropriately, e.g., by setting(0) = argmax,_||z;||> or by setting
it to the solution of the L2-PCA, we expect to find the global maxm point with higher
probability in fewer iterations. In other approach, we can the PCA-L1 procedure several
times with different initial vectors and output the projeat vector that gives the maximum L1

dispersion.

B. Examples

The PCA-L1 procedure is depicted in Fig. 1. In this examplg, Ei(a) is the original dataset
which has been created as follows. Firstly, 20 random datat§(a;, b;)}?°, were generated
in a two dimensional space with the mean distance of 5 fronotiggn and the variance of 1
with a uniform random orientation. And the poif;, b;) is transformed tq2a;, b;) for all 7.

If we set the initial projectionw(0) = [0.8151,0.5794]7 randomly as shown in Fig. 1 (b),
the polarities of the points which are below the line orthagjoto w(0) are set to—1 in the
polarity checking step and these are flipped across thenoaigd marked as ‘x’. By summing
up all the points marked as ‘o’ and ‘X’ and normalizing it, wetga new projection vector
w(l) = [0.9967, —0.0812]7 as shown in Fig. 1 (c). By the same procedure, weg€l) =
[0.9826, —0.1859]” as shown in Fig. 1 (d). After this, the polarity of each poiotd not change
and the convergence condition is fulfilled. Thug2) becomesav*, which is the global maximum
point in this case.

We initialized the sample points as well as the projectiontmew(0) randomly for this

example 1,000 times. The solution was found in 3.26 itenation average with the standard
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Fig. 1. PCA-L1 procedure

deviation of 0.8 for this 1,000 experiments. On the otherdhainrequired only 3 iterations in

all 1000 experiments when we set the initial vectomds) = argmax,, ||z;|s.
Step 4.b plays a crucial role in avoiding the solution to helsto a point which is not locally

maximum. Consider the following two-dimensional datasetcWltonsists of 5 data points:
0 9 -9 3 -3
10 =5 =5 0 O
Figure 2 (a) is the objective functidhw” X||;(= 3_7_, [w”z;|) with respect tav = [cos §, sin 6]

for 6 € {—180°,180°}.
If the initial projection vector was set w(0) = [0, 1]7, the polarities of the five data points

will be {1,-1,—1,1,1} andw(1) becomes the same ag0). Therefore, if there have not been

X —
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Fig. 2. Local optimality of the PCA-L1 algorithm

Step 4.b, the resulting projection vector would have been= [0,1]7 (¢ = 90°) which is
actually the minimum point as can be seen from Fig. 2 (a). \8i#p 4.b, we can avoid setting
the initial vector aaw(0) = [0, 1]7.

Figure 2 (b) shows the local optimality of the PCA-L1 algonithin the figure, the horizontal
axis represents the angtg0) of the initial projectionw(0) and the vertical axis is the final
objective function||w*? X||; corresponding to the initial projectiom(0). Comparing it to Fig.

2 (a), we can see that regardless of the initial projectig), the local optimality of the
algorithm is guaranteed akheorem 1 states. However, we can also see that in the figure, the
global optimality is not achieved. With the initial angleoand +90° it only converges to a
local maximum point but not to a global maximum point. If we #ee initial projection as

w(0) = argmax,, ||z;||» = [9, —5]" (6(0) ~ —30°), it converges to a global maximum point.

C. Extracting Multiple Features (m > 1)

Until now, we have shown that we can extract one best projeai featuré that maximizes
the L1 objective function (6). The proposed method can bdyeastended to extract arbitrary
number of features by applying the same procedure greealitihie remainder of the projected

samples as follows:

3Given a projection vectow, the corresponding feature is defined fas= w”2 wherez denotes a sample point.
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(Greedy search algorithm)
Wy = 07 {x? =T ?:1'
Forj =1 tom,

J—1
)

j—l)

Forallie {1,--+ ,n}, ol =2/ ' —w;_;(w!_ 2]
In order to findw;, apply the PCA-L1 procedure t§7 = [z, --- 2/].

end

By this procedure, the orthonormality of the projection westare guaranteed as follows:

1) Becausaw; is a linear combination of the samplé§/, it is in the subspace spanned by
X7,

2) By multiplying ij_l to the right side ofX’, we get
wi X =w] (X7 —wl w qw] (X =w  XTT —w]  XTTN=0,

3) From 2),w;_; is orthogonal toX?, which again shows thav; is orthogonal taw; ; by
1). |

Note that even if this greedy algorithm does not provide thanwal solution of (5), it is
expected to provide a set of good projections that maximiZedispersion.

