Introduction to CNNs and RNNs

Nojun Kwak
nojunk@snu.ac.kr
http://mipal.snu.ac.kr

GSCST, Seoul National University, Korea

Aug. 2016

Many slides on CNNs are from Fei-Fei Li @Stanford, Raquel Urtasun @U. Toronto,

and Marc’Aurelio Ranzato ©@Facebook.
RNN parts are based on Colah’s blog: http://colah.github.io/

and the slides of Daniel Renshaw @ mlpﬁ - 'Q
LABORATORY
Nojun Kwak Introduction to CNNs and RNNs


mailto:nojunk@snu.ac.kr
http://mipal.snu.ac.kr
http://colah.github.io/

@lABORATORV

e Traditional Neural Networks (MLPs, - )
e Convolutional Neural Networks (CNNs)
@ Recurrent Neural Networks (RNNs)

@ Applications
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Traditional Pattern Recognition @M~A

LABORATORY

VISION
SIFT/HOG |a] KMeans/ |} ciossitierfmp .o
pooling car
fixed unsupervised supervised

SPEECH
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NLP

This burrito place _ JParse Tree

. . n-grams classifier p=p «_ »
is yummy and fun! Syntactic = "9 ™ +
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Hierarchical Compositionality (DEEP) @M

R E&

LABORATORY

VISION

pixels = edge = texton — motif = part = object

SPEECH
sample=> SPectral — formant —» motif = phone = word
band
NLP

character =» word =+NP/VP/..=> clause =» sentence =+ story
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Deep Learning @M~A

LABORATOR

‘car

What is deep learning?
@ Nothing new!
@ (Many) cascades of nonlinear transformations

@ End-to-end learning (no human intervention / no fixed
features)

Nojun Kwak Introduction to CNNs and RNNs



[ &

Shallow(?) Learning Examples - Supervised [©IKl

ABORATORY

Classification

OCR
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Artificial Neural Networks (ANN) @A

LABORATORY

@ Biologically inspired models

impulses carried
toward cell body

branches
of axon

axon
terminals

—_—
impulses carried
away from cell body

o wo
synapse

woTo

e
axon from a neuron

cell body

cell body

N wizi+b f<ZW‘+b>

output axon
activation
function
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Variants of ANNs MI~A

LABORATORY

Neuron Multi-layer

Perceptron

(in brain) perceptron

Deep neural
network
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A Brief History of ANNs @M~

LABORATORY

Deep Neural Network

(Pretraining)
Multi-layered SVM
Perceptron
XOR
ADALINE (Backpropagation)
Perceptron
Golden Age Dark Age (*Al Winter”)

Electronic Brain

a
. McCulloch - W, Pitts F.Rosenblatt B, Widrow - M. Hoff M. Minsky - S. Papert

Xaov xger  ngix

5%5%@?

- Adjustablo Woights + Loamablo Waights and Threshold + XOR Problem . Ty age - caging
+ Waights aro nol Loarned : * Kemeluncéon s

source of image: VUNO Inc.
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A Brief History of ANNs @=A

LABORATOR

@ First Generation: 1957 ~

o Perceptron: Rosenblatt,
1957

o Adaline: Widrow and
Hoff, 1960

+

a's are adjustoble
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A Brief History of ANNs @=A

LABORATOR

o First Generation: 1957 ~ @ Second Generation: 1986 ~

) Perceptron: Rosenblatt, o MLP with BP: Rumelhart
1957 '

o Adaline: Widrow and
Hoff, 1960

+

Input Patterns

a's are adjustoble
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A Brief History of ANNs @M~A

LABORATORY

@ Third Generation: 2006 ~

e RBM: Hinton and Salkhutdinov
e Reinvigorated research in Deep Learning

R, . Decoder!

™ z .- ‘

: ;s . :

fo e 1 eem . : oy
L

Tw{ Tw!»s,
2000

SR . [ | 2000
H [ s00 ] i w3
Wy § [_1000 ]
[_to00 ] : w)
_...RBM; 2
[ s00 ]
wi
O — i [30] Code layer
i : W
: w, H 4
d ; [ s00 ]
2000  ]pgy!
1000 1000
W, Watey
2000 [ 2000 I 2000 ]
w, w, W6,
RBM Encoder
Pretraining Unrolling Fine-tuning
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Classification problems @M=A

LABORATORY

e Given inputs z, and outputs t € {—1,1}

e Find a hyperplane that divides the space into half (binary
classification)

Y« = sign(w, z + wo)

= SVM tries to maximize the margin.

