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Abstract

In manipulating data such as in supervised learning, we often extract new features from the

original features for the purpose of reducing the dimensions of feature space and achieving better

performance. In this paper, we show how standard algorithms for independent component analysis

(ICA) can be appended with binary class labels to produce a number of features that do not carry

information about the class labels – these features will be discarded – and a number of features that

do. We also provide a local stability analysis of the proposed algorithm. The advantage is that

general ICA algorithms become available to a task of feature extraction for classification problems

by maximizing the joint mutual information between class labels and new features, although only for

two-class problems. Using the new features, we can greatly reduce the dimension of feature space

without degrading the performance of classifying systems.
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I. Introduction

In supervised learning, one is given an array of attributes to predict the target value

or output class. These attributes are called features, and there may exist irrelevant or

redundant features to complicate the learning process, thus leading to incorrect prediction.

Even when the features presented contain enough information about the output class, they

may not predict the output correctly because the dimension of feature space may be so

large that it may require numerous instances to determine the relationship. This problem

is commonly referred to as the curse of dimensionality [1]. Some experiments have also

reported that the performance of classifier systems deteriorates as new irrelevant features

are added [2]. Though some of the modern classifiers, such as support vector machine

(SVM), are surprisingly tolerant to extra irrelevant information, these problems can be

avoided by selecting only the relevant features or extracting new features containing the

maximal information about the class label from the original ones. The former methodology

is called feature selection or subset selection, while the latter is named feature extraction

which includes all the methods that compute any functions, logical or numerical.

This paper considers the feature extraction problem since it often results in improved

performance by extracting new features which are arbitrary linear combinations of original

features, especially when small dimensions are required.
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Though the principal component analysis (PCA) is the most popular [3], by its nature,

it is not well-fitted for supervised learning since it does not make use of any output class

information in deciding the principal components. The main drawback of this method

is that the extracted features are not invariant under transformation. Merely scaling the

attributes changes resulting features.

Unlike PCA, Fisher’s linear discriminant analysis (LDA) [4] focuses on classification

problems to find optimal linear discriminating functions. Though it is a very simple and

powerful method for feature extraction, the application of this method is limited to the

case in which classes have significant differences between means, since it is based on the

information about the differences between means.

Another common method of feature extraction is to use a feedforward neural network

such as multilayer perceptron (MLP). This method uses the fact that in the feedforward

structure the output class is determined through the hidden nodes which produce trans-

formed forms of original input features. This notion can be understood as squeezing the

data through a bottleneck of a few hidden units. Thus, the hidden node activations are

interpreted as new features in this approach. This line of research includes [5] - [9]. Fractal

encoding [10] and wavelet transformation [11] have also been used for feature extraction.

Recently, in neural networks and signal processing circles, independent component anal-

ysis (ICA), which was devised for blind source separation problems, has received a great

deal of attention because of its potential applications in various areas. Bell and Sejnowski

[12] have developed an unsupervised learning algorithm performing ICA based on entropy

maximization in a single-layer feedforward neural network. ICA can be very useful as a

dimension-preserving transform because it produces statistically independent components,

and some have directly used ICA for feature extraction and selection [13] - [16]. Recent

research [17], [18] is focused on extraction of features relevant to task based on mutual

information maximization methods. In this research, Renyi’s entropy measure was used

instead of that of Shannon.

In this paper, we show how standard algorithms for ICA can be appended with binary

class labels to produce a number of features that do not carry information about the

class label – these features will be discarded – and a number of features that do. The
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advantage is that general ICA algorithms become available to a task of feature extrac-

tion by maximizing the joint mutual information between class labels and new features,

although limited only for two-class problems. It is an extended version of [19] and this

method is well-suited for classification problems. The proposed algorithm greatly reduces

the dimension of feature space while improving classification performance.

This paper is organized as follows. In Section II, we briefly review some aspects of ICA.

In Section III, we propose a new feature extraction algorithm and present a local stability

analysis of the algorithm. In Section IV, we give some simulation results showing the

advantages of the proposed algorithm. Conclusions follow in Section V.

II. Review of ICA

The problem of linear independent component analysis for blind source separation was

developed in the literature [20] - [22]. In parallel, Bell and Sejnowski [12] have developed an

unsupervised learning algorithm based on entropy maximization of a feedforward neural

network’s output layer, which is referred to as the Infomax algorithm. The Infomax

approach, maximum likelihood estimation (MLE) approach, and negentropy maximization

approach were shown to lead to identical methods [23] - [25].

The problem setting of ICA is as follows. Assume that there is an L-dimensional zero-

mean non-Gaussian source vector sss(t) = [s1(t), · · · , sL(t)]T , such that the components

si(t)’s are mutually independent, and an observed data vector xxx(t) = [x1(t), · · · , xN(t)]T

is composed of linear combinations of sources si(t) at each time point t, such that

xxx(t) = Asss(t) (1)

where A is a full rank N × L matrix with L ≤ N . The goal of ICA is to find a linear

mapping W such that each component of an estimate uuu of the source vector

uuu(t) = Wxxx(t) = WAsss(t) (2)

is as independent as possible. The original sources sss(t) are exactly recovered when W is

the pseudo-inverse of A up to some scale changes and permutations. For a derivation of

an ICA algorithm, one usually assumes that L = N , because we have no idea about the
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number of sources. In addition, sources are assumed to be independent of time t and are

drawn from independent identical distribution pi(si).

Bell and Sejnowski [12] have used a feed-forward neural processor to develop the Infomax

algorithm, one of the popular algorithms for ICA. The overall structure of the Infomax

is shown in Fig. 1. This neural processor takes xxx as an input vector. The weight W

is multiplied to the input xxx to give uuu and each component ui goes through a bounded

invertible monotonic nonlinear function gi(·) to match the cumulative distribution of the

sources. Let yi = gi(ui) as shown in the figure.

From the view of information theory, maximizing the statistical independence among

variables ui’s is equivalent to minimizing mutual information among ui’s. This can be

achieved by minimizing mutual information between yi’s, since the nonlinear transfer func-

tion gi(·) does not introduce any dependencies.

In [12], it has been shown that by maximizing the joint entropy H(yyy) of the output

yyy = [y1, · · · , yN ]T of a processor, we can approximately minimize the mutual information

among the output components yi’s

I(yyy) =

∫

p(yyy) log
p(yyy)

∏N

i=1 pi(yi)
dyyy. (3)

Here, p(yyy) is the joint probability density function (pdf) of a vector yyy, and pi(yi) is the

marginal pdf of the variable yi.

The joint entropy of the outputs of this processor is

H(yyy) = −

∫

p(yyy) log p(yyy)dyyy

= −

∫

p(xxx)
p(xxx)

log | det J(xxx)|
dxxx

(4)

where J(xxx) is the Jacobian matrix whose (i, j)th element is partial derivative ∂yj/∂xi.