In conventional L2-PCA, the relative importance of a featigausually computed by the
corresponding eigenvalue of the covariance maffixin (2) because the-th eigenvalue is
equivalent to the variance of theth feature. Since the total variance of a dataset is the same
as the sum of all the variances of each feature, the numbettiafcted featuren is usually set
by comparing the sum of variances upriofeatures and the total variance, i.e., if the sum of
variancess(j) = {:1 A; exceeds e.g. 95% of the total varianee,is set toj. Here, ); is the
i-th largest eigenvalue of,.

Likewise, in PCA-L1, oncev; is obtained, the variance of theth featurey; = w can

be computed and the sustj) = >7_, x, can be compared with the total variance- —Z?:ln”””i“%

to set an appropriate number of extracted features.

IV. EXPERIMENTAL RESULTS

In this section, we applied the proposed PCA-L1 algorithm dvesal pattern recognition
problems and compared the performance with those of R1-PCAarjd] L2-PCA. In all the

experiments, Huber's M-estimator was used for R1-PCA and twergence condition for
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Fig. 3. A toy problem with an outlier

R1-PCA was set if the difference between the norms of Lagrangialtipliers in successive
iterations was less thar)—3 or maximum number of iterations of 50 was reached [4]. All the

experiments were performed BYATLAB on a Pentium D 3.40GHz processor.

A. A toy problem with an outlier
Consider the following measurement matt&k consisting of eleven data points in a two
dimensional space.
-6 -5 -4 -3 -2 10 01 2 3 4
-5 4 -3 -2 -1 012 3 45

X =

It is obvious that the sixth data point in boldface is an eutind if we discard the data point,
the projection vector should he o [1,1]7(6 = 45°).

For this data, L2-PCA, R1-PCA and PCA-L1 were applied and theeptign vectoraw;, =
[0.8507,0.5257]7 (AL, = 31.7°), wry = [0.7483,0.6634]7 (Ar, = 41.6°) andwy; = [0.8,0.6]7
(A1 = 36.9°) were obtained respectively as shown in Fig. 3(a). In thisegrpent, PCA-L1
was randomly initialized and only 2 iterations were takendonvergence. On the other hand,
R1-PCA converged in 7 iterations.

Figure 3(b) shows the residual errer of each data point where it was calculatedeas=
||z; —ww™z;||,. The average residual errors of PCA-L1, L2-PCA and R1-PCA we&@(].1.401,

and 1.206 respectively. With this result, we can see thaPC2& was much influenced by the

May 5, 2008 DRAFT



12

TABLE |

UCI| DATASETS USED IN THE EXPERIMENTS

Data set No. of variables ¢) No. of classes No. of instances
Australian 14 2 690
Balance 4 3 625
Breast cancer 2 683
Dermatology 34 6 358
Heart disease 13 2 297
lonosphere 33 2 351
Liver 6 2 345
Sonar 60 2 208
Waveform 21 3 4999
Yeast 8 10 1484

outlier while R1-PCA and PCA-L1 suppressed the effect of théieyuefficiently. Considering
that the object of R1-PCA is to minimize the average residuareit is quite impressive that
the average residual error of PCA-L1 is smaller than that oPRE. The reason is that R1-PCA
does not solve the exact L1-norm minimization problem inl{g) an approximated one using
L1-norm estimation techniques. Although it cannot be prowethis paper, this example shows

a clue that the minimum residual error problem is closelatesl to maximizing L1 dispersion.

B. UCI datasets

We also applied PCA-L1 to several datasets in UCI machine ilegnmepositories [10] and
compared the classification performances with those of C&Rnd R1-PCA. In all the exper-
iments, the initial projection of PCA-L1 was set to the sampléh the largest L2-norm, i.e.,
w(0) = argmax,_||z;||2.

