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Abstract

In manipulating data such as in supervised learning, we often extract new fea-

tures from the original input variables for the purpose of reducing the dimensions

of input space and achieving better performances. In this paper, we show how

standard algorithms for independent component analysis (ICA) can be extended

to extract attributes for regression problems. The advantage is that general ICA

algorithms become available to a task of dimensionality reduction for regression

problems by maximizing the joint mutual information between target variable and

new attributes. We applied the proposed method to a couple of real world regression

problems as well as some artificial problems and compared the performances with

those of other conventional methods. Experimental results show that the proposed

method can efficiently reduce the dimension of input space without degrading the

regression performance.
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1 Introduction

In supervised learning, one is given an array of input variables to predict the

target value and there may exist irrelevant or redundant input variables to

complicate the learning process, thus leading to incorrect prediction [1] [2].

Even when the input variables presented contain enough information about

the target variables, they may not predict the target correctly because the

dimension of the input space may be so large that it may require numer-

ous instances to determine the relationship between inputs and target. This

problem is known as the curse of dimensionality [1] which can be mitigated

by selecting only the relevant inputs or extracting new variables containing

maximal information about the target variable from the original inputs. The

former methodology is called feature selection or subset selection, while the

latter is named feature extraction which includes all the methods that utilize

functional mapping to generate new features from the original inputs 4 [3] [4].

∗ Corresponding author is Nojun Kwak.
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4 The terms input and feature are usually used interchangeably in pattern recogni-

tion society. However, in this paper, to avoid complication, the term input is used
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This paper deals with the feature extraction problems since it often results

in improved performance by extracting new features from the original inputs,

especially when small input dimension is required. Among the various feature

extraction approaches, we focus on finding an appropriate subspace spanned

by a set of linear transformations of the original input variables. This subspace

method includes popular algorithms such as PCA (principle component anal-

ysis) [5], ICA (independent component analysis) [6] [7] [8], and LDA (linear

discriminant analysis) [9]. However, most of these methods cannot be used for

regression problems since some of them such as PCA and ICA focus on finding

features by unsupervised manner and others such as LDA have been mainly

developed for classification problems.

Instead of using only up to the second order statistics as in LDA and its vari-

ants, methods utilizing higher order statistics such as mutual information have

been proposed [10] – [16] . Mutual information is a good metric to measure

the closeness between random variables [17], thus fits to the dimensionality

reduction tasks. Many algorithms based on mutual information have been

proposed for feature selection problems [18] [19] [20], however, researchers

have only recently begun to use it for feature extraction problems due to the

computational burden [10] [11] [13] [16]. Ullman et al. applied this to binary

classification problems with binary features [11]. Fisher et al. [12] [13] [14]

used the quadratic mutual information, which is related to Renyi’s entropy, in

feature extraction for classification problems. On the other hand, Kwak [16]

tried to directly maximize the Shannon mutual information between the dis-

crete class variable and the newly extracted features. However, none of these

for the original input variable while the term feature is used for the transformed

variable.
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methods can easily be extended for regression problems because the mutual

information between continuous variables is still difficult to compute.

Recently, a feature extraction method ICA-FX which also utilizes mutual in-

formation was proposed [15]. Although ICA-FX is an extension of ICA whose

structure and the learning process are quite similar to those of standard ICA,

unlike ICA, it was developed for classification problems in that it includes

the output class information to find appropriate features. The algorithm at-

tempts to maximize the mutual information between the features and output

classes indirectly under the assumption that the sources are independent of

the classes. By maximizing the mutual information between the class and the

features, it can construct new features that contain much information about

the output class.

As was overviewed, although many feature extraction methods have been de-

veloped for classification problems, relatively little attention has been taken on

the feature extraction methods for regression problems in the pattern recog-

nition society.

On the other hand, in statistics, several algorithms have been developed as di-

mensionality reduction techniques for regression problems among which classi-

cal multivariate linear regression (MLR) [21] can be the basic. Although MLR

is the optimal in the sense of least squared error, it has a limitation that it can

only produce one feature. To overcome this limitation, a local linear dimen-

sionality reduction method based on the nearest neighbor scheme have been

proposed [22]. Sliced inverse regression (SIR) [23] and principal Hessian direc-

tions (PHD) [24] are also very popular dimensionality reduction techniques

for regression problems in statistics.
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In this paper, the ICA-FX for classification problems is extended to regression

problems. Because the output class label is coded as a numerical value in the

original ICA-FX algorithm, the method can be easily extended to regression

problems without changing much from the original ICA-FX which was devel-

oped for classification problems. We apply the ICA-FX to several regression

problems and the performances of ICA-FX are compared with those of other

methods.

This paper is organized as follows. In Section 2, we briefly review the ICA

algorithm. In Section 3, we develop ICA-FX for regression problems. This

follows almost the same steps as we did for classification problems. Experi-

mental results showing the advantages of the proposed algorithm are presented

in Section 4 and conclusions are provided in Section 5.

2 Review of ICA

The problem setting of ICA is as follows. Assume that there is an L-dimensional

zero-mean non-Gaussian source vector sss = [s1, · · · , sL]T , such that the com-

ponents si’s are mutually independent, and an observed data vector xxx =

[x1, · · · , xN ]T is composed of linear combinations of sources si, such that

xxx = Asss (1)

where A is a full rank N × L matrix with L ≤ N . The goal of ICA is to find

a linear mapping W such that each component of an estimate uuu of the source

vector

uuu = Wxxx = WAsss (2)
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is as independent as possible. The original sources sss are exactly recovered when

W is a pseudo-inverse of A up to some scale changes and permutations. For a

derivation of an ICA algorithm, one usually assumes that L = N , because we

have no idea about the number of sources. In addition, sources are assumed

to be drawn from independent identical distribution pi(si).

