
Introduction to CNNs and RNNs

Nojun Kwak
nojunk@snu.ac.kr

http://mipal.snu.ac.kr

GSCST, Seoul National University, Korea

Aug. 2016

Many slides on CNNs are from Fei-Fei Li @Stanford, Raquel Urtasun @U. Toronto,
and Marc’Aurelio Ranzato @Facebook.
RNN parts are based on Colah’s blog: http://colah.github.io/
and the slides of Daniel Renshaw

Nojun Kwak Introduction to CNNs and RNNs

mailto:nojunk@snu.ac.kr
http://mipal.snu.ac.kr
http://colah.github.io/

Outline

Traditional Neural Networks (MLPs, · · ·)
Convolutional Neural Networks (CNNs)
Recurrent Neural Networks (RNNs)
Applications

Nojun Kwak Introduction to CNNs and RNNs

Traditional Pattern Recognition

Nojun Kwak Introduction to CNNs and RNNs

Hierarchical Compositionality (DEEP)

Nojun Kwak Introduction to CNNs and RNNs

Deep Learning

What is deep learning?
Nothing new!
(Many) cascades of nonlinear transformations
End-to-end learning (no human intervention / no fixed
features)

Nojun Kwak Introduction to CNNs and RNNs

Shallow(?) Learning Examples - Supervised

Nojun Kwak Introduction to CNNs and RNNs

Deep Learning Examples - Supervised

Nojun Kwak Introduction to CNNs and RNNs

Artificial Neural Networks (ANN)

Biologically inspired models

Nojun Kwak Introduction to CNNs and RNNs

Variants of ANNs

Nojun Kwak Introduction to CNNs and RNNs

A Brief History of ANNs

source of image: VUNO Inc.

Nojun Kwak Introduction to CNNs and RNNs

A Brief History of ANNs

First Generation: 1957 ∼
Perceptron: Rosenblatt,
1957
Adaline: Widrow and
Hoff, 1960

Second Generation: 1986 ∼
MLP with BP: Rumelhart

Nojun Kwak Introduction to CNNs and RNNs

A Brief History of ANNs

First Generation: 1957 ∼
Perceptron: Rosenblatt,
1957
Adaline: Widrow and
Hoff, 1960

Second Generation: 1986 ∼
MLP with BP: Rumelhart

Nojun Kwak Introduction to CNNs and RNNs

A Brief History of ANNs

Third Generation: 2006 ∼
RBM: Hinton and Salkhutdinov
Reinvigorated research in Deep Learning

Nojun Kwak Introduction to CNNs and RNNs

Classification problems

Given inputs xxx, and outputs t ∈ {−1, 1}
Find a hyperplane that divides the space into half (binary
classification)

y∗ = sign(wwwT
∗ xxx+www0)

⇒ SVM tries to maximize the margin.

Nojun Kwak Introduction to CNNs and RNNs

Classification problems

Given inputs xxx, and outputs t ∈ {−1, 1}
Find a hyperplane that divides the space into half (binary
classification)

y = sign(wwwTxxx+ b)

⇒ SVM tries to maximize the margin.

Nojun Kwak Introduction to CNNs and RNNs

Nonlinear predictors

How can we make our classifier more powerful?

Compute nonlinear functions of the input

y = F (xxx,www)

Two types of widely used approaches

Kernel Trick: Fixed functions and optimize linear parameters
on nonlinear mappings φ(xxx)

y = sign(wwwTφ(xxx) + b)

Deep Learning: Learn parametric nonlinear functions

y = F (xxx,www) = · · · (hhh2(wwwT
2hhh1(wwwT

1 xxx+ b1) + b2) · · ·

hhh1,2: activation function at layer 1 or 2

Nojun Kwak Introduction to CNNs and RNNs

Nonlinear predictors

How can we make our classifier more powerful?
Compute nonlinear functions of the input

y = F (xxx,www)