Note that J(xxx) = W . Differentiating H(yyy) with respect to W leads to the learning rule

for ICA:

∆W ∝ W−T −ϕϕϕ(uuu)xxxT . (5)

By multiplying W T W on the right, we get the natural gradient [26] speeding up the

convergence rate

∆W ∝ [I −ϕϕϕ(uuu)uT ]W (6)
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where

ϕϕϕ(uuu) =

[

−

∂p1(u1)
∂u1

p1(u1)
, · · · ,−

∂pN (uN )
∂uN

pN(uN)

]T

. (7)

The parametric density estimation pi(ui) plays an important role in the success of the

learning rule in (6). If we assume pi(ui) be Gaussian, ϕi(ui) = −ṗi(ui)/pi(ui) becomes a

linear function of ui with a positive coefficient and the learning rule (6) becomes unstable.

Also note that the sum of Gaussians is a Gaussian, and thus with given observations xxx

which are mixtures of sources sss, the sources cannot be separated by any density related

criterion if we assume sss to be Gaussian. This is why we assume non-Gaussian sources.

There is a close relation between the assumption on the source distribution and the

choice of the nonlinear function gi(·). By simple computation with (3) and (4), the joint

entropy H(yyy) becomes

H(yyy) =
N

∑

i=1

H(yi) − I(yyy). (8)

The maximal value for H(yyy) is achieved when the mutual information among the outputs

is zero and their marginal distributions are uniform. For a uniform distribution of yi the

distribution of ui must be

pi(ui) =

∣

∣

∣

∣

∂gi(ui)

∂ui

∣

∣

∣

∣

(9)

because the relation between the pdf of yi and that of ui is

pi(yi) = pi(ui)/

∣

∣

∣

∣

∂gi(ui)

∂ui

∣

∣

∣

∣

, for pi(yi) 6= 0. (10)

By the relationship (9), the estimate ui of the source has a distribution that is approxi-

mately the form of the derivative of the nonlinearity.

Note that if we use the sigmoid function for gi(·) as in [12], pi(ui) in (9) becomes super-

Gaussian, which has longer tails than the Gaussian pdf. Some researches [27], [26], [28]

relax the assumption on the source distribution to be sub-Gaussian or super-Gaussian and

[26] leads to the extended Infomax learning rule:

∆W ∝ [I − D tanh(uuu)uuuT − uuuuuuT ]W (11)










di = 1 : super-Gaussian

di = −1 : sub-Gaussian.
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Here di is the ith element of the N -dimensional diagonal matrix D, and it switches between

sub- and super-Gaussian using the stability analysis.

In this paper, we adopt the extended Infomax algorithm in [26] because it is easy to

implement with less strict assumptions on source distribution.

III. Feature extraction based on ICA

ICA outputs a set of maximally independent vectors which are linear combinations of

observed data. Although these vectors may find some applications in such areas as blind

source separation [12] and data visualization [13], it does not fit for feature extraction for

classification problems, because it is an unsupervised learning that does not use class infor-

mation. In this section, we will propose a feature extraction algorithm for the classification

problem by incorporating standard ICA algorithms with binary class labels.

The main idea of the proposed feature extraction algorithm is simple. In applying stan-

dard ICA algorithms to feature extraction for classification problems, it makes use of the

binary class labels to produce two sets of new features; one that does not carry information

about the class label (these features will be discarded) and the other that does (these will

be useful for classification). The advantage is that general ICA algorithms become avail-

able to a task of feature extraction by maximizing the joint mutual information between

class labels and new features, although only for two-class problems.

Before we present our algorithm ICA-FX (feature extraction algorithm based on ICA),

we formalize the purpose of feature extraction.

A. Purpose

The success of a feature extraction algorithm depends critically on how much informa-

tion about the output class is contained in the newly generated features.

Suppose that there are N normalized input features xxx = [x1, · · · , xN ]T and a binary

output class c ∈ {−1, 1}. Our purpose of the feature extraction is to extract M(≤ N) new

features fffa = [f1, · · · , fM ]T from xxx containing maximal information of the class.

A useful lemma in relation to this is Fano’s inequality [29] in information theory.

Lemma 1: (Fano’s inequality) Let fafafa and c be random variables which represent input

features and output class, respectively. If we are to estimate the output class c using the
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input features fafafa, the lower bound of error probability PE satisfies the following inequality:

PE ≥
H(c|fafafa) − 1

log Nc

=
H(c) − I(fafafa; c) − 1

log Nc

(12)

where H(·), H( · | · ), and I( · ; · ) are entropy, conditional entropy, and mutual informa-

tion, respectively, and Nc is the number of classes.

Because the entropy of class H(c) and the number of classes Nc is fixed, the lower bound

of PE is minimized when I(fafafa; c) becomes maximum. Thus it is necessary for good feature

extraction methods to extract features maximizing mutual information with the output

class. But there is no transformation T (·) that can increase the mutual information be-

tween input features and output class as shown by the following data processing inequality

[29].

Lemma 2: (Data processing inequality) Let xxx and c be random variables that represent

input features and output class, respectively. For any deterministic function T (·) of xxx,

the mutual information between T (xxx) and output class c is upper-bounded by the mutual

information between xxx and c:

I(T (xxx); c) ≤ I(xxx; c) (13)

where the equality holds if the transformation is invertible.

Thus, the purpose of a feature extraction is to extract M(≤ N) features fffa from xxx, such

that I(fffa; c), the mutual information between newly extracted features fffa and output

class c, becomes as close as to I(xxx; c), the mutual information between original features xxx

and output class c.

B. Algorithm : ICA-FX

In this subsection, we propose a feature extraction method by modifying a standard

ICA algorithm for the purpose presented in the previous subsection. The main idea of the

proposed method is to incorporate the binary class labels into the structure of standard

ICA to extract a set of new features that provide information about class labels, as LDA

does but using a method other than orthogonal projection.

Consider the structure shown in Fig. 2. Here, the original feature vector xxx = [x1, · · · , xN ]T

is fully connected to uuu = [u1, · · · , uN ], class label c is connected to uuua = [u1, · · · , uM ], and
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uN+1 = c. In the figure, the weight matrix WWW ∈ ℜ(N+1)×(N+1) becomes

WWW =

































w1,1 · · · w1,N w1,N+1

...
...

...

wM,1 · · · wM,N wM,N+1

wM+1,1 · · · wM+1,N 0
...

...
...

wN,1 · · · wN,N 0

0 · · · 0 1

































. (14)

And let us denote the upper left N × N matrix of WWW as W .

Now our aim is to separate the input feature space xxx into two linear subspaces: one

that is spanned by fffa = [f1, · · · , fM ]T that contains maximal information about the class

label c, and the other spanned by fff b = [fM+1, · · · , fN ]T that is independent of c as much

as possible.

The condition for this separation can be derived as follows. If we assume that the weight

matrix WWW is nonsingular, we can see that xxx and fff = [f1, · · · , fN ]T span the same linear

space and it can be represented with direct sum of fffa and fff b. Then by Lemma 2, we can

see that

I(xxx; c) =I(Wxxx; c)

=I(fff ; c)

=I(fffa, fff b; c)

≥I(fffa; c).

(15)

The first equality holds because W is nonsingular and in the inequality on the last line,

equality holds if I(fff b; c) = I(uM+1, · · · , uN ; c) = 0.