To find W in (2), Bell and Sejnowski [7] have developed the Infomax algorithm,

one of the popular algorithms for ICA, in which they used a feed-forward

neural processor. This neural processor takes xxx as an input vector. The weight

W is multiplied by the input xxx to give uuu and each component ui goes through a

bounded invertible monotonic nonlinear function gi(·) to match the cumulative

distribution of the sources.

From the view of information theory, maximizing the statistical independence

among variables ui’s is equivalent to minimizing mutual information among

ui’s. This can be achieved by minimizing mutual information between yi =

gi(ui), i = 1 · · ·L, since the nonlinear transfer function gi(·) does not introduce

any dependencies.

In [7], it has been shown that by maximizing the joint entropy H(yyy) of the

output yyy = [y1, · · · , yN ]T of a processor, we can approximately minimize the

mutual information among the output components yi’s

I(yyy) =
∫

p(yyy) log
p(yyy)

∏N
i=1 pi(yi)

dyyy. (3)

Here, p(yyy) is the joint probability density function (pdf) of a vector yyy, and

pi(yi) is the marginal pdf of the variable yi.
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The joint entropy of the outputs of this processor is

H(yyy) = −
∫

p(yyy) log p(yyy)dyyy = −
∫

p(xxx)
p(xxx)

log | det J(xxx)|dxxx (4)

where J(xxx) is a Jacobian matrix whose (i, j)th element is the partial deriva-

tive ∂yj/∂xi. Note that J(xxx) = W . Differentiating H(yyy) with respect to W

and applying natural gradient by multiplying W T W on the right, we get the

learning rule for ICA:

∆W ∝ [I −ϕϕϕ(uuu)uT ]W (5)

where

ϕϕϕ(uuu) =



−
∂p1(u1)

∂u1

p1(u1)
, · · · ,−

∂pN (uN )
∂uN

pN(uN)





T

. (6)

In this paper, we adopt the extended Infomax approach [8] because it is easy

to implement with less strict assumptions on source distribution.

3 ICA-FX for Regression

ICA outputs a set of maximally independent vectors that are linear combi-

nations of the observed data. Although these vectors might have some appli-

cations in such areas as blind source separation and data visualization, it is

not suitable for feature extraction for supervised learning, because it does not

make use of the output target information. The effort to incorporate the stan-

dard ICA with supervised learning has been made in our previous work [15],

where a new feature extraction algorithm, ICA-FX for classification problems

was proposed. In this paper, the original ICA-FX algorithm for classification

problems is extended to regression problems.

Before we present our algorithm, we formalize the purpose of feature extraction
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for regression problems.

The success of a feature extraction algorithm depends critically on how much

information about the target variables is contained in the newly generated

features. This can be formalized as follows.

(Problem statement) Assume that there are a normalized input vector,

xxx = [x1, · · · , xN ]T , and target variables, ttt = [t1, · · · , tNt
]T . The purpose of

feature extraction for regression problems is to extract M(≤ N) new features

fafafa = [f1, · · · , fM ]T from xxx, containing the maximum information on the target

variables ttt. Here Nt is the number of target variables.

In information theory, the information between random variables is measured

by mutual information and the above problem statement can be formalized

using this information theoretical term as follows:

(Problem statement - information theoretic view) The purpose of a

feature extraction for regression problem is to extract M(≤ N) features fffa

from the original input vector xxx, such that I(fffa; ttt), the mutual information

between newly extracted features fffa and target variables ttt becomes maximum.

The main idea of the proposed method is simple. It tries to apply the standard

ICA algorithms to feature extraction for regression problems by making use
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Fig. 1. Feature extraction algorithm based on ICA (ICA-FX)

of the target variables to produce two sets of new features; features that carry

as much information on the target variables (these features will be useful for

regression) as possible and the others that do not (these will be discarded).

The advantage is that the general ICA algorithms can be used for feature

extraction by maximizing the joint mutual information between the target

variables and new features.

Now consider the structure shown in Fig. 1. Here, the original input vector xxx

is fully connected to uuu = [u1, · · · , uN ], the target vector ttt is connected only to

uuua = [u1, · · · , uM ], and uN+l = tl for l = 1, · · · , Nt. In the figure, the weight
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matrix WWW ∈ ℜ(N+Nt)×(N+Nt) becomes

WWW =
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. (7)

where W ∈ ℜN×N and V = [V T
a ,000T

N−M,Nt
]T ∈ ℜN×Nt . Here the first nonzero

M rows of V is denoted as Va ∈ ℜM×Nt .

As stated before, in information theoretic view, the aim of feature extraction

is to extract M new features fffa from the original N input variables, xxx, such

that I(fffa; ttt), the mutual information between newly extracted features fffa and

the target variables ttt is maximized.

Because of the data processing inequality it is maximized when I(fffa; ttt) be-

comes equal to I(xxx; ttt), the mutual information between the original input

variables xxx and the target variables ttt.