Two types of widely used approaches

Kernel Trick: Fixed functions and optimize linear parameters
on nonlinear mappings φ(xxx)

y = sign(wwwTφ(xxx) + b)

Deep Learning: Learn parametric nonlinear functions

y = F (xxx,www) = · · · (hhh2(wwwT
2hhh1(wwwT

1 xxx+ b1) + b2) · · ·

hhh1,2: activation function at layer 1 or 2

Nojun Kwak Introduction to CNNs and RNNs

Nonlinear predictors

How can we make our classifier more powerful?
Compute nonlinear functions of the input

y = F (xxx,www)

Two types of widely used approaches

Kernel Trick: Fixed functions and optimize linear parameters
on nonlinear mappings φ(xxx)

y = sign(wwwTφ(xxx) + b)

Deep Learning: Learn parametric nonlinear functions

y = F (xxx,www) = · · · (hhh2(wwwT
2hhh1(wwwT

1 xxx+ b1) + b2) · · ·

hhh1,2: activation function at layer 1 or 2

Nojun Kwak Introduction to CNNs and RNNs

Nonlinear predictors

How can we make our classifier more powerful?
Compute nonlinear functions of the input

y = F (xxx,www)

Two types of widely used approaches
Kernel Trick: Fixed functions and optimize linear parameters
on nonlinear mappings φ(xxx)

y = sign(wwwTφ(xxx) + b)

Deep Learning: Learn parametric nonlinear functions

y = F (xxx,www) = · · · (hhh2(wwwT
2hhh1(wwwT

1 xxx+ b1) + b2) · · ·

hhh1,2: activation function at layer 1 or 2

Nojun Kwak Introduction to CNNs and RNNs

Nonlinear predictors

How can we make our classifier more powerful?
Compute nonlinear functions of the input

y = F (xxx,www)

Two types of widely used approaches
Kernel Trick: Fixed functions and optimize linear parameters
on nonlinear mappings φ(xxx)

y = sign(wwwTφ(xxx) + b)

Deep Learning: Learn parametric nonlinear functions

y = F (xxx,www) = · · · (hhh2(wwwT
2hhh1(wwwT

1 xxx+ b1) + b2) · · ·

hhh1,2: activation function at layer 1 or 2

Nojun Kwak Introduction to CNNs and RNNs

Neural Networks

Deep learning uses composite of simpler functions, e.g., ReLU,
sigmoid, tanh, max
Note: a composite of linear functions is linear!
Example: 2 layer NNet (Convention: input and output layers
are not taken as a layer)

Nojun Kwak Introduction to CNNs and RNNs

Neural Networks

Deep learning uses composite of simpler functions, e.g., ReLU,
sigmoid, tanh, max
Note: a composite of linear functions is linear!
Example: 2 layer NNet (Convention: input and output layers
are not taken as a layer)

xxx is the input
yyy is the output
hhhi is the i-th hidden layer output
W i is the set of parameters of the i-th layer

Nojun Kwak Introduction to CNNs and RNNs

Nonlinearity - Activation function

A singlue neuron can be
used as a binary linear
classifier
Regularization has the
interpretation of gradual
forgetting

Classical NNs used sigmoid or tanh function as an activation
function.

sigmoid: σ(x) = 1
1+e−x

tanh: tanh(x) = ex−e−x

ex+e−x

Nojun Kwak Introduction to CNNs and RNNs

Sigmoid function

Squashes numbers to range
[0,1]
Historically popular since
they have nice
interpretation as a
saturating “firing rate” of a
neuron

2 BIG problems:
1 Saturated neurons kill the gradients (cannot backprop further)
⇒ Major bottleneck for the conventional NNs: not able to
train more than 2 or 3 layers

2 Sigmoid outputs are not zero-centered
⇒ Restriction on the gradient directions

Nojun Kwak Introduction to CNNs and RNNs

Sigmoid function

Squashes numbers to range
[0,1]
Historically popular since
they have nice
interpretation as a
saturating “firing rate” of a
neuron