If this is possible, we can reduce the dimension of input feature space from N to M(< N)

by using only fffa instead of xxx, without losing any information about the target class.

To solve this problem, we interpret the feature extraction problem in the structure of

the blind source separation (BSS) problem in the following.

(Mixing) Assume that there exist N independent non-Gaussian sources sss = [s1, · · · , sN ]T

which are also independent of class label c. Assume also that the observed feature vector
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xxx is the linear combination of the sources sss and c with the mixing matrix A ∈ ℜN×N and

bbb ∈ ℜN×1; i.e.,

xxx = Asss + bbbc. (16)

(Unmixing) Our unmixing stage is a little different from the BSS problem as shown in

Fig. 2. Let us denote the last column of WWW without the (N + 1)th element as vvv ∈ ℜN×1.

Then the unmixing equation becomes

uuu = Wxxx + vvvc. (17)

Suppose we have made uuu somehow equal to eee, the scaled and permuted version of source

sss; i.e.,

eee , ΛΠsss (18)

where Λ is a diagonal matrix corresponding to an appropriate scale and Π is a permutation

matrix. Then, ui’s (i = 1, · · · , N) are independent of class c, and among the elements of

fff = Wxxx(= uuu−vvvc), fff b = [fM+1, · · · , fN ]T will be independent of c because vi = wi,N+1 = 0

for i = M + 1, · · · , N . Thus, we can extract M(< N) dimensional new feature vector fffa

by a linear transformation of xxx containing the maximal information about the class if the

relation uuu = eee holds.

Now that the feature extraction problem is set in a similar form as the standard BSS

or ICA problem, we can derive a learning rule for WWW , using the the similar approach for

the derivation of a learning rule for ICA. Because the Infomax approach, MLE approach,

and negentropy maximization approach were shown to lead to the identical learning rule

for ICA problems, as mentioned in the previous section, any approach can be used for the

derivation. In this paper, we use MLE to obtain a learning rule.

If we assume that uuu = [u1, · · · , uN ]T is a linear combination of the source sss; i.e., it is

made to be equal to eee, a scaled and permutated version of the source sss as in (18), and

that each element of uuu is independent of other elements of uuu and it is also independent of

class c, the log likelihood of the given data becomes

L(uuu, c,WWW ) = log | detWWW | +
N

∑

i=1

log pi(ui) + log p(c) (19)
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because

p(xxx, c) = | detWWW | p(uuu, c) = | detWWW |

N
∏

i=1

pi(ui) p(c). (20)

Now, we are to maximize L, and this can be achieved by the steepest ascent method.

Because the last term in (19) is a constant, differentiating (19) with respect to WWW leads to

∂L

∂wi,j

=
adj(wj,i)

| detWWW |
− ϕi(ui)xj 1 ≤ i, j ≤ N

∂L

∂wi,N+1

= −ϕi(ui)c 1 ≤ i ≤ M

(21)

where adj(·) is adjoint and ϕi(ui) = −dpi(ui)
dui

/pi(ui) . Note that c has binary numerical

values corresponding to the two categories.

We can see that | detWWW | = | det W | and adj(wj,i)/| detWWW | = W−T
i,j . Thus the learning

rule becomes

∆W ∝ W−T −ϕϕϕ(uuu)xxxT

∆vvva ∝ −ϕϕϕ(uuua)c.
(22)

Since the two terms in (22) have different tasks regarding the update of separate ma-

trices W and WN+1, we can divide the learning process, and applying natural gradient on

updating W , we get

W (t+1) =W (t) + µ1[IN −ϕϕϕ(uuu)fffT ]W (t)

vvv(t+1)
a =vvv(t)

a − µ2ϕϕϕ(uuua)c.
(23)

Here vvva , [w1,N+1, · · · , wM,N+1]
T ∈ ℜM , ϕϕϕ(uuu) , [ϕ1(u1), · · · , ϕN(uN)]T , ϕϕϕ(uuua) ,

[ϕ1(u1), · · · , ϕM(uM)]T , IN is a N × N identity matrix, and µ1 and µ2 are learning rates

that can be set differently. By this updating rule, the assumption that ui’s are independent

of one another and of c will most be likely fulfilled by the resulting ui’s.

Note that the learning rule for W is the same as the original ICA learning rule [12], and

also note that fffa corresponds to the first M elements of Wxxx. Therefore, we can extract

the optimal features fffa by the proposed algorithm when it finds the optimal solution for

W by (23).
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C. Stability of ICA-FX

In this part, we will present the conditions of local stability of the ICA-FX algorithm.

The local stability analysis in this paper undergoes almost the same procedure as that of

general ICA algorithms in [30].

C.1 Stationary points

To begin with, let us first investigate the stationary point of the learning rule given in

(23). Let us define

A⋆ , A(ΛΠ)−1. (24)

Now assuming that the output uuu is made to be equal to eee, then (16), (17), and (18) become

xxx = A⋆eee + bbbc

eee = Wxxx + vvvc
(25)

and we get

(IN − WA⋆)eee = (Wbbb + vvv)c. (26)

Because c and eee are assumed to be independent of each other, W and vvv must satisfy

W = A−1
⋆ = ΛΠA−1

vvv = − Wbbb = −A−1
⋆ bbb = −ΛΠA−1bbb

(27)

if uuu were made to be equal to eee. This solution is a stationary point of learning rule (23)

by the following theorem.

Theorem 1: The W and vvv satisfying (27) is a stationary point of the learning rule (23),

and the scaling matrix Λ is uniquely determined up to a sign change in each component.

Proof: See Appendix I.

In most cases, we use odd increasing activation functions ϕi for ICA, and if we do the

same for the ICA-FX, we can get the unique scale up to a sign and W and vvv in (27) is a

stationary point.

C.2 Local asymptotic stability

Now let us investigate the condition for the stability of the stationary point given in

(27). In doing so we introduce a new version of weight matrix Z and a set of scalars ki’s
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such that

W (t) = Z(t)W ∗

v
(t)
i = k

(t)
i v∗

i (6= 0), 1 ≤ i ≤ M
(28)

to follow the same procedure as in [30]. Here W ∗ and v∗

i are the optimal values of W

and vi which are A−1
⋆ and −(A−1

⋆ bbb)i, respectively. Note that the stability of W and vi in

the vicinity of W ∗ and v∗

i is equivalent to the stability of Z and ki in the vicinity of the

identity matrix IN and 1.

If we multiply W ∗−1 to both sides of the learning rule for W in (23), we get

Z(t+1) = {IN − µ1G(Z(t), kkk(t))}Z(t) (29)

where the (i, j)th element of G ∈ ℜN×N is

G(Z(t), kkk(t))ij = ϕi(ui)fj − δij

=











ϕi((Z
(t)W ∗xxx)i + k

(t)
i v∗

i c)(Z
(t)W ∗xxx)j − δij if 1 ≤ i ≤ M

ϕi((Z
(t)W ∗xxx)i)(Z

(t)W ∗xxx)j − δij if M < i ≤ N
.

(30)

Here, we denote kkk = [k1, · · · , kM ]T for convenience.