X, O Xz . O
| oJie) .0 O
. L
— O \\. /so \\ O
D D D D D \.\ Maxim‘u\m.
\\/mar in
O O <

X X4
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@1C0 &

Classification problems

e Given inputs ¢, and outputs t € {—1,1}

e Find a hyperplane that divides the space into half (binary
classification)

y =sign(wlz + b)

= SVM tries to maximize the margin.

X;

o

X1

Nojun Kwak

%, O

X1
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Nonlinear predictors @=A

LABORATOR

How can we make our classifier more powerful?
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Nonlinear predictors @=A

LABORATOR

How can we make our classifier more powerful?

@ Compute nonlinear functions of the input

Yy = F(:z:,w)
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Nonlinear predictors @=A

LABORATOR

How can we make our classifier more powerful?

@ Compute nonlinear functions of the input
Y= F(.’L‘,'IU)

Two types of widely used approaches
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Nonlinear predictors @=A

LABORATOR

How can we make our classifier more powerful?

@ Compute nonlinear functions of the input
Y= F(.’L‘,'IU)

Two types of widely used approaches

@ Kernel Trick: Fixed functions and optimize linear parameters
on nonlinear mappings ¢(x)

y = sign(w” ¢(z) +b)
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Nonlinear predictors @I~ ¢

How can we make our classifier more powerful?

@ Compute nonlinear functions of the input
Y= F(.’L‘,'IU)

Two types of widely used approaches

@ Kernel Trick: Fixed functions and optimize linear parameters
on nonlinear mappings ¢(x)

y = sign(w’¢(z) +b)
@ Deep Learning: Learn parametric nonlinear functions
y=F(@w) =" (ho(wyhi(wiz +b1) +b2) -

hq o: activation function at layer 1 or 2
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Neural Networks

@ Deep learning uses composite of simpler functions, e.g., ReLU,
sigmoid, tanh, max

@ Note: a composite of linear functions is linear!

\Pg
®

i
o0

are not taken as a layer)
e e
‘\‘.'//A . output layer

e Example: 2 layer NNet (Convention: input and output layers
LN ISX
input layer

\
<

Y

hidden layer 1 hidden layer 2
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Neural Networks @F]IPH

@ Deep learning uses composite of simpler functions, e.g., RelLU,
sigmoid, tanh, max
@ Note: a composite of linear functions is linear!

@ Example: 2 layer NNet (Convention input and output layers
are not taken as a layer)

h2

x—»[ hl (W x) ]—»[ h2 (W, ht) ]—»[ Wy h? ]—»y

x is the input

y is the output

h' is the i-th hidden layer output

W is the set of parameters of the i-th layer
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Nonlinearity - Activation function @M~A

LABORATORY

o wo

m w @ A singlue neuron can be
DR A DN S0 Ey used as a binary linear
cell body f(Zw,z, : b) classifier
2t ks @ Regularization has the
activation
cton interpretation of gradual
forgetting

Classical NNs used sigmoid or tanh function as an activation
function.

@ sigmoid: o(x) = H%
e tanh: tanh(z) = 22;2:2

Sigmoid tanh(x)
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Sigmoid function @M=A

LABORATORY

I S @ Squashes numbers to range
% [0.1]
of @ Historically popular since
i they have nice
- A . . interpretation as a
saturating “firing rate” of a
Sigmoid neuron
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Sigmoid function @I=A

LABORATOR

N @ Squashes numbers to range
' [0.1]
/ @ Historically popular since
' i they have nice
A . . interpretation as a
saturating “firing rate” of a
Sigmoid neuron

2 BIG problems:

@ Saturated neurons kill the gradients (cannot backprop further)
= Major bottleneck for the conventional NNs: not able to
train more than 2 or 3 layers

@ Sigmoid outputs are not zero-centered
= Restriction on the gradient directions
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RelLU: Rectified Linear Unit QMIPH

f(z) = max(0, z)

Does not saturate

"
\\

Computationally very

// efficient
Ve
- ! - - @ Converges much faster than
sigmoid/tanh in practice
ReLU (e.g. 6x)
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RelLU: Rectified Linear Unit QMIPH

f(z) = max(0, z)

Does not saturate
paTAl cLOUD active ReLU Co_m putationally very
w\ efficient
/{ Converges much faster than
dead ReLU

will never activate sigmoid/tanh in practice
=> never update
(e.g. 6x)

@ One annoying problem = Dead neurons
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RelLU: Rectified Linear Unit @NPH

N\
(4

f(x) = max(0, z)

Does not saturate

~
.
(4

N
N
()

Computationally very
2t 7 efficient

e : i o Converges much faster than
sigmoid/tanh in practice

Leaky ReLU (e.g. 6x)