This can be satisfied if we can separate the input space spanned by xxx into two

linear subspaces: one that is spanned by fffa = [f1, · · · , fM ]T , which contains

the maximum information on the target variables ttt, and the other spanned by

fff b = [fM+1, · · · , fN ]T , which is independent of ttt as much as possible.
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Fig. 2. Interpretation of Feature Extraction in the BSS structure

The condition for this separation can be derived as follows. If it is assumed

that WWW is nonsingular, then xxx and fff = [f1, · · · , fN ]T span the same linear

space. Because fff can be represented with fffa ⊕ fff b = [fffT
a , fffT

b ]T , the direct sum

of fffa and fff b, it becomes

I(xxx; ttt) = I(Wxxx; ttt) = I(fff ; ttt) = I(fffa ⊕ fff b; ttt) ≥ I(fffa; ttt). (8)

The first equality holds because W is nonsingular. The second and the third

equalities are from the definitions of fff , fffa and fff b. The last inequality is the

data processing inequality [17] which holds if I(fff b; ttt) = I([uM+1, · · · , uN ]T ; ttt) =

0.

If this is possible, the dimension of the input space can be reduced from N to

M(< N) by using only fffa instead of xxx, without losing any information on the

target variables.

To meet the equality condition I(fff b; ttt) = 0 of (8), the feature extraction

problem is interpreted in the structure of the blind source separation (BSS)

problem as shown in Fig. 2. The detailed description of each step is as follows:

(Mixing) Assume that there are N independent sources sss = [s1, · · · , sN ]T

which are also independent of the target variables ttt. Assume also that the
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observed input vector xxx is a linear combination of the sources sss and ttt with the

mixing matrices A ∈ ℜN×N and B ∈ ℜN×Nt, i.e.,

xxx = Asss + Bttt. (9)

(Unmixing) As shown in Fig. 1, the unmixing stage is slightly different from

the BSS problem. In the figure, the unmixing equation becomes

uuu = Wxxx + V ttt. (10)

Suppose uuu is somehow made equal to eee, the scaled and permuted version of the

source sss, i.e.,

eee , ΛΠsss (11)

where Λ is a diagonal matrix corresponding to an appropriate scale and Π is a

permutation matrix. The ui’s (i = 1, · · · , N) are then independent of the target

variables ttt by the assumption. Among the elements of fff = Wxxx(= uuu − V ttt),

fff b = [fM+1, · · · , fN ]T will be independent of ttt because the ith row of V is

zero, i.e., Vi = [wi,N+1, · · · , wi,N+Nt
] = 000, and fi = ui for i = M + 1, · · · , N .

Therefore, the M(< N) dimensional new feature vector fffa that contains the

most information on the target can be extracted by a linear transformation of

the input vector xxx if the relation uuu = eee holds.

The learning rule for the ICA-FX for regression is obtained by the same way as

that of ICA-FX for classification problem using the MLE (maximum likelihood

estimation) approach as follows.

If it is assumed that uuu = [u1, · · · , uN ]T is a linear combination of the source

sss; i.e., it is made equal to eee, a scaled and permutated version of the source, sss,
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as in (11), and that each element of uuu is independent of the other elements of

uuu, which is also independent of the target vector ttt, the log likelihood of WWW for

a given data D = {(xxxl, tttl)}n
l=1 becomes the following:

L(WWW |D) = n log | detWWW | +
n

∑

l=1

N
∑

i=1

log pi(u
l
i) +

n
∑

l=1

log p(tttl). (12)

Here, l denotes an index of the observed data and n is the number of samples.

The above equation is because

L(WWW |D) = p(D|WWW ) =
n

∏

l=1

p(xxxl, tttl|WWW )

and

p(xxx, ttt|WWW ) = | detWWW | p(uuu, ttt) = | detWWW |
N
∏

i=1

pi(ui) p(ttt).

Now, by the steepest ascent method L can be maximized. Because the last

term in (12) is a constant, differentiating (12) with respect to WWW leads to

∂L

∂wi,j

= n
adj(wj,i)

| detWWW | −
n

∑

l=1

ϕi(u
l
i)x

l
j 1 ≤ i, j ≤ N

∂L

∂wi,N+j

= −
n

∑

l=1

ϕi(u
l
i)t

l
j 1 ≤ i ≤ M, 1 ≤ j ≤ Nt

(13)

where adj(·) is adjoint and ϕi(α) = −dpi(α)
dα

/pi(α) .

It can be seen that | detWWW | = | det W | and adj(wj,i)

| detWWW |
= W−T

i,j . Thus the learning

rule becomes

∆W ∝ W−T − 1

n

n
∑

l=1

ϕϕϕ(uuul)xxxlT

∆Va ∝ − 1

n

n
∑

l=1

ϕϕϕ(uuul
a)ttt

lT .

(14)

Here ϕϕϕ(uuul) , [ϕ1(u
l
1), · · · , ϕN(ul

N)]T and ϕϕϕ(uuul
a) , [ϕ1(u

l
1), · · · , ϕM(ul

M)]T .

Applying a natural gradient on updating W , by multiplying W T W on the

13



right side of the first equation of (14), the following is obtained.

W (n+1) =W (n) + µ1[IN − 1

n

n
∑

l=1

ϕϕϕ(uuul)fff lT ]W (n)

V (n+1)
a =V (n)

a − µ2
1

n

n
∑

l=1

ϕϕϕ(uuul
a)ttt

lT .

(15)

Here µ1 and µ2 are the learning rates that can be set differently. By this

weight update rule, the resulting ui’s will have a good chance of fulfilling

the assumption that ui’s are not only independent of one another but also

independent of the target variables ttt. Note that the performance of this method

depends on how the data is distributed to satisfy the assumption. Because the

learning rule involves matrix multiplications, the computational complexity of

the algorithm is O(nN3).