2 BIG problems:
1 Saturated neurons kill the gradients (cannot backprop further)
⇒ Major bottleneck for the conventional NNs: not able to
train more than 2 or 3 layers

2 Sigmoid outputs are not zero-centered
⇒ Restriction on the gradient directions

Nojun Kwak Introduction to CNNs and RNNs

ReLU: Rectified Linear Unit

f(x) = max(0, x)
Does not saturate
Computationally very
efficient
Converges much faster than
sigmoid/tanh in practice
(e.g. 6x)

One annoying problem ⇒ Dead neurons
Solution: leaky ReLU (small slope for negative input)

Never dies.
However, almost the same performance in practice.

Nojun Kwak Introduction to CNNs and RNNs

ReLU: Rectified Linear Unit

f(x) = max(0, x)
Does not saturate
Computationally very
efficient
Converges much faster than
sigmoid/tanh in practice
(e.g. 6x)

One annoying problem ⇒ Dead neurons

Solution: leaky ReLU (small slope for negative input)
Never dies.
However, almost the same performance in practice.

Nojun Kwak Introduction to CNNs and RNNs

ReLU: Rectified Linear Unit

f(x) = max(0, x)
Does not saturate
Computationally very
efficient
Converges much faster than
sigmoid/tanh in practice
(e.g. 6x)

One annoying problem ⇒ Dead neurons
Solution: leaky ReLU (small slope for negative input)

Never dies.
However, almost the same performance in practice.

Nojun Kwak Introduction to CNNs and RNNs

Why ReLU?

Piecewise linear tiling: mapping is locally linear
Montufar et al. “On the number of linear regions of DNNs”, arXiv 2014

Nojun Kwak Introduction to CNNs and RNNs

Forward Pass: Evaluating the function

Forward propagation: compute the output yyy given the input xxx

Fully connected layer
Nonlinearity comes from ReLU
Do it in a compositional way

xxx⇒ hhh1 ⇒ hhh2 ⇒ yyy

Nojun Kwak Introduction to CNNs and RNNs

Alternative graphical representation

Slide from M. Ranzato

Nojun Kwak Introduction to CNNs and RNNs

Why many layers?

Hierarchically distributed representations

Lee et al. “Convolutional DBN’s · · · ” ICML 2009

Nojun Kwak Introduction to CNNs and RNNs

Why many layers?

Hierarchically distributed representations

Lee et al. “Convolutional DBN’s · · · ” ICML 2009

Nojun Kwak Introduction to CNNs and RNNs

Training

We want to estimate the parameters, biases and
hyper-parameters (e.g., number of layers, number of neurons)
for good predictions.
Collect a training set of input-output pairs {xxxi, ti}Ni=1.
Encode the output with 1-K encoding t = [0, · · · , 1, · · · , 0].

Define a loss per training example and minimize the empirical
loss

L(www) = 1
N

N∑
i=1

l(www,xxxi, ti) +R(www)

N : number of training examples
R: regularizer
www: set of all parameters

Nojun Kwak Introduction to CNNs and RNNs

Training

We want to estimate the parameters, biases and
hyper-parameters (e.g., number of layers, number of neurons)
for good predictions.
Collect a training set of input-output pairs {xxxi, ti}Ni=1.
Encode the output with 1-K encoding t = [0, · · · , 1, · · · , 0].
Define a loss per training example and minimize the empirical
loss

L(www) = 1
N

N∑
i=1

l(www,xxxi, ti) +R(www)

N : number of training examples
R: regularizer
www: set of all parameters

Nojun Kwak Introduction to CNNs and RNNs

Loss functions

L(www) = 1
N

N∑
i=1

l(www,xxxi, ti) +R(www)

Softmax (Probability of class k given input):

p(ck = 1|xxx) = exp(yk)∑C
j=1 exp(yj)

Cross entropy (most popular loss function for classification):

l(www,xxx, t) = −
C∑

k=1
t(k) log p(ck|xxx)