Table | shows a brief summary of the datasets used in thigpapese datasets have been used
in many studies [11] [12] [13]. As a classifier, one nearesgmaorhood (1-NN) classifier was
used. For each dataset, we performed 10-fold cross vaidéGV) 10 times and computed the
average classification rate. Before training, each inpuélké in the training set was normalized
to have zero mean and unit variance. The variables in thes&tsivere also normalized using

the means and the variances of the training set.
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Fig. 4. Correct Classification Rates for UCI datasets
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TABLE 1l
AVERAGE CLASSIFICATION RATES ONUCI DATASETS (%). THE LAST COLUMN IS THE AVERAGES OF THE BEST
CLASSIFICATION RATES AMONG THE CASES WHERE THE NUMBER OF EXRACTED FEATURES WAS ONE TO HALF THE

NUMBER OF ORIGINAL INPUTS

No. of extracted featuresH 1 2 3 4 H Best performance
L2-PCA 62.49 68.59 73.36 76.79 76.46
R1-PCA 62.44 68.49 73.63 76.52 76.47
PCA-L1 63.94 71.88 74.90 77.43 78.15

Figure 4 shows the average correct classification ratesobf @ataset with various numbers of
extracted features. The number of extracted featuregas varied from one to the dimension of
original input space. For datasets with a large number of input variables sucbasnatology’,
‘lonosphere’, and ‘Sonar’ datasets, the numbers of extafgatures in the figure were truncated
at 20 for clear view.

Comparing the performance of PCA-L1 and other methods, we eartlgt in many cases,
PCA-L1 outperformed L2-PCA and R1-PCA when the number of ex@chfatures was small.
This phenomenon is clear in Table 1l which shows the averdagssification rate of these 10
datasets for a fixed number of extracted features from oneuo The last column of the table
shows the averages of the best classification rates amomgsles where the number of extracted
features was one to half the number of original inputs. Intdide, we can see that PCA-L1
outperformed other methods by more than 1% on average wieemutinber of extracted features
was one to three.

Regarding the computational cost, Table Il shows the awetage taken for L2-PCA, R1-
PCA and PCA-L1. For R1-PCA and PCA-L1, average numbers of iteratave also shown.
Because theé-th projection vector of R1-PCA varied with different numbefs®xtracted features,
the reported time and iterations for R1-PCA are the averageesabdf different numbers of
extracted features. On the other hand, the time and itesatior L2-PCA and PCA-L1 were
obtained when the number of extracted features is equaletantimber of input variables. For
example, in obtaining Fig. 4(d), R1-PCA took 25,508 (750 ms x 34), while L2-PCA and
PCA-L1 took 62ms and 750ms on average respectively. In the table, we can see that thel[HCA-
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TABLE 1l

COMPUTATIONAL COST (TIME & AVERAGE NUMBER OF ITERATIONS FORUCI DATASETS)

Average time (msec) Average number of iterations

Data sets L2-PCA R1-PCA PCA-L1 R1-PCA PCA-L1
Australian 0 583 343 42.29 7.14
Balance 0 36 47 2.00 1.00
Breast cancer 0 547 266 45.44 9.78
Dermatology 62 750 750 45.47 12.82
Heart disease 0 239 141 36.61 6.53
lonosphere 64 816 625 47.30 10.15
Liver 0 125 79 24.67 5.67
Sonar 47 1533 734 34.50 10.30
Waveform 16 6480 24063 46.00 52.52
Yeast 0 340 531 14.63 10.75

was faster than R1-PCA in many cases and PCA-L1 converged ihassl5 iterations except
for ‘waveform’ dataset. For ‘waveform’ dataset, the timedaaverage iterations were greatly

increased because of the large number of samples (4,999).

C. Face reconstruction

In this part, the proposed PCA-L1 algorithm was applied te feeconstruction problems and
the performances were compared with those of other methAslsn the previous subsection,
the initial projection of PCA-L1 was set to the sample with tAmest L2-norm.

The Yale face database consists of 165 gray-scale image$ ofdlviduals. There are 11
images per subject with different facial expressions offigonations. In [14], the authors report
two types of databases: a closely cropped set and a full feicdrsthis paper, the full face set
whose size is 100« 80 pixels was used. Each pixel was regarded as an input ianaich
constitutes an 8,000 dimensional input space.

In the first experiment, among 165 images, 20% were randoeiscted and occluded with
a rectangular noise consisting of random black and white ddtose size was at least 15
10 located at a random position. The left column of Fig. 5 shoypical examples of occluded

images.
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To these image set, we applied L2-PCA (eigenface [15]), R1-P@ARCA-L1 and extracted
various numbers of features. By using only a fraction of fezduwe could reconstruct images
such as the ones shown on the second to the fourth columng.ob Bnd computed the average

reconstruction error with respect to the original unocellidmages as follows:
1 n m
e(m) = = 70— wiwlx|s. 8
o) = 53 e = 3wz (®)

Here, n is the number of samples which is 165 in this casg! andz; are thei-th original
unoccluded image and theth image used in the training respectively, ands the number of
extracted features.