Note that the learning rule for W is the same as the original ICA learning

rule in [7], and also note that fffa corresponds to the first M elements of Wxxx.

Therefore, the optimal features fffa can be extracted by the proposed algorithm

when it finds the optimal solution for W by (15).

4 Experiment Results

In this section, we have applied ICA-FX to several regression problems and

compared the performances of ICA-FX with those of other conventional meth-

ods such as PCA, MLR, SIR and PHD.

For all the problems, various regression methods such as multi-layer perceptron

(MLP) [25], support vector machine (SVM) [26], and k-nearest neighborhood

(k-NN) regression [27] were used to obtain the performance of each feature

extraction algorithm.
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For MLP, standard MLP with one hidden layer was used. The number of

input nodes was set to the number of extracted features and one output node

was used. For each problem, various numbers of hidden nodes (2, 4, 6, 8, 10,

15, and 20) were used in the training and the one with best performance on

the test data was chosen. As transfer functions of hidden and output layers,

tansig (tangent sigmoid) and purelin (pure linear) were used respectively. As a

training rule of the MLP, trainlm (Levenberg-Marquardt) was used. The weight

update rule of the method is

Wmlp(k + 1) = Wmlp(k) − (JT J + αI)−1JTeeemlp.

Here, J is the Jacobian matrix that contains first derivatives of the network

errors with respect to the weights, and eeemlp is a vector of network errors. For

adaptive value α, default settings of the Matlab were used [25].

For SVM, the SVM for regression presented in [26] [28] was used. For each

problem, polynomial kernels of degree 1,2, and 3 were trained and the one

with best performance on the test data were chose. All the other parameters

were set to default values.

For k-NN regression, the following weighted version of the k-NN regression

[27] was used

t̂̂t̂t(zzz) =

∑k
i=1 q(zzz,zzzi)ttti

∑k
i=1 q(zzz,zzzi)

(16)

where zzzi indicates the i-th nearest neighbor of the data point zzz and ttti is the

corresponding target vector. The kernel function q(zzz,zzzi) = 1

1+
√

||zzz−zzzi||
was used

throughout the experiments. Here, || · || is an L2-norm of a vector. The number

of neighbors k was varied among one, three and five for all the problems.

Note that the experimental results of ICA-FX can vary depending on the initial
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condition of the rate updating rule because there may be many local optimum

solutions. In ICA-FX, the learning rate µ1 and µ2 should be selected carefully.

If they are too large, the algorithm diverges, while if they are too small, the

learning slows down. Several values were tested and both µ1 and µ2 were set

to 0.02 in all the experiments. The ICA-FX algorithm terminated if either the

maximum number of iterations were reached or the change of log likelihood in

(12) was below a threshold ǫ, i.e., | L(WWW (n)|D)−L(WWW (n−1)|D) | < ǫ. In all the

experiments, the number of maximum iterations was set to 500 and ǫ = 10−6

was used.

For all the problems below, the number of target variables is one. Therefore,

the target variable is denoted by t instead of bold-faced ttt.

4.1 Artificial Problems

4.1.1 Linear Case

Suppose we have five independent input variables x1 ∼ x5 which have Gaussian

distributions with zero mean and unit variance. Also suppose that the target

output variable t has the following relationship with the input xxx:

t = 2x1 + 3x3 + z,

where z is a Gaussian random noise with zero mean and variance of 0.1.

For this problem, 1000 samples were generated. Ten-fold cross-validation was

applied to report the performances of various feature extraction algorithms

such as PCA, MLR, SIR, PHD and ICA-FX. For comparison, we also reported

the performance of regression with the original 5 inputs. Five regression meth-

16



ods, MLP, SVM, and k-NN regression with k = 1, 3, 5, were tested and the

averages of the five methods were reported in Table 1. For MLP, various num-

bers of hidden nodes (2, 4, 6, 8, 10, 15, and 20) were used in the training

and the best performance on the test data was used in the averaging process.

Likewise, for SVM, the polynomial kernels of degree 1, 2, and 3 were trained

and the best performance on the test data was used in the averaging.

In the table, we also reported the best performance among the five regression

methods in the second row of each feature extraction algorithm. The perfor-

mances are the root mean square (rms) errors on the test data. The numbers

in the parentheses are the averages of standard deviations for each feature

extraction algorithm.

As can be seen in the table, when the number of extracted features was one, all

the feature extraction algorithms except PCA and PHD performed well and

resulted almost the same average rms error around 0.12. Note that MLR is

optimal in the least squared error sense, but in some regression methods such

as MLP, ICA-FX performed slightly better than MLR. This is due to the fact

that the reported rms error is on the test data. The reason PHD performed

poorly can be explained by the fact that there is no Hessian direction because

the target value is linear to the input variables. As the number of extracted

features increased, the performances of all the other methods except PCA

and PHD became worse while those of PCA and PHD improved. From this

we can infer that all the feature extraction algorithms except PCA and PHD

extracted a near best feature as the first feature and the added features from

the second to the fifth did not contribute to the enhancement of the regression

performance. On the other hand, PCA and PHD failed to extract a good

feature as the first one and the added information in the additional features
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Table 1

Performance for the simple linear dataset (rms error). Averages of five regression

methods (MLP, SVM, 1-NN, 3-NN, and 5-NN). Each methods were tested with 10-

fold CV and the numbers in the parentheses are the averages of standard deviations

corresponding to each regression method. The second row of each feature extraction

algorithm shows the best performance among the five regression methods.