Gradient descent to train the network

www∗ = argmin
www

L(www)

Nojun Kwak Introduction to CNNs and RNNs

Loss functions

L(www) = 1
N

N∑
i=1

l(www,xxxi, ti) +R(www)

Softmax (Probability of class k given input):

p(ck = 1|xxx) = exp(yk)∑C
j=1 exp(yj)

Cross entropy (most popular loss function for classification):

l(www,xxx, t) = −
C∑

k=1
t(k) log p(ck|xxx)

Gradient descent to train the network

www∗ = argmin
www

L(www)

Nojun Kwak Introduction to CNNs and RNNs

Loss functions

L(www) = 1
N

N∑
i=1

l(www,xxxi, ti) +R(www)

Softmax (Probability of class k given input):

p(ck = 1|xxx) = exp(yk)∑C
j=1 exp(yj)

Cross entropy (most popular loss function for classification):

l(www,xxx, t) = −
C∑

k=1
t(k) log p(ck|xxx)

Gradient descent to train the network

www∗ = argmin
www

L(www)

Nojun Kwak Introduction to CNNs and RNNs

Backpropagation

Efficient way of computing gradient (Chain rule)
Partial derivatives and gradients

f(x, y) = xy → ∂f

∂x
= y

∂f

∂y
= x

df(x)
dx

= lim
h→0

f(x+ h)− f(x)
h

f(x+ h) = f(x) + h
df(x)
dx

Example: x = 4, y = −3⇒ f(x, y) = −12

∂f

∂x
= −3 ∂f

∂x
= 4 ∇f =

[
∂f

∂x
,
∂f

∂y

]

Question: If I increase x by h, how would the output f
change?

Nojun Kwak Introduction to CNNs and RNNs

Backpropagation

Efficient way of computing gradient (Chain rule)
Partial derivatives and gradients

f(x, y) = xy → ∂f

∂x
= y

∂f

∂y
= x

df(x)
dx

= lim
h→0

f(x+ h)− f(x)
h

f(x+ h) = f(x) + h
df(x)
dx

Example: x = 4, y = −3⇒ f(x, y) = −12

∂f

∂x
= −3 ∂f

∂x
= 4 ∇f =

[
∂f

∂x
,
∂f

∂y

]

Question: If I increase x by h, how would the output f
change?

Nojun Kwak Introduction to CNNs and RNNs

Backpropagation

Efficient way of computing gradient (Chain rule)
Partial derivatives and gradients

f(x, y) = xy → ∂f

∂x
= y

∂f

∂y
= x

df(x)
dx

= lim
h→0

f(x+ h)− f(x)
h

f(x+ h) = f(x) + h
df(x)
dx

Example: x = 4, y = −3⇒ f(x, y) = −12

∂f

∂x
= −3 ∂f

∂x
= 4 ∇f =

[
∂f

∂x
,
∂f

∂y

]

Question: If I increase x by h, how would the output f
change?

Nojun Kwak Introduction to CNNs and RNNs

Backpropagation

Compound expressions with graphics (example from F.F. Li)

q = x+ y
∂q

∂x
= 1, ∂q

∂x
= 1

f = qz
∂f

∂q
= z,

∂f

∂z
= q

Chain rule: ∂f
∂x = ∂f

∂q
∂q
∂x

Nojun Kwak Introduction to CNNs and RNNs

Backpropagation: Another Example

Nojun Kwak Introduction to CNNs and RNNs

Backpropagation: Another Example

Nojun Kwak Introduction to CNNs and RNNs

Backpropagation: Another Example

Nojun Kwak Introduction to CNNs and RNNs

Backpropagation: Another Example

Nojun Kwak Introduction to CNNs and RNNs

Backpropagation: Another Example

Nojun Kwak Introduction to CNNs and RNNs

Backpropagation: Another Example

Nojun Kwak Introduction to CNNs and RNNs

Backpropagation: Another Example

Nojun Kwak Introduction to CNNs and RNNs

Backpropagation: Key Idea

Nojun Kwak Introduction to CNNs and RNNs

Backpropagation: Patterns in BP

Add: gradient distributor
Max: gradient router
Mul: gradient switcher

Nojun Kwak Introduction to CNNs and RNNs

Learning via Gradient Descent

Gradient descent to train the network

www∗ = argmin
www

1
N

N∑
i=1

l(www,xxxi, ti) +R(www)