@ One annoying problem = Dead neurons
@ Solution: leaky ReLU (small slope for negative input)

e Never dies.
e However, almost the same performance in practice.
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LABORATORY

4 4
Piecewise linear tiling: mapping is locally linear

Montufar et al. “On the number of linear regions of DNNs", arXiv 2014
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Forward Pass: Evaluating the function @M~A

LABORATOR

Forward propagation: compute the output y given the input x
2

ht h
X—>[ max(0, W, x) ]—»[ max(0, W, ht) ]—v[ Wy h? ]—>)‘

Fully connected layer

Nonlinearity comes from RelLU

Do it in a compositional way

zr=hl=h’=y
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Alternative graphical representation @M~A

LABORATOR

hk+1
— 1ax (0, W R — —| 7 I _/ .

R N
N e ol

Slide from M. Ranzato
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Why many layers? @=A

LABORATOR

Hierarchically distributed representations

[1T1T00010100001T101...] motorbike

0010000100110010...] tuck

Lee et al. “Convolutional DBN's - - - " ICML 2009
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Why many layers? @M~A

LABORATORY

Hierarchically distributed representations

predictionAof class

high-level | =
parts dly  eee (A0

= distributed representations

mid-level .
parts s feature gharmg
= compositionality
low level
parts
Input image

Lee et al. “Convolutional DBN's - - - " ICML 2009
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@M=A ¢

2

ht h
x—»[ max(0, W, x) ]—[ max(0, W, ht) ]—[ Wy h? ]—y

@ We want to estimate the parameters, biases and
hyper-parameters (e.g., number of layers, number of neurons)
for good predictions.

o Collect a training set of input-output pairs {z;,#; }}¥ ;.

@ Encode the output with 1-K encoding ¢t = [0,--- ,1,---,0].
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@M=A ¢

2

ht h
x—»[ max(0, W, x) ]—[ max(0, W, ht) ]—[ Wy h? ]—y

@ We want to estimate the parameters, biases and
hyper-parameters (e.g., number of layers, number of neurons)
for good predictions.

o Collect a training set of input-output pairs {z;,#; }}¥ ;.

@ Encode the output with 1-K encoding ¢t = [0,--- ,1,---,0].

@ Define a loss per training example and minimize the empirical
loss

1 N
i=1

N: number of training examples
R: regularizer
w: set of all parameters
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@ Softmax (Probability of class k given input):

exp(yk)

=1lz) = — I8
plee = 1) >o5o1 exp(y;)
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@ Softmax (Probability of class k given input):

exp(Y)
Z]C:I exp(yj)

@ Cross entropy (most popular loss function for classification):

plex = 1z) =

C
lw,z,t) = — > t* log p(cy|z)
k=1
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@ Softmax (Probability of class k given input):

exp(Y)
Z]C:I exp(yj)

@ Cross entropy (most popular loss function for classification):

plex = 1z) =

C
lw,z,t) = — > t* log p(cy|z)
k=1

@ Gradient descent to train the network

w* = argmin L(w)
w
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Backpropagation

e Efficient way of computing gradient (Chain rule)
@ Partial derivatives and gradients

fla,y) = zy gjj:y (;JyLm
d h) — d
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Backpropagation

e Efficient way of computing gradient (Chain rule)
@ Partial derivatives and gradients

fxy) =2y gi=y gjyc=m
d h) — d

o Example: z =4,y = -3 = f(z,y) = —12

of _ 4 Oof _

-3 Iy Vf{af af}
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Backpropagation

e Efficient way of computing gradient (Chain rule)
@ Partial derivatives and gradients

0 0
fley) =2y — £=y 8;c=m

@) . f@+h) - @) _
)~ i ) Fla+h) = f@) +h

df (x)
dx

o Example: z =4,y = -3 = f(z,y) = —12

of _ 4 Oof _

-3 Iy Vf{af af}

@ Question: If | increase x by h, how would the output f
change?
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Backpropagation @M~A

LABORATOR

Compound expressions with graphics (example from F.F. Li)
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Backpropagation: Another Example @M~A ¢

1

1 + e~ (wozo+wizy+wy)

Another example:  f(w,z) =

w0 200

Fei-Fei Li & Andrej Karpathy Lecture 5 - 14 21 Jan 2015
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Backpropagation: Another Example @M~A ¢

LABORATORY

1

T 1 4+ e~ (wozotwizitw,)

Another example: f(w,z)

w0 200

-1/(1.3742) = -0.53

Fei-Fei Li & Andrej Karpathy Lecture 5 - 15 21 Jan 2015
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Backpropagation: Another Example @M~A ¢