No. of Features 1 2 3 4 5

Original – – – – 0.70 (0.07)

– – – – 0.09 (MLP)

PCA 3.32 (0.45) 3.05 (0.12) 3.00 (0.16) 3.05 (0.16) 0.70 (0.06)

2.84 (SVM) 2.61 (SVM) 2.59 (SVM) 2.69 (MLP) 0.09 (MLP)

MLR 0.13 (0.02) – – – –

0.10 (MLP) – – – –

SIR 0.14 (0.02) 0.25 (0.04) 0.40 (0.04) 0.55 (0.04) 0.70 (0.06)

0.11 (MLP) 0.11 (MLP) 0.10 (MLP) 0.10 (MLP) 0.09 (MLP)

PHD 3.24 (0.49) 3.09 (0.42) 2.64 (0.66) 1.40 (0.72) 0.70 (0.06)

2.75 (SVM) 2.40 (SVM) 2.32 (MLP) 0.98 (MLP) 0.09 (MLP)

ICA-FX 0.12 (0.02) 0.13 (0.02) 0.14 (0.02) 0.15 (0.03) 0.16 (0.03)

0.09 (MLP) 0.09 (MLP) 0.09 (MLP) 0.09 (MLP) 0.09 (MLP)

contributed to the performance enhancement of the regression system.

Note that regardless of the number of extracted features, ICA-FX performed

the best. In addition, the average rms error of ICA-FX did not degrade much

compared to that of SIR as the number of extracted features increased. This

is due to the fact that in SIR, the extracted features were orthogonal to

one another that the second to fifth extracted features contained little in-

formation about the target variable and acted as noises in regression sys-

tems. On the other hand, since the structure of weight matrix in (7) de-
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pends on the number of extracted features M , the n-th extracted features

of ICA-FX were different from one another as the number of extracted fea-

tures M varied. For example, when we set M = 1, the extracted feature

was f1 = −5.564x1 + 0.017x2 − 8.562x3 + 0.008x4 + 0.001x5, while when

M = 2, they became f1 = 5.973x1 + 0.062x2 + 9.189x3 − 0.019x4 + 0.006x5

and f2 = 0.754x1 − 0.830x2 + 1.070x3 + 0.311x4 − 0.121x5. Note that when

M = 1, the weight vector of f1 was almost parallel to [2, 0, 3, 0, 0]T which is

the optimal value. Note also that when M = 2, the first feature was almost

the same as that of M = 1 and for the second feature, the ratio between

the weights corresponding to x1 and x3 was almost 2 : 3 which was the same

as the optimal solution, while the weights corresponding to the other inputs

were raised much. This shows that f2 as well as f1 contained some information

about the target variable when we set M = 2.

When the number of extracted features is equal to the original number of fea-

tures, 5, the average rms errors of different methods except ICA-FX were the

same (0.70) and that of ICA-FX was far better than this (0.16). This result

was originated from the k-NN regression method. Considering that PCA, SIR,

and PHD search for orthogonal transformations, the Euclidian distance be-

tween two points in the original input space is preserved in the feature space

generated by these methods if the dimension of the feature space is equal

to that of the original input space. Therefore, the k-NN regression method,

which is based on the Euclidian distance, results in the same rms errors for

these methods. On the other hand, because ICA-FX produces non-orthogonal

transformations, the Euclidian distance is not preserved by ICA-FX and its

rms error by k-NN regression becomes different from those of other methods.

In case of MLP and SVM, the rms errors with 5 features were almost the same
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regardless of the dimensionality reduction methods.

As can be seen in the table, SVM and MLP performed better than k-NN

regression regardless of the number of extracted features but the performance

differences among different regression methods were not high.

As a summary, in ICA-FX, all the M extracted features shared information

about the target variable and the performance of regression did not degrade

much as the number of extracted features increased. However, since the ex-

tracted feature corresponding to M = 1 was near optimal, the performance of

regression system degraded slightly in ICA-FX also.

4.1.2 Nonlinear Case

Suppose we have five independent input variables x1 ∼ x5 which have Gaussian

distributions with zero mean and unit variance. Furthermore, suppose that the

target output variable t has the following nonlinear relationship with the input

xxx:

t = sin(x2 + 2x4) + z.

Here, z is the Gaussian random noise with zero mean and variance of 0.1.

For this problem, 1000 samples were generated. Ten-fold cross-validation was

applied to this dataset and the performances of various feature extraction

algorithms on the test data are reported in Table 2. The numbers in the table

are the average rms errors of five regression methods: MLP, SVM, 1-NN, 3-

NN, 5-NN. For comparison, we also showed the performance with the original

5 inputs in the table. The rms error of MLP used in the averaging process was

the best one among different numbers of hidden nodes (2, 4, 6, 8, 10, 15, and
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Table 2

Performance for the nonlinear dataset (rms error). Averages of five regression meth-

ods (MLP, SVM, 1-NN, 3-NN, and 5-NN). Each methods were tested with 10-fold

CV and the numbers in the parentheses are the averages of standard deviations cor-

responding to each regression method. The second row of each feature extraction

algorithm shows the best performance among the five regression methods.