At each iteration, we need to compute

wwwn+1 = wwwn − γn∇L(wwwn)

Use the backward pass to compute ∇L(wwwn) efficiently
Recall that the backward pass requires the forward pass first

Nojun Kwak Introduction to CNNs and RNNs

Dealing with Big Data

At each iteration, we need to compute

wwwn+1 = wwwn − γn∇L(wwwn)

with

∇L(wwwn) = 1
N

N∑
i=1
∇l(wwwn,xxxi, ti) +∇R(wwwn)

Too expensive when having millions of training examples

Instead, approximate the gradient with a mini-batch (subset
of examples: 100 ∼ 1,000) - called stochastic gradient descent

1
N

N∑
i=1
∇l(wwwn,xxxi, ti) ≈

1
|S|

∑
i∈S

∇l(wwwn,xxxi, ti)

Nojun Kwak Introduction to CNNs and RNNs

Dealing with Big Data

At each iteration, we need to compute

wwwn+1 = wwwn − γn∇L(wwwn)

with

∇L(wwwn) = 1
N

N∑
i=1
∇l(wwwn,xxxi, ti) +∇R(wwwn)

Too expensive when having millions of training examples
Instead, approximate the gradient with a mini-batch (subset
of examples: 100 ∼ 1,000) - called stochastic gradient descent

1
N

N∑
i=1
∇l(wwwn,xxxi, ti) ≈

1
|S|

∑
i∈S

∇l(wwwn,xxxi, ti)

Nojun Kwak Introduction to CNNs and RNNs

SGD with momentum

Stochastic Gradient Descent update

wwwn+1 = wwwn − γn∇L(wwwn)

with
∇L(wwwn) = 1

|S|
∑
i∈S

∇l(wwwn,xxxi, ti)

We can use momentum

www ←− www − γ∆
∆←− κ∆ +∇L

We can also decay learning rate γ as iterations goes on

Nojun Kwak Introduction to CNNs and RNNs

Fully Connected Layer

Nojun Kwak Introduction to CNNs and RNNs

Locally Connected Layer

Nojun Kwak Introduction to CNNs and RNNs

Locally Connected Layer

Nojun Kwak Introduction to CNNs and RNNs

Convolutional Neural Networks

Idea: statistics are similar at different locations (Lecun 1998)
Connect each hidden unit to a small input patch and share
the weight across space
This is called convolution layer and the network is a
convolutional neural network

Nojun Kwak Introduction to CNNs and RNNs

Convolutional Neural Networks

Number of filters (neurons) is considered as a new dimension
(depth)
⇒ Volumetric representation

Nojun Kwak Introduction to CNNs and RNNs

Convolutional Neural Networks

Number of filters (neurons) is considered as a new dimension
(depth)
⇒ Volumetric representation

Nojun Kwak Introduction to CNNs and RNNs

Convolutional Neural Networks

CNNs are just neural nets BUT:
1. Local connectivity

image: 32x32x3 volume

before: fully connected:
32x32x3 weights

now: one neuron will connect
to, e.g., 5x5x3 chunk (recep-
tive field) and only have 5x5x3
weights

connectivity is:
local in space (5x5
instead of 32x32)
but full in depth (all 3
depth channels)

Nojun Kwak Introduction to CNNs and RNNs

Convolutional Neural Networks

CNNs are just neural nets BUT:
1. Local connectivity

image: 32x32x3 volume

before: fully connected:
32x32x3 weights

now: one neuron will connect
to, e.g., 5x5x3 chunk (recep-
tive field) and only have 5x5x3
weights

connectivity is:
local in space (5x5
instead of 32x32)
but full in depth (all 3
depth channels)

Nojun Kwak Introduction to CNNs and RNNs

Convolutional Neural Networks

CNNs are just neural nets BUT:
1. Local connectivity

Multiple neurons all look-
ing at the same region of
the input volume, stacked
along depth.