LABORATORY

1

T 1 4+ e~ (wozotwizitw,)

Another example: f(w,z)

w0 200

[local gradient] x [its gradient]
[1] x [-0.53] =-0.53

Fei-Fei Li & Andrej Karpathy Lecture 5 - 16 21 Jan 2015
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Backpropagation: Another Example @M~A ¢

1

T 1 4+ e~ (wozotwizitw,)

Another example: f(w,z)

w0 200

[local gradient] x [its gradient]
[eM(-1)] x [-0.53] = -0.20

Fei-Fei Li & Andrej Karpathy Lecture 5 - 17 21 Jan 2015
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Backpropagation: Another Example @M~A ¢

LABORATORY

1

T 1 4+ e~ (wozotwizitw,)

Another example: f(w,z)

w0 200

[local gradient] x [its gradient]
[-1]1x[-0.2] =0.2

Fei-Fei Li & Andrej Karpathy Lecture 5- 18 21 Jan 2015
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Backpropagation: Another Example @M~A

LABORATORY

|
F(,2) = T oy

Another example:

[local gradient] x [its gradient]

[11x[0.2]=0.2
[11x[0.2] = 0.2 (both inputs!)
()220
d
Lo G oo | 1@-12 % oy
d
fo(z) =az = %:a f(@)=c+z - %:1

Fei-Fei Li & Andrej Karpathy Lecture 5 - 19 21 Jan 2015
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Backpropagation: Another Example @M~A ¢

LABORATORY

1

T 1 4+ e~ (wozotwizitw,)

Another example: f(w,z)

w0 200

[local gradient] x [its gradient]
x0:[2] x[0.2] ~=0.4
w0: [-1]x [0.2] =-0.2

1.00 1.00 037 137
R R G

f@)=1 - 9 =y

f(@)=c+z — - =1

Fei-Fei Li & Andrej Karpathy Lecture 5 - 20 21 Jan 2015
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Backpropagation: Key ldea @0

LABORATOR

B ———
= agate hanging out |——p
 —

Every gate during backprop computes, for all its inputs:

[LOCAL GRADIENT] x [GATE GRADIENT]

Can be computed right away, The gate receives this during
even during forward pass backpropagation
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Backpropagation: Patterns in BP @M~A

LABORATOR

@ Add: gradient distributor
e Max: gradient router

e Mul: gradient switcher

1000 /5 _ -20.00
200 \_/ 100

Nojun Kwak Introduction to CNNs and RNNs



LA

Learning via Gradient Descent @

LABORATORY

@ Gradient descent to train the network
1
w* = argmin — Y [(w,xz;,t;) + R(w
gin 7 Y- 1(w.2i,8) + R(w)
@ At each iteration, we need to compute

Wp4+1 = Wy — 'anc(wn)

@ Use the backward pass to compute VL (w,,) efficiently

@ Recall that the backward pass requires the forward pass first

Nojun Kwak Introduction to CNNs and RNNs



Dealing with Big Data @I=A

LABORATOR

@ At each iteration, we need to compute
Wpt1 = Wy — Y VL(W,)
with
1N
VL(w,) = & ; Vi(wn,z;,t;) + VR(w,)

@ Too expensive when having millions of training examples
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Dealing with Big Data

@ At each iteration, we need to compute
Wp4+1 = Wy — ’an*c('wn)
with

Z Vi(wy,x;,t;) + VR(w,)

@ Too expensive when having millions of training examples

@ Instead, approximate the gradient with a mini-batch (subset
of examples: 100 ~ 1,000) - called stochastic gradient descent

NT sz wnvxlatl ~ sz wnvwlatz)

i=1 ’ €S
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SGD with momentum @A

LABORATOR

@ Stochastic Gradient Descent update
Wp41 = Wy — /an*c(wn)

with

VL(w,) = ZVZ (w,, x;, ;)

€S

S]
@ We can use momentum

w+—w — YA
A+—rkA+VL

@ We can also decay learning rate v as iterations goes on
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Fully Connected Layer @I=A

LABORATOR

Example: 200x200 image
40K hidden units
m) ~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough
training samples anyway..
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Locally Connected Layer

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g.,
face recognition).

Nojun Kwak Introduction to CNNs and RNNs



Locally Connected Layer @M~A |

LABORATORY

STATIONARITY? Statistics is similar at
different locations

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g.,
face recognition).