No. of Features 1 2 3 4 5

Original – – – – 0.44 (0.03)

– – – – 0.07 (MLP)

PCA 0.80 (0.04) 0.80 (0.04) 0.77 (0.05) 0.68 (0.07) 0.44 (0.03)

0.68 (SVM) 0.70 (SVM) 0.68 (MLP) 0.57 (5-NN) 0.07 (MLP)

MLR 0.65 (0.04) – – – –

0.56 (MLP) – – – –

SIR 0.62 (0.05) 0.63 (0.04) 0.61 (0.04) 0.60 (0.07) 0.44 (0.04)

0.53 (MLP) 0.52 (MLP) 0.50 (MLP) 0.45 (MLP) 0.07 (MLP)

PHD 0.79 (0.03) 0.76 (0.03) 0.72 (0.05) 0.65 (0.08) 0.44 (0.03)

0.69 (SVM) 0.67 (MLP) 0.63 (MLP) 0.53 (MLP) 0.07 (MLP)

ICA-FX 0.59 (0.10) 0.55 (0.09) 0.49 (0.07) 0.45 (0.04) 0.43 (0.04)

0.50 (MLP) 0.45 (MLP) 0.31 (MLP) 0.17 (MLP) 0.07 (MLP)

20). Likewise, the rms error of SVM was set to the best one with polynomial

kernels of degree 1,2, and 3. The numbers in the parentheses are the average

of the five standard deviations corresponding to each regression method. In

the second row, we also show the best rms error among the five regression

methods.

As can be seen in the table, regardless of the number of extracted features,

ICA-FX outperformed the other methods. It even performed better than MLR

which is optimal in the least squared error sense. It is because the rms error
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is on the test data and the mutual information criterion used in ICA-FX is

better suited for nonlinear problems than the least squared error criterion.

In fact, the weight vector for MLR was [0.036, 0.401,−0.012, 0.847,−0.347]T

while it was [0.000,−0.466,−0.009,−0.935, 0.061]T for ICA-FX with M = 1.

Note that the weights of x1, x3 and x5 are smaller in ICA-FX than MLR and

the ratio between the second and the forth weights is closer to the optimal

ratio 1 : 2 in ICA-FX than that in MLR. As in the linear case, compared

to the other methods, the performance of ICA-FX did not vary much with

different numbers of extracted features. Among the five regression methods,

MLP was the best in many cases.

4.2 Real world datasets

4.2.1 Housing - Boston

In this section, we have applied the proposed feature extraction algorithm to

the Housing (Boston) dataset in the UCI Machine Learning Repository [29].

The dataset contains 13 input variables, 12 continuous and 1 binary, and

one continuous target variable. There are total 506 instances. We randomly

divided this dataset into 90% training and 10% test sets 10 times and reported

the average rms error on the test data in Table 3. As in Table 1 and Table

2, the numbers in the table are the averages of the five regression methods

(MLP, SVM, 1-NN, 3-NN, 5-NN) and the numbers in the parentheses are the

averages of the standard deviations of 10 experiments corresponding to the five

regression methods. We also reported the best rms error and the corresponding

regression method in the second row of each feature extraction algorithm.
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Table 3

Performance for the Housing dataset (rms error). Averages of five regression meth-

ods (MLP, SVM, 1-NN, 3-NN, and 5-NN). Each methods were tested 10 times and

the numbers in the parentheses are the averages of standard deviations of the 10

experiments corresponding to each regression method. The second row of each fea-

ture extraction algorithm shows the best performance among the five regression

methods.

No. of f. 1 3 5 7 9 11 13

Original – – – – – – 3.56 (0.51)

– – – – – – 3.28 (MLP)

PCA 8.19 (1.18) 4.70 (0.85) 4.24 (0.82) 3.78 (0.68) 3.82 (0.70) 3.59 (0.60) 3.53 (0.63)

7.33 (SVM) 4.43 (5-NN) 3.70 (MLP) 3.36 (SVM) 3.42 (MLP) 3.31 (SVM) 3.27 (MLP)

MLR 4.41 (0.69) – – – – – –

3.65 (MLP) – – – – – –

SIR 4.61 (0.73) 4.39 (0.69) 3.80 (0.63) 3.73 (0.71) 3.80 (0.81) 3.85 (0.62) 3.60 (0.63)

3.85 (MLP) 3.65 (MLP) 3.60 (SVM) 3.34 (MLP) 3.37 (MLP) 3.35 (MLP) 3.32 (SVM)

PHD 9.07 (1.41) 5.67 (0.94) 4.89 (0.96) 4.58 (1.03) 4.01 (0.79) 3.95 (0.68) 3.63 (0.91)

7.85 (MLP) 5.16 (5-NN) 4.57 (5-NN) 4.24 (3-NN) 3.63 (MLP) 3.61 (MLP) 3.41 (MLP)

ICA-FX 4.32 (0.59) 4.09 (0.53) 3.74 (0.51) 3.37 (0.55) 3.48 (0.63) 3.61 (0.72) 3.61 (0.75)

3.59 (MLP)3.35 (MLP)3.43 (5-NN)3.25 (3-NN)3.20 (MLP)3.27 (SVM)3.35 (MLP)

From the table, we can see that for most numbers of extracted features, ICA-

FX performed better than other conventional methods. It is so especially when

the number of extracted features was small. The performance of ICA-FX was

almost constant, irrespective of the number of extracted features. On the other

hand, the performances of other methods varied much with different numbers

of extracted features. Note that the best average rms error of ICA-FX was

3.48 and it was slightly better than that using all the 13 original inputs. For
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this dataset, MLP was generally better than other regression methods.