In the learning rule for vvva, to avoid difficulties in the derivation of the stability condition,

we modify the notation of the weight update rule for vvva in (23) near the stable point vvv∗

a a

little as follows:

v
(t+1)
i = v

(t)
i − µ

(t)
i ϕi(ui)cv

∗

i v
(t)
i , 1 ≤ i ≤ M. (31)

Here we assume that the learning rate µ
(t)
i (> 0) changes over time t and varies with

different index i such that it satisfies µ
(t)
i v

(t)
i v∗

i = µ2. The modification is justified because

v
(t)
i v∗

i
∼= v∗2

i is positive when v
(t)
i is near a stationary point v∗

i . Note that the modification

applies only after vvva has reached sufficiently near a stable point vvv∗

a.

Using the fact that v
(t)
i = k

(t)
i v∗

i we can rewrite (31) as

k
(t+1)
i = [1 − µ

(t)
i gi(Z

(t), kkk(t))]k
(t)
i , 1 ≤ i ≤ M (32)

where

gi(Z
(t), kkk(t)) = ϕi(ui)c

= ϕi((Z
(t)W ∗xxx)i + k

(t)
i v∗

i c)v
∗

i c
(33)
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Using the weight update rules (29) and (32) for the new variables Z and K, the local

stability condition is obtained in the following theorem.

Theorem 2: The local asymptotic stability of the stationary point of the proposed algo-

rithm is governed by the nonlinear moment

κi = E{ϕ̇i(ei)}E{e2
i } − E{ϕi(ei)ei} (34)

and it is stable if

1 + κi > 0, 1 + κj > 0, (1 + κi)(1 + κj) > 1 (35)

for all 1 ≤ i, j ≤ N . Thus the sufficient condition is

κi > 0, 1 ≤ i ≤ N. (36)

Proof: See Appendix II.

Because the condition for the stability of the ICA-FX in Theorem 2 is identical to

that of the standard ICA in [30], the interpretation of the nonlinear moment κi can be

consulted to [30]. Just stating the key point here, the local stability is preserved when

the activation function ϕi(ei) is chosen to be positively correlated with the true activation

function ϕ∗

i (ei) , −ṗi(ei)/pi(ei).

Thus, as the standard ICA algorithm, the choice of activation function ϕi(ei) is of great

importance, and the performance of ICA-FX depends heavily on the function ϕϕϕ(eee), which

is determined by the densities pi(ei)’s. But in practical situations, these densities are

mostly unknown, and true densities are approximated by some model densities, generally

given by (i) momentum expansion, (ii) a simple parametric model not far from Gaussian,

or (iii) a mixture of simple parametric models [31]. In this work, we do not need an

exact approximation of the density pi(ui) because we do not have physical sources like

in BSS problems. Therefore, we use the extended Infomax algorithm [26], one of the

approximation methods belonging to type (ii), because of its computational efficiency and

wide applications.

Now, we discuss the properties of the ICA-FX in terms of the suitability of the proposed

algorithm for the classification problems.
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D. Properties of ICA-FX

In ICA-FX, given a new instance consisting of N features xxx = [x1, · · · , xN ], we transform

it into an M -dimensional new feature vector fffa = [f1, · · · , fM ] and use it to estimate which

class the instance belongs to. In the following, we discuss why ICA-FX is suitable for the

classification problems in the statistical sense by showing that the new feature fi contains

information about class label c under sub- or super-Gaussian density of ui.

Consider a normalized zero-mean binary output class c, with its density

pc(c) = p1δ(c − c1) + p2δ(c − c2), (37)

where δ(·) is a dirac delta function, and p1, p2 are the probabilities that class c takes values

c1 and c2, respectively.

Suppose that ui (i = 1, · · · , N) has density pi(ui), which is sub-Gaussian (pi(ui) ∝

N(µ, σ2) + N(−µ, σ2) ) or super-Gaussian ( pi(ui) ∝ N(0, σ2)sech2(ui) ) as in [26], where

N(µ, σ2) is the normal density with mean µ and variance σ2. Then the density of fi

(i = 1, · · · ,M) is proportional to the convolution of two densities pi(ui) and pc(−c/wi,N+1)

by the assumption that ui’s and c are independent; i.e.,

p(fi) =
1

|wi,N+1|
pi(ui) ∗ pc(−

c

wi,N+1

)

∝







































p1N(−wi,cc1, σ
2)sech2(fi + wi,N+1c1)

+p2N(−wi,N+1c2, σ
2)sech2(fi + wi,N+1c2) if pi(ui): super-Gaussian

p1N(µ − wi,N+1c1, σ
2) + p2N(µ − wi,N+1c2, σ

2)

+p1N(−µ − wi,N+1c1, σ
2) + p2N(−µ − wi,N+1c2, σ

2) if pi(ui): sub-Gaussian

(38)

because fi = ui − wi,N+1c.

Figure 3 shows the densities of super- and sub-Gaussian models of ui and the corre-

sponding densities of fi for varying wi,N+1 = [0 · · · 4]. In the figure, we set µ = 1, σ = 1,

p1 = p2 = 0.5, and c1 = −c2 = 1. We can see in Fig. 3 that super-Gaussian is sharper

than sub-Gaussian at peak. For the super-Gaussian model of ui, we can see that as wi,N+1

grows, the density of fi has two peaks, which are separated from each other, and the shape
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is quite like a sub-Gaussian model with a large mean. For the sub-Gaussian model of ui,

we can see that it also takes two peaks as the weight wi,N+1 grows, though the peaks

are smoother than those of super-Gaussian. In both cases, as wi,N+1 grows, the influence

of output class c becomes dominant in the density of fi, and the classification problem

becomes easier: for a given fi check if it is larger than zero and then associate it with the

corresponding class c.

This phenomenon can be interpreted as a discrete source estimation problem in a noisy

channel, as shown in Fig. 4. If we regard class c as an input and ui as noise, our goal is to

estimate c through channel output fi. Because we assumed that c and ui’s are independent,

the higher the signal-to-noise ratio (SNR) becomes, the more class information is conveyed

in the channel output fi. The SNR can be estimated using powers of source and noise,

which in this case leads to the following estimation:

SNR =
E{c2}

E{(ui/wi,N+1)2}
. (39)

Therefore, if we can make large wi,N+1, the noise power in Fig. 4 is suppressed and we

can easily estimate the source c.

In many real-world problems, as the number of input features increases, the contribution

of class c to ui becomes small; i.e., wi,N+1 becomes relatively small such that the density of

fi is no longer bimodal. Even if this is the case, the density has a flatter top that looks like

a sub-Gaussian density model, which is easier to estimate classes than those with normal

densities.

IV. Experimental Results

In this section we will present some experimental results which show the characteristics

of the proposed algorithm. In order to show the effectiveness of the proposed algorithm,

we selected the same number of features from both the original features and the extracted

features and compared the classification performances. In the selection of features for

original data, we used the MIFS-U (mutual information feature selector under uniform

information distribution) [32], [33] which makes use of the mutual information between

input features and output class in ordering the significance of features. It is noted that

the simulation results can vary depending on the initial condition of the rate updating
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rule because there may be many local optimum solutions.