_O
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Convolutional Neural Networks @[T]IPH :

o |dea: statistics are similar at different locations (Lecun 1998)

@ Connect each hidden unit to a small input patch and share
the weight across space

@ This is called convolution layer and the network is a
convolutional neural network

Share the same parameters across
different locations (assuming input is
stationary):

Convolutions with learned kernels
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Convolutional Neural Networks @M~A

LABORATORY

e Number of filters (neurons) is considered as a new dimension
(depth)
= Volumetric representation

before:

output layer
input
layer hidden layer

now:
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Convolutional Neural Networks

e Number of filters (neurons) is considered as a new dimension

(depth)

= Volumetric representation

All Neural Net
activations

arranged in 3
dimensions:

HEIGHT

///,VWDTH
—_—

DEPTH

For example, a CIFAR-10 image is a 32x32x3 volume
32 width, 32 height, 3 depth (RGB channels)

Nojun Kwak
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Convolutional Neural Networks @NPH

LABORATOR

CNNs are just neural nets BUT:

1. Local connectivity

2.

a hidden neuron in
next layer

N

|
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A &

Convolutional Neural Networks @M~A

CNNs are just neural nets BUT:

1. Local connectivity

B\

|

N

32

a hidden neuron in

next layer

Nojun Kwak

image: 32x32x3 volume

before:  fully  connected:
32x32x3 weights

now: one neuron will connect
to, e.g., 5x5x3 chunk (recep-
tive field) and only have 5x5x3
weights

connectivity is:

@ local in space (5x5
instead of 32x32)

e but full in depth (all 3
depth channels)

Introduction to CNNs and RNNs




Convolutional Neural Networks @M

~A §

LABORATORY

CNNs are just neural nets BUT:
1. Local connectivity

/ 32 depth dimensiorl
00000

before: “hidden layer of 200 neurons”
now: “output volume of depth 200”

|
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Convolutional Neural Networks @M

~A §

LABORATORY

CNNs are just neural nets BUT:
1. Local connectivity

/ 32 depth dimension  Multiple neurons all look-

ing at the same region of

>Q OQO000O the input volume, stacked

along depth.
before: “hidden layer of 200 neurons”
now: “output volume of depth 200”

|
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Convolutional Neural Networks

CNNs are just neural nets BUT:
2. Weight sharing

/ %
@§
32
T

—=00000

Nojun Kwak Introduction to CNNs and RNNs



Convolutional Neural Networks @M

A &

LABORATORY

CNNs are just neural nets BUT:
2. Weight sharing

@ Weights are
32 shared across
32
3

different
locations
§

———>O O O O () o Each depth slice
is called one
feature map

Nojun Kwak Introduction to CNNs and RNNs



Convolutional Layer
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Convolutional Neural Networks

Convolutional Layer




Convolutional Neural Networks

Convolutional Layer










Convolutional Layer: Summary

Input volume of size [W1 x H1 x D1]

using K neurons with receptive fields F x F
and applying them at strides of S gives
Output volume: [W2, H2, D2]

W2 = (W1-F)/S+1,

H2 = (H1-F)/S+1,

D2 =K

Nojun Kwak Introduction to CNNs and RNNs



Feature (Filter) Visualization @M~A

LABORATO

Low-Level| |Mid-Level| |High-Level Trainable
L3 L, i
Feature Feature Feature Classifier
A

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
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@lABORATORV

In CNNs, Conv layers are often followed by Pool layers

@ Pooling layer: makes the representations smaller and more
manageable without losing too much information

X . Single depth slice
@ Increased receptive field NIREREE
] 56|78 mammer 8
@ Most common: MAX pooling si21]0 g
11234

@ Others: average, L2 pooling - - -

y

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.
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Improving Generalization @0

LABORATOR

Weight sharing (Reduce the number of parameters)

e Data augmentation (e.g., jittering, noise injection,
tranformations)

e Dropout [Hinton et al.]: randomly drop units (along with their
connections) from the neural network during training. Use for
the fully connected layers only

Regularization: Weight decay (L2, L1)
Sparsity in the hidden units
Multi-task learning

Transfer learning

Nojun Kwak Introduction to CNNs and RNNs



@lABORATORV

Typical ConvNet:
Image — [Conv - ReLU] — (Pool) — [Conv - ReLU] — (Pool) —
FC (fully-connected) — Softmax

CONV CONV POOLCONV CONV POOL CONV CONV POOL  E¢

l RelLU l RiLUl 1 RiLU l R;LUl l RelLU l RiLUl (Fully-connected)

e
= -
T & -
| < | = =
! = . . . i @irplane
. . b - - i Ship
- . - - ' horse
L = ] =] =

B
LS T ]
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LABORATORY

o1: feat C3: f. maps 16@10x10
: feature maps S4: f. maps 16@5x5
INPUT 6@26x28 ps 16@