4.2.2 Orange Juice

Orange juice dataset was obtained from the UCL machine learning database

[30]. The purpose of the dataset is to estimate the level of saccharose of an

orange juice from its observed near-infrared spectrum. It consists of 150 train-

ing and 68 test examples with 700 input variables. The target is a continuous

variable which corresponds to the level of saccharose.

As can be seen, this problem is a typical example of small sample size (SSS)

problem whose input dimension d(= 700) is much larger than the number of

training samples n(= 150). In classification problems, especially in literatures

on LDA, many techniques have been proposed to cope with the SSS problem

[31] [32] [33] [34]. The simplest approach is to reduce the dimension of the

input space from d to the order of the sample size n(< d). This is achieved

by preprocessing the data with PCA and normalizing each eigenvector cor-

responding to the nonzero eigenvalue to have unit variance. This method is

usually called as the sphering process. Because the sphering process has the

effect of magnifying the eigenvectors corresponding to small eigenvalues, a

small diagonal matrix can be added to the covariance matrix to reduce this

phenomenon. By doing this, all the eigenvalues of the modified covariance

matrix becomes nonzero and the full input dimension can be utilized in the

learning process. This is usually called as the regularization technique. After

regularization, sphering process can be used to scale each eigenvector. In this

experiment, to resolve the SSS problem, for all the feature extraction meth-

ods except PCA, we applied sphering process which reduced the dimension of
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Table 4

Performance for the Orange Juice dataset (rms error). Averages of five regression

methods (MLP, SVM, 1-NN, 3-NN, and 5-NN). The parentheses in ICA-FX are the

standard deviations of 10 experiments. The second row of each feature extraction

algorithm shows the best performance among the five regression methods.

no. of features 1 5 9 13 700

Original – – – – 10.34

– – – – 8.10 (MLP)

PCA 10.73 11.07 10.37 10.45 –

9.14 (MLP) 9.10 (5-NN) 8.15 (MLP) 8.55 (MLP) –

MLR 9.42 – – – –

7.46 (5-NN) – – – –

SIR 10.56 10.78 10.21 10.45 –

9.32 (5-NN) 9.14 (5-NN) 6.97 (MLP) 8.45 (MLP) –

PHD 12.50 10.93 10.62 10.39 –

9.18 (MLP) 9.36 (5-NN) 8.68 (MLP) 8.25 (MLP) –

ICA-FX 8.51 (1.34) 7.88 (0.97) 7.85 (0.91) 8.01 (0.96) –

7.13 (MLP) 7.00 (5-NN) 6.27 (MLP) 6.15 (MLP) –

input space into 149(= n − 1).

Table 4 shows the averages of the rms errors on the test dataset obtained by

the five regression methods (MLP, SVM, 1-NN, 3-NN, and 5-NN) with various

feature extraction algorithms. Because the result of ICA-FX depends on the

initial random weight, we performed ICA-FX with different initial weights

10 times and showed the standard deviations in the parentheses. As in the

previous tables, the best rms errors among the five regression methods were

shown in the second row of each feature extraction algorithm.
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For this problem, the MLR performed better than other methods except ICA-

FX. ICA-FX performed best regardless of the number of extracted features.

When the number of features was one, the average rms error of ICA-FX was

better than MLR by around 0.9 and it was better than the other methods at

least by 2.0 regardless of the number of features.

The best rms error of ICA-FX was obtained by MLP when 13 features were

extracted. Comparing different regression systems, MLP and 5-NN regression

were relatively better than other methods. More specifically, when the number

of extracted features is small, the performance of 5-NN was comparable to

that of MLP. However, as the number of extracted features increases, MLP

outperformed 5-NN. The reason is because we used Euclidian distance (L2-

norm) in k-NN and if the dimension of input space is too high, the inputs

that contain little information on the target variable act as noise, leading to a

degraded performance. When MLP was used, the 700 original inputs resulted

in rms error of 8.10 while the best rms error of ICA-FX with MLP was 6.15

which was obtained when M = 13. From this experiment, we can see that

ICA-FX performs good not only for the problems with small numbers (several

tens) of original input variables but also for the problems with relatively large

numbers of inputs up to several hundreds.

5 Conclusions

In this paper, we have extended the feature extraction algorithm ICA-FX to

regression problems. The proposed algorithm is based on the standard ICA

and can generate very useful features for regression problems.
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Although ICA can be directly used for feature extraction, it does not generate

useful information because of its unsupervised learning nature. In the proposed

algorithm, we added output target information in training ICA. With the

additional target information we can extract new features containing maximal

information about the target.

Since it uses the standard feed-forward structure and learning algorithm of

ICA, it is easy to implement and train. Experimental results for several data

sets showed that the proposed algorithm generates good features that out-

perform the original inputs and other features extracted from other meth-

ods. Because the original ICA is suited for processing large datasets such as

biomedical ones, the proposed algorithm is also expected to perform well for

large-scale regression problems.

In the proposed method, the number of extracted features can be arbitrarily

chosen. However, the best number of extracted features are not known in

advance. In our future work, we will study how to systematically determine

the number of extracted features for the proposed method.

References

[1] V. Cherkassky, I. Mulier, Learning from Data, John Wiley & Sons, 1998, Ch. 5.

[2] G. John, Enhancements to the data mining process, Ph.D. thesis, Computer

Science Dept., Stanford University (1997).

[3] A. Webb, Statistical pattern recognition, 2nd Edition, Wiley, 2002, Ch. 9.