A. Simple problem

Suppose we have two input features x1 and x2 uniformly distributed on [-1,1] for a binary

classification, and the output class y is determined as follows:

y =











0 if x1 + x2 < 0

1 if x1 + x2 ≥ 0.

Here, y = 0 corresponds to c = −1 and y = 1 corresponds to c = 1.

Plotting this problem on a three-dimensional space of (x1, x2, y) leads to Fig. 5 where

the class information, as well as the input features, correspond to each axis, respectively.

The data points are located in the shaded areas in this problem. As can be seen in the

figure, this problem is linearly separable, and we can easily distinguish x1 + x2 as an

important feature. But feature extraction algorithms based on conventional unsupervised

learning, such as the conventional PCA and ICA, cannot extract x1 + x2 as a new feature

because they only consider the input distribution; i.e., they only examine (x1, x2) space.

For problems of this kind, feature selection methods in [32], [33] also fail to find adequate

features because they have no ability to construct new features by themselves. Note that

other feature extraction methods using supervised algorithms such as LDA and MMI can

solve this problem.

For this problem, we performed ICA-FX with M = 1 and could get u1 = 43.59x1 +

46.12x2+36.78y from which a new feature f1 = 43.59x1+46.12x2 is obtained. To illustrate

the characteristic of ICA-FX on this problem, we plotted u1 as a thick arrow in Fig. 5

and f1 is the projection of u1 onto the (x1, x2) feature space.

B. IBM datasets

These datasets were generated by Agrawal et al. [34] to test their data mining algorithm

CDP . Each of the datasets has nine attributes: salary, commission, age, education level,

make of the car, zipcode of the town, value of the house, years house owned, and total

amount of the loan. We have downloaded the data generation code from [35] and tested

the proposed algorithm for several datasets generated by the code. The datasets used in
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our experiments are shown in Table I.

As can be seen from Table I, these datasets are linearly separable and use only a few

features for classification. We generated 1000 instances for each dataset with noise of zero

mean and either 0% or 10% of SNR added to the attributes, among which 66% were used as

training data while the others were reserved for test. In the training, we used C4.5 [36], one

of the most popular decision-tree algorithms which gives deterministic classification rules,

and a three-layered MLP. To show the effectiveness of our feature extraction algorithm,

we have compared the performance of ICA-FX with PCA, LDA, and the original data

with various number of features. For the original data, we applied the feature selection

algorithm MIFS-U, which selects good features among candidate features, before training.

In training C4.5, all the parameters were set as the default values in [36], and for MLP,

three hidden nodes were used with a standard back-propagation (BP) algorithm with

zero momentum and a learning rate of 0.2. After 300 iterations, we stopped training the

network.

The experimental results are shown in Table II. In the table, we compared the per-

formance of the original features selected with MIFS-U and the newly extracted features

with PCA, LDA, and ICA-FX. Because this is a binary classification problem, standard

LDA extracts only one feature for all cases. The classification performances on the test set

trained with C4.5 and BP are presented in Table II. The parentheses after the classification

performance of C4.5 contain the size of the decision tree.

As can be seen from Table II, C4.5 and BP produce similar classification performances

on these data sets. For all three of the problems, ICA-FX outperformed other methods.

We also can see that PCA performed worst in all cases, even worse than the original

features selected with MIFS-U. This is because PCA can be thought as a result of un-

supervised learning, and the ordering of its principle components has nothing to do with

the classification. Note that the performances with ‘all’ features are different for differ-

ent feature extraction/selection methods, although they operate on the same space of all

the features. They operate on the same amount of information about the class. But the

classifier systems do not make full use of the information.

In the cases of 0% noise power, with only one feature we achieved very good performance
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for all the cases. In fact, in IBM1 and IBM2, the first feature selected among the original

ones was salary, while the newly extracted feature with M = 1 corresponds to (salary +

commission) and (salary+commission−6500×ed level), respectively. Comparing these

with Table I, we can see these are very good features for classification. The small numbers

of tree size for extracted features compared to that for the other methods show our feature

extraction algorithm can be utilized to generate oblique decision trees resulting in rules

easy to understand. For the case of 10% SNR, ICA-FX also performed better than others

in most cases. From these results, we can see that ICA-FX performs excellently, especially

for linearly separable problems.

C. UCI datasets

The UCI machine learning repository contains many real-world data sets that have been

used by numerous researchers [37]. In this subsection, we present experimental results of

the proposed extraction algorithm for some of these data sets. Table III shows the brief

information of the data sets used in this paper. We conducted conventional PCA, ICA,

and LDA algorithms on these datasets and extracted various numbers of features and

compared the classification performances with that of the ICA-FX. Because there is no

measure on relative importance among independent components from ICA, we used MIFS-

U in selecting the important features for the classification. For comparison, we have also

conducted MIFS-U on the original datasets and report the performance.

As classifier systems, we used MLP, C4.5, and SVM. For all the classifiers, input values

of the data were normalized to have zero means and standard deviations of one. In

training MLP, the standard BP algorithm was used with three hidden nodes, two output

nodes, a learning rate of 0.05, and a momentum of 0.95. We trained the networks for

1,000 iterations. The parameters of C4.5 were set to default values in [36]. For SVM, we

used ‘mySVM’ program by Stefan Ruping of University of Dortmund [38]. For the kernel

function we used radial (Gaussian) kernel and the other parameters were set as default.

Because the performance of the radial kernel SVM critically depends on the value of γ,

we have conducted SVM with various values of γ = 0.01 ∼ 1 and report the maximum

classification rate. Thirteen-fold cross-validation was used for the sonar dataset and ten-

fold cross-validation was used for the others. For MLP, ten experiments were conducted
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for each dataset and the averages and the standard deviations are reported in this paper.

C.1 Sonar Target data

The sonar target classification problem is described in [39]. This data set was con-

structed to discriminate between the sonar returns bounced off a metal cylinder and those

bounced off a rock. It consists of 208 instances, with 60 features and two output classes:

mine/rock. In our experiment, we used 13-fold cross validation in getting the performances

as follows. The 208 instances were divided randomly into 13 disjoint sets with 16 cases in

each. For each experiment, 12 of these sets are used as training data, while the 13th is

reserved for testing. The experiment is repeated 13 times so that every case appears once

as part of a test set.

The training was conducted with MLP, C4.5, and SVM for various numbers of features.

Table IV shows the result of our experiment. The reported performance for MLP is an

average over the 10 experiments and the numbers in parentheses denote the standard

deviation. The result shows that the extracted features from ICA-FX perform better

than the original ones, especially when the number of features to be selected is small. In

the table, we can see that the performances of ICA-FX are almost the same for small

numbers of features and far better than when all the 60 features were used. From this

phenomenon, we can infer that all the available information about the class is contained

in the first feature.

Note that the performances of unsupervised feature extraction methods PCA and ICA

are not as good as expected. From this, we can see that the unsupervised methods of

feature extraction are not good choices for the classification problems.