Nojun Kwak Introduction to CNNs and RNNs

Convolutional Neural Networks

CNNs are just neural nets BUT:
1. Local connectivity

Multiple neurons all look-
ing at the same region of
the input volume, stacked
along depth.

Nojun Kwak Introduction to CNNs and RNNs

Convolutional Neural Networks

CNNs are just neural nets BUT:
2. Weight sharing

Weights are
shared across
different
locations
Each depth slice
is called one
feature map

Nojun Kwak Introduction to CNNs and RNNs

Convolutional Neural Networks

CNNs are just neural nets BUT:
2. Weight sharing

Weights are
shared across
different
locations
Each depth slice
is called one
feature map

Nojun Kwak Introduction to CNNs and RNNs

Convolutional Neural Networks

Nojun Kwak Introduction to CNNs and RNNs

Convolutional Neural Networks

Nojun Kwak Introduction to CNNs and RNNs

Convolutional Neural Networks

Nojun Kwak Introduction to CNNs and RNNs

Convolutional Neural Networks

Nojun Kwak Introduction to CNNs and RNNs

Convolutional Neural Networks

Nojun Kwak Introduction to CNNs and RNNs

Convolutional Neural Networks

Nojun Kwak Introduction to CNNs and RNNs

Convolutional Layer: Summary

Input volume of size [W1 x H1 x D1]
using K neurons with receptive fields F x F
and applying them at strides of S gives
Output volume: [W2, H2, D2]
W2 = (W1-F)/S+1,
H2 = (H1-F)/S+1,
D2 = K

Nojun Kwak Introduction to CNNs and RNNs

Feature (Filter) Visualization

Nojun Kwak Introduction to CNNs and RNNs

Pooling

In CNNs, Conv layers are often followed by Pool layers
Pooling layer: makes the representations smaller and more
manageable without losing too much information

Increased receptive field
Most common: MAX pooling
Others: average, L2 pooling · · ·

Nojun Kwak Introduction to CNNs and RNNs

Improving Generalization

Weight sharing (Reduce the number of parameters)
Data augmentation (e.g., jittering, noise injection,
tranformations)
Dropout [Hinton et al.]: randomly drop units (along with their
connections) from the neural network during training. Use for
the fully connected layers only
Regularization: Weight decay (L2, L1)
Sparsity in the hidden units
Multi-task learning
Transfer learning

Nojun Kwak Introduction to CNNs and RNNs

ConvNets

Typical ConvNet:
Image → [Conv - ReLU] → (Pool) → [Conv - ReLU] → (Pool) →
FC (fully-connected) → Softmax

Nojun Kwak Introduction to CNNs and RNNs

ConvNets - Flavours

Lenet5 (Yann Lecun 1998)

Alexnet (Alex Krizhevsky et. al., 2012)
Nojun Kwak Introduction to CNNs and RNNs

ConvNets - Flavours

ZFnet: Clarifai (Matt Zeiler and Rob Fergus, 2013)

Googlenet (Google, 2014)

Nojun Kwak Introduction to CNNs and RNNs

Complexity (Alexnet)

Nojun Kwak Introduction to CNNs and RNNs

Recent Trend

Human: 5.1% (Karpathy), Baidu cheating (2015.05) - 4.58%

Nojun Kwak Introduction to CNNs and RNNs

Recent Trend

Nojun Kwak Introduction to CNNs and RNNs

Recent Trend

Nojun Kwak Introduction to CNNs and RNNs

Conclusions - CNNs

Deep Learning = learning hierarhical models.
ConvNets are the most successful example. Leverage large
labeled datasets.
Optimization

Don’t we get stuck in local minima? No, they are all the same!
In large scale applications, local minima are even less of an
issue.