Figure 6(a) shows the average reconstruction errors faowsmnumbers of extracted features.
In the figure, when the number of extracted features was sl average reconstruction
errors for different methods were almost the same. Howdvem around 10 features, the
difference among different methods became apparent and IBCétarted to be better than
the other methods. Figure 5 shows the original and the rémmted images using 20 projection
vectors respectively. In the figure, we can see that the stagied images by L2-PCA have
lots of dots compared to those of other methods resultingath duality. Although the qualities
of the reconstructed images by PCA-L1 and those of R1-PCA ardisonct in the figure,
average reconstruction error of PCA-L1 was smaller than ehd&1-PCA when 20 projection
vectors were used.

Note that this problem is a typical example of small sampte problems where the dimension
of input space is higher than the number of samples. For ihid &f problems, there exists a
high dimensional null space where all the samples are geajeo the origin (zero). Considering
that PCA-L1 involves only summation and negation of givengas, it can easily be shown that
the result of PCA-L1 does not change whether it is performetheroriginal input space or on
the subspace excluding the null space. Therefore, to edgpP@A-L1, in this experiment, L2-
PCA was first performed to exclude the null space and then PCpArbdedure were performed.
By doing this, the operation time of PCA-L1 was reduced fron842ms to 2,453ms (which
includes 1.719ns, the operation time of L2-PCA). Note that for such methods B$CA which
are not invariant to rotations, this kind of preprocessiagrot be performed because the solution
will be altered. The average number of iterations for PCA-LdAsw.51 regardless whether the

data were preprocessed by L2-PCA or not. For this problem, ®RA+was also preprocessed by
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Fig. 5. Face images with occlusion and the reconstructed faces: lshrcobriginal, 2nd column: PCA-L1, 3rd column:
L2-PCA, 4th column: R1-PCA. (reconstructed with 20 projection vegtors
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Fig. 6. Average reconstruction errors for Yale dataset
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L2-PCA and it took 14,898ns on average, i.e., to obtain Fig. 6(a), R1-PCA took 1,042,860
(= 14,898ms x 70).

As a second experiment, to the original 165 Yale images, wie@&®0 dummy images which
consist of random black and white dots and performed L2-PCAPRA and PCA-L1. Figure
6(b) shows the average reconstruction error of each methibdvarious numbers of extracted
features. In the computation of average reconstructioor,ef8) was used witlh = 165, i.e., 30
dummy images were excluded. In this casg’ andz; were the same.

In the figure, when the number of extracted features is from 8&, the error of L2-PCA is
almost constant. This shows that the dummy images affebtedth up to the 36th projection
vectors seriously and these vectors were tuned to explardtmmy data. For R1-PCA, this
phenomenon started later at around 13th projection vechilevR1-PCA did not suffer from
this phenomenon and the reconstruction error was smallésedhree after the 14th projection
vector. The fluctuation of R1-PCA might be due to the fact that whole projection vectors
were replaced as the number of extracted features was varied

Figure 7 shows the reconstructed images with 20 projectextovs as well as the original
face images. The figure clearly shows that PCA-L1 is better tiher methods in reconstructing
original images when there are outliers.

The average number of iterations of PCA-L1 was 7.61 and it ®0K8ms including 2,172
ms which was the time took for preprocessing by L2-PCA. For thisbem, R1-PCA took
26,555ms on average.

V. CONCLUSION

In this paper, we proposed a method of principal componeatyais based on L1-norm
optimization. The proposed PCA-L1 tries to find projectiohattmaximizes L1-norm in the
projected space instead of the conventional L2-norm. In@uegse, a new method of L1-norm
optimization was introduced and was proven to find a localimar point. The proposed L1-
norm optimization technique is intuitive, simple, and etsymplement. In addition, it not only
successfully suppresses the negative effects of outligralbo is invariant to rotations.

The computational complexity of the proposed method is @rignal to the number of

samples, the dimension of input space, and the number afidas. Considering that the number
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202
Qe
0000

Fig. 7. Face images trained with dummy images and the reconstructedd fatecolumn: original, 2nd column: PCA-L1, 3rd

column: L2-PCA, 4th column: R1-PCA. (reconstructed with 20 projectiectors)

of iterations does not depend on the dimension of input spade expected to perform well
for the problems with large input dimension such as the ohasdeal with images.

The proposed method was applied to several pattern reamgmtoblems including face
reconstruction problems and the performances were comhpaite those of the conventional
L2-PCA and R1-PCA. The experimental results show that the gegpmethod is usually faster
than R1-PCA and robust to outliers.
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