32x32 S2:f. maps
6@14x14

FullmnAection ‘ Gaussian connections

Convolutions Subsampling Convolutions ~ Subsampling Full connection
Lenet5 (Yann Lecun 1998)
— 1 IR #d
-\ | ) ¢ S ] e B e
I | o I S E i
\ L] 192 [FT] Foz Ihag \dense
48
- ;138 — —
1¥ k 13 13
EN i % i
el ) 3 K ENRRN 3
i 3 e | e iy dense | |densal
'; 1000
[ \] 152 192 128 Max
Max 128 Max paoling T 048
pooling poaling
a8

Alexnet (Alex Krizhevsky et. al., 2012)
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ConvNets - Flavours

filter size 7 [ ‘3
. ‘IN ,\2.55 .
stride 2 3x3 max pool| comv'}as SXs}::‘)ZT o] 4096 4096 class
stride2 nom stride 2] |nor stride units| | units| | softmax
Input Image ‘\ N »112 %6 " @]13 256
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer6 Layer7 Output
ZFnet: Clarifai (Matt Zeiler and Rob Fergus, 2013)
T
1 o1 a gl g ditegglggdie
g Ry, A0y lgatng 04 B4
Tl aiag gl gn wa 00 |
0B B g0,
Convolution
Pooling

Googlenet (Google, 2014) Other
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Complexity (Alexnet) @M=A

LABORATORY

category

Total nr. params: 60M *prediction Total nr. flops: 832M
M | LINEAR | 4M
many params I
(weights) M | FULLY CONNECTED | 16M
wel ) ¥
9 37M | FULLY CONNECTED | 37m
I
MAX POOLING
442K CONV 74M
I
1.3M CONV 224M
884K CONV 149M
|
MAX POOLING
LOCAL CONTRAST NORM
307K CONV 223M
I
MAX POOLING |
LOCAL CONTRAST NORM high complexity
35K CONV 105M(timel memory)

inpyt
Krizhevsky et al. “ImageNet Classification wlltlﬂpc?eep CNNs” NIPS 2012
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Recent Trend @M~A

LABORATORY

Microsoft

Research

Revolution of Depth
{152 layers

\
\
' 7.3

V6.7

B I I

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)
ZICCViS

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.

@ Human: 5.1% (Karpathy), Baidu cheating (2015.05) - 4.58%
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a shallower
model
(18 layers)

2ICCVLS

AREHR

ilililils

alalil

layers (=]

]

]
]
]
s

@lABORATORV

Migrosof
a deeper Research
counterpart
(34 layers)

* A deeper model should not have
higher training error

* Asolution by construction:
* original layers: copied from a
learned shallower model
* extra layers: set as identity
* atleast the same training error

* Optimization difficulties: solvers
cannot find the solution when going
deeper...

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.

ion to CNNs and RNNs




Recent Trend @M=A

LABORATORY

* Plaint net * Residual net

X X

weight layer weight layer

any two

stacked layers F(X) identity
weight layer weight layer X
H(x) HxX)=Fx) +x @
ImageNet plain nets ImageNet ResNets

60| ~pned

50|
; 34-layer ‘ 18-layer

30 =

e ed: traln 18-layer T -~ 34-layer
“o 10 40 50 40 0

20 30
iter. (1e4)

* Deep ResNets can be trained without difficulties
* Deeper ResNets have lower training error, and also lower test error
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@1°0 §

@ Deep Learning = learning hierarhical models.
@ ConvNets are the most successful example. Leverage large
labeled datasets.
o Optimization
e Don't we get stuck in local minima? No, they are all the same!
o In large scale applications, local minima are even less of an
issue.
@ Scaling
o GPUs
o Distributed framework (Google)
o Better optimization techniques
@ Generalization on small datasets (curse of dimensionality):

e data augmentation
e weight decay

e dropout

e unsupervised learning
e multi-task learning
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Feedforward vs. Recurrent Neural Networks | [D]KlGR!

LABORATOR

S - C?)/O e

) O ~0
- ™ l: / P
o ol oNGITAo Do
~ \Oa / %

@ Feedforward networks

e Activation is fed forward from input to output through “hidden
layers”

e Static input-output mappings (functions)

o Basic theoretical result: MLPs can approximate arbitrary (term
needs some qualification) nonlinear maps with arbitrary
precision (“universal approximation property”)

e Most popular supervised training algorithm: backpropagation
algorithm
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Feedforward vs. Recurrent Neural Networks |I[JNIlG

LABORATORY

o Huge literature, 95% of neural network publications concern
feedforward nets

e have proven useful in many practical applications as
approximators of nonlinear functions and as pattern classifiers.