Scaling
GPUs
Distributed framework (Google)
Better optimization techniques

Generalization on small datasets (curse of dimensionality):
data augmentation
weight decay
dropout
unsupervised learning
multi-task learning

Nojun Kwak Introduction to CNNs and RNNs

Feedforward vs. Recurrent Neural Networks I

Feedforward networks
Activation is fed forward from input to output through “hidden
layers”
Static input-output mappings (functions)
Basic theoretical result: MLPs can approximate arbitrary (term
needs some qualification) nonlinear maps with arbitrary
precision (“universal approximation property”)
Most popular supervised training algorithm: backpropagation
algorithm

Nojun Kwak Introduction to CNNs and RNNs

Feedforward vs. Recurrent Neural Networks II

Huge literature, 95% of neural network publications concern
feedforward nets
have proven useful in many practical applications as
approximators of nonlinear functions and as pattern classifiers.

Recurrent Neural Networks
All biological neural networks are recurrent
RNNs implement dynamical systems
Basic theoretical result: RNNs can approximate arbitrary (term
needs some qualification) dynamical systems with arbitrary
precision (“universal approximation property”)
Several types of training algorithms are known, no clear winner
theoretical and practical difficulties by and large have
prevented practical applications so far (?)

Nojun Kwak Introduction to CNNs and RNNs

The power of RNN - flexibility

RNN as dynamic classifiers (variable length output)

Nojun Kwak Introduction to CNNs and RNNs

Backpropatation through time (BPTT)

Unfolding
Weight sharing
How many stacks?
Vanishing & exploding gradients → ReLU?

Nojun Kwak Introduction to CNNs and RNNs

Recurrent Neural Networks

Like HMM, the model can connect previous information to
the present task. (video, NLP, · · ·)
Predicting the last word: “the clouds are in the ——–”

Predicting the last word: “the clouds are in the sky”
⇒ Nearby information is passed to predict the present word.

Nojun Kwak Introduction to CNNs and RNNs

Recurrent Neural Networks

Like HMM, the model can connect previous information to
the present task. (video, NLP, · · ·)

Predicting the last word: “the clouds are in the ——–”

Predicting the last word: “the clouds are in the sky”
⇒ Nearby information is passed to predict the present word.

Nojun Kwak Introduction to CNNs and RNNs

Limitations of RNNs

Predicting the last word:
“I grew up in France. · · · · · · , I speak fluent ——–.”
Long gap between the hint and the word needing prediction.
RNNs are unable to deliver information through the long gap.

The limitation is almost the same as that of HMM.

Nojun Kwak Introduction to CNNs and RNNs

LSTM Networks

Long Short Term Memory Networks (LSTMs): Hochreiter &
Schmidhuber (1997)
Standard RNNs - one layer of tanh

4 components – forget, input, output gates + information
(states)

Nojun Kwak Introduction to CNNs and RNNs

LSTM Networks

Long Short Term Memory Networks (LSTMs): Hochreiter &
Schmidhuber (1997)
Standard RNNs - one layer of tanh

4 components – forget, input, output gates + information
(states)

Nojun Kwak Introduction to CNNs and RNNs

Cell States & Gates: core idea of LSTM

Cell states: information

3 Gates: forget, input, output

Nojun Kwak Introduction to CNNs and RNNs

Forget Gates I

Outputs a number between 0 and 1 for each cell state Ct−1.
How much information from the previous states should we
keep?

Nojun Kwak Introduction to CNNs and RNNs

Input gates

Input gates: How much information should we update from
the input?

Nojun Kwak Introduction to CNNs and RNNs

Cell states: information

Tanh layer (information): creates new additive information
value C̃t.