The first three figures in Fig. 6 are the estimates of conditional densities p(f |c)’s (class-

specific density estimates) of the first selected feature among the original features by

MIFS-U (which is the 11th of 60 features), the feature extracted by LDA, and the feature

extracted by ICA-FX with M = 1. We conducted the density estimates with the well

known Parzen window method [40] using both training and test data. In applying Parzen

window, the window width parameter was set to 0.2. The result shows that the conditional

density of the feature from ICA-FX is much more balanced than those of the original and

LDA in the feature space. In the figures of 6.(a),(b),(c), if the domain for p(f |c = 0) 6=
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0 and the domain for p(f |c = 1) 6= 0 do not overlap, then we can make no error in

classification. We can see that the overlapping region of the two classes is much smaller

in ICA-FX than the other two. This is why the performance of ICA-FX is far better than

the others with only one feature. We also present the density estimate p(f) of the feature

from ICA-FX in Fig. 6(d). Note that in Fig. 6(d), the distribution of the feature from

ICA-FX is much flatter than the Gaussian distribution and looks quite like the density of

feature fi obtained with sub-Gaussian model. The dotted line of Fig. 6(d) is the density

of sub-Gaussian model shown in Fig. 3(d) with wi,N+1 = 1.5.

C.2 Wisconsin Breast Cancer data

This database was obtained from the University of Wisconsin Hospitals, Madison, from

Dr. William H. Wolberg [41]. The data set consists of nine numerical attributes and two

classes, which are benign and malignant. It contains 699 instances with 458 benign and

241 malignant. There are 16 missing values in our experiment and we replaced these with

average values of corresponding attributes.

We compared the performances of ICA-FX with those of PCA, ICA, LDA, and the

original features selected with MIFS-U. The classification results are shown in Table V. As

in the sonar dataset, we trained the data with C4.5, MLP, and SVM. The meta-parameters

for C4.5, MLP, and SVM are the same as those for the sonar problem. For verification,

10-fold cross validation is used. In the table, classification performances are present and

the numbers in parentheses are standard deviations of MLP over 10 experiments.

The result shows that with only one extracted feature, we can get nearly the maximum

classification performance that can be achieved with at least two or three original features.

The performance of LDA is almost the same as ICA-FX for this problem.

C.3 Pima Indian Diabetes data

This data set consists of 768 instances in which 500 are class 0 and the other 268 are

class 1. It has 8 numeric features with no missing value.

For this data, we applied PCA, ICA, LDA, and ICA-FX, and compared their perfor-

mances. Original features selected by MIFS-U were also compared. In training, we used

C4.5, MLP, and SVM. The meta-parameters for the classifiers were set to be equal to the
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previous cases. For verification, 10-fold cross validation was used.

In Table VI, classification performances are presented. As shown in the table, the per-

formance of ICA-FX is better than those of other methods regardless of what classifier

system was used when the number of features is small. We can also see that the perfor-

mances of different methods get closer as the number of extracted features becomes large.

Note also that for ICA-FX, the classification rate of one feature is as good as those of the

other cases where more features are used.

V. Conclusions

In this paper, we have proposed an algorithm ICA-FX for feature extraction and have

presented the stability condition for the proposed algorithm. The proposed algorithm is

based on the standard ICA and can generate very useful features for classification problems.

Although ICA can be directly used for feature extraction, it does not generate useful

information because of its unsupervised learning nature. In the proposed algorithm, we

added class information in training ICA. The added class information plays a critical role

in the extraction of useful features for classification. With the additional class information

we can extract new features containing maximal information about the class. The number

of extracted features can be arbitrarily chosen.

The stability condition for the proposed algorithm suggests that the activation function

ϕi(·) should be chosen to well represent the true density of the source. If we are to use a

squashing function such as sigmoid or logistic as an activation function, the true source

density should not be Gaussian. If it is so, the algorithm diverges as in standard ICA.

Since it uses the standard feed-forward structure and learning algorithm of ICA, it

is easy to implement and train. Experimental results for several data sets show that the

proposed algorithm generates good features that outperform the original features and other

features extracted from other methods for classification problems. Because the original

ICA is ideally suited for processing large datasets such as biomedical ones, the proposed

algorithm is also expected to perform well for large-scale classification problems.

The proposed algorithm has been developed for two-class problems, and more work is

needed to extend the proposed method for multiclass problems. One possible approach

may start from appropriately choosing a coding scheme for multiclass labels.
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Appendix

I. Proof of Theorem 1

If (27) is to be a stationary point of learning rule (23), ∆W , W (t+1) − W (t) and

∆vvv , vvv(t+1) − vvv(t) must be zero in the statistical sense. Thus

E{[IN −ϕϕϕ(uuu)fffT ]W} = 0

E{ϕϕϕ(uuua)c} = 0
(40)

must be satisfied. The second equality is readily satisfied because of the independence of

uuua and c and the zero mean assumption on c. The first equality holds if

E{IN −ϕϕϕ(uuu)fffT} = IN − E{ϕϕϕ(uuu)uuuT} − E{ϕϕϕ(uuu)c}vvvT = 0. (41)

In the equation the last term E{ϕϕϕ(uuu)c} = 0 because uuu and c are independent and c is a

zero mean random variable. Thus, the condition (41) holds if

E{ϕi(ui)uj} = δij, (42)

where δij is a Kronecker delta. When i 6= j, this condition is satisfied because of the

independence assumption on ui(= ei)’s, and the remaining condition is

E{ϕi(ui)ui} = E{ϕi(λisΠ(i))λisΠ(i)} = 1, ∀1 ≤ i ≤ N. (43)

Here we used the fact that ui = ei = λisΠ(i), where λi is the ith diagonal element of scaling

matrix Λ and sΠ(i) is the ith signal permuted through Π.

Assuming that si has an even pdf, then ui has an even pdf and ϕi(= ṗi(ui)/pi(ui)) is an

odd function. Therefore, λi that satisfies (43) always comes in pairs: if λ is a solution, so

is −λ. Furthermore if we assume that ϕi is an increasing differentiable function, (43) has

a unique solution λ∗

i up to a sign change.

II. Proof of Theorem 2

For the proof, we use a standard tool for analyzing the local asymptotic stability of a

stochastic algorithm. It makes use of the derivative of the mean field at a stationary point.

In our problem, Z ∈ ℜN×N and kkk ∈ ℜM constitute an N×N+M dimensional space, and we
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can denote this space as a direct sum of Z and kkk; i.e., Z⊕kkk. Then the derivative considered

here is that of a mapping H : Z⊕kkk → E{G(Z,kkk)Z}⊕E{g1(Z,kkk)k1}⊕· · ·⊕E{gM(Z,kkk)kM}

at the stationary point (Z∗, kkk∗) where Z∗ = IN and kkk∗ = 1M = [1, · · · , 1]T . The derivative

is of (N ×N + M)2 dimension, and if it is positive definite, the stationary point is a local

asymptotic stable point. As written in [30], because the derivative of the mapping H is

very sparse, we can use the first-order expansion of H at the point (Z∗, kkk∗) rather than

trying to use the exact derivatives.