@ Recurrent Neural Networks

o All biological neural networks are recurrent

e RNNs implement dynamical systems

o Basic theoretical result: RNNs can approximate arbitrary (term
needs some qualification) dynamical systems with arbitrary
precision (“universal approximation property”)

e Several types of training algorithms are known, no clear winner

e theoretical and practical difficulties by and large have
prevented practical applications so far (?)
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The power of RNN - flexibility

onet_oone cie to many many to oie manyt_omany mfyt_o mi\y
0 OO0 1 JO0  O0d
t t ot t t ot 1 ttt
U [ [HHD [DHHHHD  [HH
t t tt ot t ot ot t
I o0 OO AL

@ RNN as dynamic classifiers (variable length output)

Introduction to CNNs and RNNs



O/?'_ o x(it+l <o =

_ o
e u(n+1) N \ ' ’\Y("“'])
LGS0 LN
oL Q),\O, 0 o QD > -
= u(n) T A y(n)
u(n-;‘; - y(n-1)
A. B
e Unfolding

@ Weight sharing
@ How many stacks?
@ Vanishing & exploding gradients — RelLU?
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Recurrent Neural Networks

6 & © . ¢

@ Like HMM, the model can connect previous information to
the present task. (video, NLP, ---)

o Predicting the last word: “the clouds are in the
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Recurrent Neural Networks

6 & © . ¢

@ Like HMM, the model can connect previous information to
the present task. (video, NLP, ---)

@ Predicting the last word: “the clouds are in the sky”

= Nearby information is passed to predict the present word.
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Limitations of RNNs

@ Predicting the last word:
“l grew up in France. ------ , | speak fluent

@ Long gap between the hint and the word needing prediction.

@ RNNs are unable to deliver information through the long gap.

® ® ® %D &>
ot 1 ! I
LA -1 A ={Af——]A[A[A]

6 & b o o o

@ The limitation is almost the same as that of HMM.
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@ Long Short Term Memory Networks (LSTMs): Hochreiter &
Schmidhuber (1997)
@ Standard RNNs - one layer of tanh

& ® [
. r ] , t
| b
A e ‘ A ‘
\ ) J L J
© ® ©
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@1C0 &

@ Long Short Term Memory Networks (LSTMs): Hochreiter &
Schmidhuber (1997)
@ Standard RNNs - one layer of tanh

® ® [
t I , f
L
A 5 ‘ A ‘
@ ® ©
@ 4 components — forget, input, output gates + information
(states)
® ® ()
T I T
D cf;rl I -
A réJ 3 A
LbabsTl]) A,
~ "y > \..|
3 ® ® O 0 — > <

Layer Operation  Transfer
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Cell States & Gates: core idea of LSTM @M~A

LABORATOR

@ Cell states: information

Ciy

o

o 3 Gates: forget, input, output
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Forget Gates | @M~A

LABORATOR

@ Outputs a number between 0 and 1 for each cell state C;_1.

@ How much information from the previous states should we
keep?

fg =ag U/Vf‘[htfhl'f] + bf)
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Input gates @0

LABORATOR

@ Input gates: How much information should we update from
the input?

1 = J(i’i"{'[hffl,:rt] + b,)
G, =tanh(We-[hi—1, 2] + be)
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Cell states: information @NPH

LABORATOR

@ Tanh layer (information): creates new additive information
value C4.

C.F 1
X ()
f‘T i'r'%@ Cy=fi*Cpor + i * C
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Output gates @M

LABORATORY

@ Output: filtered cell states

@ How much information should be output?

IJ,T

Cank> Oy = U(I"Vo [hifl:'rl")‘.] + bO)

en 0
o] . hy = o, = tanh (C})

hy_y
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Putting it all together Mi~A

LABORATOR

@ --- >: peephole
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Backpropagation in LSTM MiRA

LABORATOR

o f=1,7=0: long term dependency
e f=0,i=1: standard RNN
@ red: linear (easy) path, green: nonlinear (difficult) path
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@lABORATORV

@ RNNs suffer from the problem of Vanishing Gradients

@ The sensitivity of the network decays over time as new inputs
overwrite the activations of the hidden layer, and the network
forgets the first inputs.

@ This problem is remedied by using LSTM blocks instead of
sigmoid cells in the hidden layer.

@ LSTM blocks can choose to retain their memory over arbitrary
periods of time and also forget if necessary.