Nojun Kwak Introduction to CNNs and RNNs

Output gates

Output: filtered cell states
How much information should be output?

Nojun Kwak Introduction to CNNs and RNNs

Putting it all together

· · · >: peephole
Nojun Kwak Introduction to CNNs and RNNs

Backpropagation in LSTM

f = 1, i = 0: long term dependency
f = 0, i = 1: standard RNN
red: linear (easy) path, green: nonlinear (difficult) path

Nojun Kwak Introduction to CNNs and RNNs

Summary on LSTM

RNNs suffer from the problem of Vanishing Gradients
The sensitivity of the network decays over time as new inputs
overwrite the activations of the hidden layer, and the network
forgets the first inputs.
This problem is remedied by using LSTM blocks instead of
sigmoid cells in the hidden layer.
LSTM blocks can choose to retain their memory over arbitrary
periods of time and also forget if necessary.
Very good at finding hierarchical structure
Can induce nonlinear oscillation (for counting and timing)
But error flow among blocks truncated
Difficult to train: weights into gates are sensitive

Nojun Kwak Introduction to CNNs and RNNs

Example: Language modelling I

Vocabulary, size V .
xt ∈ RV : true word in position t (one-hot)
yt ∈ RV : predicted word in position t (distribution)
Assume all sentences are zero padded to length L.
Model: yt+1 = p(xt+1|xt, xt−1, · · · , x1) for 1 ≤ t < L

Minimize cross-entropy objective:

J =
L∑

t=2
H(yt, xt) , −

L∑
t=2

V∑
i=1

xt,i log(yt,i)

σ(·) is some sigmoid-like (squashing) function (e.g. logistic or
tanh)
b· is a bias vector, W · is a weight vector.

Nojun Kwak Introduction to CNNs and RNNs

Multi-layer Perceptron (MLP)

yt+1 = softmax(W yhht)
ht = σ(W he[et−1; et−2; et−3] + bh)
et = W exxt

Nojun Kwak Introduction to CNNs and RNNs

RNN

yt+1 = softmax(W yhht)
ht = σ(W heet +W hhht−1 + bh)
et = W exxt

Nojun Kwak Introduction to CNNs and RNNs

Vanishing gradients

Error gradients pass through nonlinearity every step

Unless weights large, error signal will degrade
δh = σ′(·)W (h+1)hδh+1

Nojun Kwak Introduction to CNNs and RNNs

Vanishing gradients

Gradients may vanish or explode
Can affect any ‘deep’ network

e.g. fine-tuning a non-recurrent deep NN.

Nojun Kwak Introduction to CNNs and RNNs

Gradients no longer vanish with LSTM

If the input gate = 0 and forget gate = 1, gradient pass
through the cell

Ct = ft ∗ Ct−1 + it ∗ C̃t

Nojun Kwak Introduction to CNNs and RNNs

Extensions of RNNs

Bidirectional

Nojun Kwak Introduction to CNNs and RNNs

Gated Recurrent Unit (GRU)

Nojun Kwak Introduction to CNNs and RNNs

Applications

Object detection: R-CNN, fast-RCNN, faster-RCNN

Nojun Kwak Introduction to CNNs and RNNs

Generative Models

Synthetic bedroom 1

1Radford, Alec et al. “Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks,” arXiv:1511.06434, 2015.

Nojun Kwak Introduction to CNNs and RNNs

Generative Models

Synthetic face with glasses 2

2Radford, Alec et al. “Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks,” arXiv:1511.06434, 2015.

Nojun Kwak Introduction to CNNs and RNNs

Neural Machine Translation (NMT) I

Nojun Kwak Introduction to CNNs and RNNs

Neural Machine Translation (NMT) II

Nojun Kwak Introduction to CNNs and RNNs

Neural Machine Translation (NMT) III

3

3“Introduction to Neural Machine Translation with GPUs,”
Nojun Kwak Introduction to CNNs and RNNs