For convenience, let us split H into two functions H1 and H2 such that

H1 : Z ⊕ kkk → E{G(Z,kkk)Z} ∈ ℜN×N

H2
i : Z ⊕ kkk → E{gi(Z,kkk)ki}, 1 ≤ i ≤ M.

(44)

Note that H = H1 ⊕ H2. To get the first order linear approximation of the function at a

stationary point (Z∗, kkk∗), we evaluate H1 and H2 near a small variation of the stationary

point (Z,kkk) = (Z∗ + E , kkk∗ + εεε), where E ∈ ℜN×N and εεε ∈ ℜM .

H1
ij(IN + E ,1M + εεε)

= [E{G(IN + E ,1M + εεε)}(IN + E)]ij

= [E{G(IN + E ,1M + εεε)}]ij + [E{G(IN + E ,1M + εεε)}E ]ij

= E{Gij} +
N

∑

n=1

N
∑

m=1

E{
∂Gij

∂Znm

}Enm +
M

∑

m=1

E{
∂Gij

∂km

}εm +
N

∑

m=1

E{Gim}Emj

+ o(E) + o(εεε).

(45)

and

H2
i (IN + E ,1M + εεε)

= E{gi(IN + E ,1M + εεε)}(1 + εi)

= E{gi(IN + E ,1M + εεε)} + E{gi(IN + E ,1M + εεε)}εi

= E{gi} +
N

∑

n=1

N
∑

m=1

E{
∂gi

∂Zmn

}Emn +
M

∑

m=1

E{
∂gi

∂km

}εm + E{gi}εi + o(E) + o(εεε).

(46)

Using the independence and zero mean assumptions on ei’s and c, these can be further
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expanded as

H1
ij(IN + E ,1M + εεε)

=



















































EijE{ϕ̇i(ei)e
2
j} + E{ϕi(ei)ei}Eji + v∗

j

∑M

m=1 Eimv∗

mE{ϕ̇i(ei)c
2}

−εiv
∗

i v
∗

j E{ϕ̇i(ei)c
2} + o(E) + o(εεε) if 1 ≤ i, j ≤ M

EijE{ϕ̇i(ei)e
2
j} + E{ϕi(ei)ei}Eji + v∗

j

∑M

m=1 Eimv∗

mE{ϕ̇i(ei)c
2}

+o(E) + o(εεε) if M < i ≤ N, 1 ≤ j ≤ M

EijE{ϕ̇i(ei)e
2
j} + E{ϕi(ei)ei}Eji + o(E) + o(εεε) if M < i, j ≤ N

(47)

and

H2
i (IN + E ,1M + εεε)

= −v∗

i

M
∑

m=1

Eimv∗

mE{ϕ̇i(ei)c
2} + εiv

∗2
i E{ϕ̇i(ei)c

2} + o(E) + o(εεε) 1 ≤ i ≤ M.
(48)

Now, we develop the local stability conditions case by case.

(Case 1) i, j > M

In this case, H1
ij and H1

ji only depend on Eij and Eji and are represented as





H1
ij

H1
ji



 =





E{ϕ̇i(ei)}E{e2
j} E{ϕi(ei)ei}

E{ϕi(ej)ej} E{ϕ̇j(ej)}E{e2
i }









Eij

Eji



 , Dij





Eij

Eji



 if i 6= j

H1
ii = [E{ϕ̇i(ei)e

2
i } + E{ϕi(ei)ei}]Eii , diEii.

(49)

Thus for i 6= j, Zij and Zji are stabilized when Dij is positive definite. And if i = j, Zii is

stabilized when di is positive. Using the fact that E{ϕi(ei)ei} = 1 ∀i = 1, · · · , N , we can

show that the local stability condition for the pair (i, j) when i, j > M is (35).

(Case 2) i ≤ M, j > M

In this case, H1
ij and H1

ji are dependent not only on Eij and Eji but also on all Ejm,

m = 1, · · · ,M . Thus for a fixed j, we augment all the H1
ij and H1

ji, i = 1, · · · ,M ,

and construct a 2M -dimensional vector HHHj , [H1
1j, · · · , H1

Mj, H
1
j1, · · · , H1

jM ]T . Now this

augmented vector HHHj depends only on EEE j , [E1
1j, · · · , EMj, Ej1, · · · , EjM ]T and can be

represented as a linear equation HHHj = DDDjEEE j, using an appropriate matrix DDDj ∈ ℜ2M×2M .

The stability of ZZZj = [Z1j, · · · , ZMj, Zj1, · · · , ZjM ]T for j > M is equivalent to the positive

definiteness of DDDj and it can be checked by investigating the sign of the HHHT
j EEE j.
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Substituting (47) and using E{ϕi(ei)ei} = 1 ∀i = 1, · · · , N , we get

HHHT
j EEE j =

M
∑

i=1

(H1
ijEij + H1

jiEji)

=
M

∑

i=1

[E{ϕ̇i(ei)e
2
j}E

2
ij + 2EijEji + E{ϕ̇j(ej)e

2
i }E

2
ji] + E{ϕ̇j(ej)}E{c2}(

M
∑

i=1

Ejiv
∗

i )
2.

(50)

If we assume that ϕ̇j(·) is nonnegative, as we did in the proof of the uniqueness of the

scalar λj, the last term is nonnegative. Thus, a sufficient condition for this equation to

be positive is to make the first term positive, and this condition is satisfied if and only if

equation (35) holds. Therefore, (35) becomes a sufficient condition for the local stability

of ZZZj.

(Case 3) i, j ≤ M

In this case, because H1
ij and H2

i are dependent both on E and εεε, we construct a new

vector and investigate the stability condition of the vector as in the previous case.

Consider the M ×M +M dimensional vectors HHH , [H1
11, H

1
12, · · · , H1

MM , H2
1 , · · · , H2

M ]T

and EEE , [E11, E12, · · · , EMM , ε1, · · · , εM ]T . Using (47) and (48), HHH can be represented as

the linear equation HHH = DDDEEE , where DDD is an appropriate matrix. Thus, the stability of the

Z = [Z11, Z12 · · · , ZMM ]T and kkk can be checked using the same procedure as the previous

case.

HHHTEEE =
M

∑

i=1

M
∑

j=1

H1
ijEij +

M
∑

i=1

H2
i εi

=
M

∑

i=1

M
∑

j=1

(E2
ijE{ϕ̇i(ei)e

2
j} + EijEji) +

M
∑

i=1

[E{ϕ̇i(ei)}E{c2}(v∗

i εi −
M

∑

j=1

v∗

jEij)
2]

(51)

The last term is nonnegative with the assumption of ϕ̇i(·) ≥ 0, and a sufficient condition

for the double summation to be positive is (35). Thus, Z ⊕kkk is locally stable if condition

(35) holds.

Combining the stability conditions for the case 1, 2, and 3, we conclude that the learn-

ing rule (23) for ICA-FX is locally asymptotically stable at the stationary point (27) if

condition (35) holds.
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TABLE I

IBM Data sets

IBM1

Group A: 0.33 × (salary + commission) − 30000 > 0

Group B: Otherwise.

IBM2

Group A: 0.67 × (salary + commission) − 5000 × ed level − 20000 > 0

Group B: Otherwise.