Very good at finding hierarchical structure
Can induce nonlinear oscillation (for counting and timing)

But error flow among blocks truncated

Difficult to train: weights into gates are sensitive
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Example: Language modelling | @M

LABORATORY

Vocabulary, size V.

x; € RV: true word in position ¢ (one-hot)

y; € RY: predicted word in position ¢ (distribution)
Assume all sentences are zero padded to length L.
Model: yi+1 = p(zig1|ze, xp—1, -+ ,x1) for 1 <t < L

Minimize cross-entropy objective:

L L VvV
J:ZH(yt,.Tt é sztzl()gytz
t=2

t=21i=1

o(+) is some sigmoid-like (squashing) function (e.g. logistic or
tanh)

@ b- is a bias vector, W is a weight vector.
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Multi-layer Perceptron (MLP)

‘ €:r_3 ‘ €r_3 ‘ ’ €3 ‘
1 1 1
‘ X¢—3 ‘ ‘ Xt-2 ‘ ‘ Xt—1 ‘

Yer1 = softmax(W¥"h,)
he = o(W"les—15 €123 €3] + 1)

€t = Wex.ibt
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[ e | [ e [ [ e |
| [ 1
[ X | % [ [ xen |

Yiy1 = softmax(W¥h,)
he = o(Whee, + Wh, | 4+ M)

€t = Wex.%t
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Vanishing gradients @M~A

LABORATORY

@ Error gradients pass through nonlinearity every step

Some Common Activation Functions Activation Function Derivatives
1 /
//‘ 1
0.5 /
[ 0.5
oF—" ]
/ L \\
/ o S~
-0.5 T Yinea¥ T linear®)
" Yiogistic X — Jlogsstic X
1 - gl;vvr|(x) 05 g'l?'|"(x)
-4 -2 0 2 4 -4 -2 0 2 4
X X

Image from https://theclevermachine.wordpress.com

@ Unless weights large, error signal will degrade
p = o' (YWD,
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Vanishing gradients @I=A

LABORATOR

o Gradients may vanish or explode
@ Can affect any ‘deep’ network
e e.g. fine-tuning a non-recurrent deep NN.

@ @ @ QO O QO
D )

Hidden
Layer

o @ O

Time 1 2 3 4 5 6 7
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Gradients no longer vanish with LSTM

@ If the input gate = 0 and forget gate = 1, gradient pass
through the cell

“TTTYTYY

en o?»oj—»o@o@o@o@ .(;)

-900000¢

Time

Cy = fi % Ci_1 + iy x Cy

Nojun Kwak Introduction to CNNs and RNNs



Extensions of RNNs

LABORATORY

@ Bidirectional

Output Layer

Backward Layer

Forward Layer

Input Layer
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Gated Recurrent QMIPH

Chung, J.,et al. Empirical evaluation of gated recurrent neural networks on sequence

modeling. arXiv'14.

i
f c z
<—IN o« —{R
> sour >OuT
(a) Long Short-Term Memory (b) Gated Recurrent Unit
LSTM Unit:

hd = of tanh(c) GRU Unit:
o] = 0(Woxy + Ughy_q + Voey)? hi=@ =zl |+ =dRd
of =fieiy +iid I =o(Woxy + Ushy_q)’
&1 = tanh(Wexy + Uchy_ )7 11{ = tanh(Wx; + U(ry ® hy_q))?
Fl = o(Wexy + Uphy_q + Viey)! vl = o(Wrxt + Urhy_1)?

it = o (Wixg + Uihg 1 + Vie)?
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Applications @M~A

LABORATORY

@ Object detection: R-CNN, fast-RCNN, faster-RCNN
= g5 wapedregion _j acroplane? no. |

CNNN, :

tvmonitor? no.

1 2 3 4

Oz bbox
softmax regressor

Rol FC FC
pooling

layer m_ﬁfﬁ

Rol feature
vector

For each Rol
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Generative Models @fT]IPﬂ

LABORATOR

!Radford, Alec et al. “Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks,” arXiv:1511.06434, 2015.
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Generative Models @M=A

LABORATORY

Synthetic face with glasses 2

— + = <f ==
£ -
man man woman .
with alasses without alasses withaut Alacese woman with glasses

2Radford, Alec et al. “Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks,” arXiv:1511.06434, 2015.
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Neural Machine Translation (NMT) | @A

LABORATORY

Economic growth has slowed down in recent years

/

I / ‘-\
Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt .
Economic growth has slowed down in recent years

La croissance économique s' est ralemle ces dermeres années .
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e = (Economic, growth, has, slowed, down, in, recent, years, .)
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Neural Machine Translation (NMT) 1lI

=(a, man, is, jumping, into, a, lake, .)

s 0~

Ssample

Word

ent

ork

Convolutional Neural Netw

3“Introduction to Neural Machine Translation with GPUs;”
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