[4] H. Liu, H. Motoda, Feature extraction, construction, and selection: A data

mining perspective, Kluwer Academic Publishers, 1998.

27



[5] I. Joliffe, Principal Component Analysis, Springer-Verlag, 1986.

[6] A. Hyvarinen, J. Karhunen, E. Oja, Independent component analysis, John

Wiley & Sons, 2001.

[7] A. Bell, T. Sejnowski, An information-maximization approach to blind

separation and blind deconvolution, Neural Computation 7 (6) (1995) 1129–

1159.

[8] T.-W. Lee, M. Girolami, T. Sejnowski, Independent component analysis using

an extended infomax algorithm for mixed sub-gaussian and super-gaussian

sources, Neural Computation 11 (2) (1999) 417–441.

[9] K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd Edition,

Academic Press, 1990.

[10] P. Viola, W. W. III, Alignment by maximization of mutual information,

International Journal of Computer Vision 24 (2) (1997) 137–154.

[11] S. Ullman, M. Vidal-Naquet, E. Sali, Visual features of intermediate complexity

and their use in classification, Nature Neuroscience (7) (2002) 682–687.

[12] D. Xu, J. Principe, Learning from examples with quadratic mutual information,

in: Proc. of the 1998 IEEE Signal Processing Society Workshop, 1998, pp. 155–

164.

[13] J. F. III, J. Principe, A methodology for information theoretic feature

extraction, in: Proc. Int’l Joint Conf. on Neural Networks 1998, Anchorage,

Alasca, 1998, pp. 1712–1716.

[14] K. Torkkola, Nonlinear feature transforms using maximum mutual information,

in: Proc. 2001 Int’l Joint Conf. on Neural Networks, Washington D.C., 2001,

pp. 2756 –2761.

28



[15] N. Kwak, C.-H. Choi, Feature extraction based on ica for binary classification

problems, IEEE Trans. on Knowledge and Data Engineering 15 (6) (2003) 1374–

1388.

[16] N. Kwak, Feature extraction based on direct calculation of mutual information,

International Journal of Pattern Recognition and Artificial IntelligenceAccepted

for publication.

[17] T. Cover, J. Thomas, Elements of Information Theory, John Wiley & Sons,

1991.

[18] R. Battiti, Using mutual information for selecting features in supervised neural

net learning, IEEE Trans. Neural Networks 5 (4) (1994) 537 – 550.

[19] N. Kwak, C.-H. Choi, Input feature selection for classification problems, IEEE

Trans. Neural Networks 13 (1) (2002) 143 – 159.

[20] N. Kwak, C.-H. Choi, Input feature selection by mutual information based on

parzen window, IEEE Trans. on Pattern Analysis and Machine Intelligence

24 (12) (2002) 1667–1671.

[21] S. Weisberg, Applied linear regression, 2nd Edition, John Wiley, New York,

1985, Ch. 3, p. 324.

[22] M. Loog, Supervised dimensionality reduction and contextual pattern

recognition in medical image processing, Ponsen & Looijen, Wageningen, The

Netherlands, 2004, Ch. 3.

[23] K. C. Li, Sliced inverse regression for dimension reduction (with discussioin),

Journal of the American Statistical Association 86 (1991) 316–342.

[24] K. C. Li, On principal hessian directions for data visualization and dimension

reduction: Another application of Stein’s lemma, Journal of the American

Statistical Assiciation 87 (1992) 1025–1039.

29



[25] The neural network toolbox for Matlab, http://www.mathworks.com

/products/neuralnet/.

[26] A. Smola, B. Scholkopf, A tutorial on support vector regression, Tech. Rep.

TR-1998-030, Neuro Colt Royal Holloway College (1998).

[27] E. A. Narayada, On estimating regression, Theory Probab. Appl. 9 (1964) 141–

142.

[28] S. Canu, Y. Grandvalet, V. Guigue, A. Rakotomamonjy, SVM and kernel

methods Matlab Toolbox, Perception Systemes et Information, INSA de Rouen,

Rouen, France (2005).

[29] D. Newman, S. Hettich, C. Blake, C. Merz, UCI repository of machine learning

databases, University of California, Irvine, Dept. of Information and Computer

Sciences, http://www.ics.uci.edu/∼mlearn/MLRepository.html (1998).

[30] M. Meurens, Orange juice data, Universite Catholique de Louvain, BNUT unit.,

http://www.dice.ucl.ac.be/mlg/DataBases/ORANGE JUICE/.

[31] J. Lu, K. Plataniotis, A. Venetsanopoulos, Regularization studies of linear

discriminant analysis in small sample size scenarios with applications to face

recognition, Pattern Recognition Letters 26 (2005) 181–191.

[32] L. Chen, H. Liao, M. Ko, J. Lin, G. Yu, A new lda-based face recognition system

which can solve the small sample size problem, Pattern Recognition 33 (2000)

1713–1726.

[33] J. Yang, F. Frangi, J.-Y. Yang, D. Zhang, Z. Jin, Kpca plus lda: A complete

kernel fisher discriminant framework for feature extraction and recognition,

IEEE Trnasactions on Pattern Analysis and Machine Intelligence 27 (2) (2005)

230–244.

[34] X. S. Zhou, T. S. Huang, Small sample learning during multimedia retrieval

30



using biasmap, in: Proc. IEEE International Conference on Computer Vision

and Pattern Recognition, Vol. 1, Hawaii, USA, 2001, pp. 11–17.

31