IBM3

Group A: 0.67 × (salary + commission) − 5000 × ed level − loan/5 − 10000 > 0

Group B: Otherwise.
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TABLE II

Experimental results for IBM data (Parentheses are the sizes of the decision trees of

c4.5)

IBM1

Noise No. of Classification performance (%) (C4.5/MLP)

power features MIFS-U PCA LDA ICA-FX

0%

1 87.6(3)/85.8 53.0(3)/55.6 82.2(3)/84.0 96.8(3)/97.0

2 97.8(25)/97.8 85.4(21)/85.8 – 99.6(3)/97.6

all 97.8(27)/97.6 89.4(49)/90.2 99.6(3)/97.8

10%

1 82.0(3)/81.4 53.0(3)/56.2 81.2(3)/81.4 92.6(3)/91.8

2 89.4(21)/90.2 81.6(37)/81.6 – 92.6(11)/92.8

all 87.6(47)/87.8 87.4(49)/88.0 – 92.4(17)/92.2

IBM2

Noise No. of Classification performance (%) (C4.5/MLP)

power features MIFS-U PCA LDA ICA-FX

0%

1 89.4(5)/91.0 87.0(3)/87.2 96.4(3)/96.6 97.8(7)/98.0

2 96.6(5)/97.0 89.6(13)/89.4 – 98.8(15)/98.4

3 98.8(25)/98.8 89.6(13)/89.8 – 98.8(17)/98.8

all 98.8(23)/98.6 93.8(33)/95.2 – 99.0(25)/98.8

10%

1 90.0(5)/90.6 87.0(3)/87.0 94.6(9)/95.2 96.2(5)/96.8

2 94.8(13)/95.6 85.6(19)/86.0 – 94.8(13)/96.8

3 96.0(13)/95.2 85.6(23)/85.0 – 95.2(19)/97.0

all 95.0(21)/94.6 92.2(23)/92.4 – 95.8(29)/97.4

IBM3

Noise No. of Classification performance (%) (C4.5/MLP)

power features MIFS-U PCA LDA ICA-FX

0%

1 85.0(3)/85.0 55.4(3)/55.4 92.2(3)/92.2 93.2(3)/94.2

2 91.2(31)/91.4 61.8(7)/63.8 – 93.6(15)/96.4

3 90.6(29)/91.8 65.8(23)/66.0 – 97.0(3)/97.0

4 90.2(33)/92.0 65.8(27)/66.4 – 96.8(21)/97.4

all 92.4(65)/98.2 88.8(113)/89.6 – 97.8(39)/100.0

10%

1 84.8(3)/84.4 52.2(3)/52.2 89.0(3)/90.0 92.2(3)/93.0

2 88.4(21)/89.6 58.8(11)/61.4 – 93.4(5)/93.2

3 86.8(31)/88.8 63.0(11)/64.0 – 94.4(15)/94.0

4 87.4(41)/87.0 63.0(15)/64.2 – 93.4(19)/94.2

all 89.4(57)/92.6 79.8(103)/81.8 – 92.4(49)/93.6
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TABLE III

Brief Information of the UCI Data sets Used

Name No. of No. of No. of

features instances classes

Sonar 60 208 2

Breast Cancer 9 699 2

Pima 8 768 2

TABLE IV

Classification performance for Sonar Target data (Parentheses are the standard

deviations of 10 experiments)

No. of Classification performance (%) ( C4.5/MLP/SVM )

features MIFS-U PCA ICA LDA ICA-FX

1 73.1/74.8(0.32)/74.8 52.4/59.3(0.41)/58.6 65.9/67.9(0.25)/67.2 71.2/75.2(0.37)/74.1 87.5/87.3(0.17)/87.1

3 70.2/72.9(0.58)/75.5 51.0/57.9(0.42)/54.7 63.0/71.1(0.45)/69.7 – 86.1/88.1(0.37)/89.0

6 69.7/77.5(0.24)/80.8 64.9/63.8(0.72)/63.0 61.2/69.9(0.63)/70.2 – 85.6/86.4(0.42)/87.1

9 81.7/80.1(0.61)/79.9 69.7/71.2(0.67)/70.2 61.5/68.7(0.62)/68.7 – 83.2/85.0(0.83)/88.8

12 79.3/79.5(0.53)/81.3 73.1/74.0(0.64)/75.1 60.1/71.4(0.71)/71.7 – 78.2/83.4(0.49)/86.6

60 73.1/76.4(0.89)/82.7 73.1/75.5(0.96)/82.7 63.9/74.1(1.43)/77.0 – 73.1/80.0(0.78)/84.2

TABLE V

Classification performance for Breast Cancer data (Parentheses are the standard

deviations of 10 experiments)

No. of Classification performance (%) (C4.5/MLP/SVM)

features MIFS-U PCA ICA LDA ICA-FX

1 91.1/92.4(0.03)/92.7 85.8/86.1(0.05)/85.8 84.7/81.5(0.29)/85.1 96.8/96.6(0.07)/96.9 97.0/97.1(0.11)/97.0

2 94.7/95.8(0.17)/95.7 93.3/93.8(0.07)/94.7 87.3/85.4(0.31)/90.3 – 96.5/97.1(0.09)/97.1

3 95.8/96.2(0.15)/96.1 93.8/94.7(0.11)/95.9 89.1/85.6(0.33)/91.3 – 96.7/96.9(0.12)/96.9

6 95.0/96.1(0.08)/96.7 94.8/96.6(0.15)/96.6 90.4/90.0(0.59)/94.3 – 95.9/96.7(0.27)/96.7

9 94.5/96.4(0.13)/96.7 94.4/96.8(0.16)/96.7 91.1/93.0(0.84)/95.9 – 95.5/96.9(0.13)/96.6
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TABLE VI

Classification performance for Pima data (Parentheses are the standard deviations of

10 experiments)

No. of Classification performance (%) (C4.5/MLP/SVM)

features MIFS-U PCA ICA LDA ICA-FX

1 72.8/74.1(0.19)/74.5 67.8/66.2(0.17)/66.3 69.7/71.6(0.17)/73.2 74.5/75.2(0.23)/75.6 76.0/78.6(0.11)/78.7

2 74.2/76.7(0.13)/75.8 75.0/74.4(0.23)/75.1 72.7/76.8(0.24)/76.7 – 75.2/78.2(0.25)/78.1

3 74.1/76.3(0.27)/76.8 74.2/75.1(0.23)/75.5 72.7/76.7(0.54)/76.8 – 75.7/76.7(0.18)/77.8

5 73.3/75.3(0.64)/76.6 73.7/75.2(0.39)/75.5 72.9/76.4(0.55)/77.2 – 77.2/77.8(0.38)/78.3

8 74.5/76.5(0.45)/78.1 74.5/76.6(0.31)/78.1 72.3/77.0(0.62)/77.9 – 72.9/76.7(0.48)/78.0
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Fig. 3. Super- and sub-Gaussian densities of ui and corresponding densities of fi (p1 = p2 = 0.5 ,

c1 = −c2 = 1, µ = 1, and σ = 1).
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