
Introduction to Convolutional Neural Networks
(CNNs)

Nojun Kwak
nojunk@snu.ac.kr

http://mipal.snu.ac.kr

Department of Transdisciplinary Studies
Seoul National University, Korea

Jan. 2016

Many slides are from Fei-Fei Li @Stanford, Raquel Urtasun @U. Toronto,
and Marc’Aurelio Ranzato @Facebook.

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

mailto:nojunk@snu.ac.kr
http://mipal.snu.ac.kr

Traditional Pattern Recognition

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Hierarchical Compositionality (DEEP)

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Deep Learning

What is deep learning?
Nothing new!
(Many) cascades of nonlinear transformations
End-to-end learning (no human intervention / no fixed
features)

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Shallow(?) Learning Examples - Supervised

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Deep Learning Examples - Supervised

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Artificial Neural Networks (ANN)

Biologically inspired models

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Variants of ANNs

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

A Brief History of ANNs

source of image: VUNO Inc.

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

A Brief History of ANNs

First Generation: 1957 ∼
Perceptron: Rosenblatt,
1957
Adaline: Widrow and
Hoff, 1960

Second Generation: 1986 ∼

MLP with BP: Rumelhart

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

A Brief History of ANNs

First Generation: 1957 ∼
Perceptron: Rosenblatt,
1957
Adaline: Widrow and
Hoff, 1960

Second Generation: 1986 ∼

MLP with BP: Rumelhart

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

A Brief History of ANNs

Third Generation: 2006 ∼
RBM: Hinton and Salkhutdinov
Reinvigorated research in Deep Learning

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Classification problems

Given inputs xxx, and outputs t ∈ {−1, 1}
Find a hyperplane that divides the space into half (binary
classification)

y∗ = sign(wwwT
∗ xxx + www0)

⇒ SVM tries to maximize the margin.

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Classification problems

Given inputs xxx, and outputs t ∈ {−1, 1}
Find a hyperplane that divides the space into half (binary
classification)

y = sign(wwwTxxx + b)

⇒ SVM tries to maximize the margin.

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Nonlinear predictors

How can we make our classifier more powerful?

Compute nonlinear functions of the input

y = F(xxx,www)

Two types of widely used approaches

Kernel Trick: Fixed functions and optimize linear parameters
on nonlinear mappings φ(xxx)

y = sign(wwwTφ(xxx) + b)

Deep Learning: Learn parametric nonlinear functions

y = F(xxx,www) = · · · (hhh2(wwwT
2 hhh1(wwwT

1 xxx + b1) + b2) · · ·

hhh1,2: activation function at layer 1 or 2

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Nonlinear predictors

How can we make our classifier more powerful?
Compute nonlinear functions of the input

y = F(xxx,www)

Two types of widely used approaches

Kernel Trick: Fixed functions and optimize linear parameters
on nonlinear mappings φ(xxx)

y = sign(wwwTφ(xxx) + b)

Deep Learning: Learn parametric nonlinear functions

y = F(xxx,www) = · · · (hhh2(wwwT
2 hhh1(wwwT

1 xxx + b1) + b2) · · ·

hhh1,2: activation function at layer 1 or 2

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Nonlinear predictors

How can we make our classifier more powerful?
Compute nonlinear functions of the input

y = F(xxx,www)

Two types of widely used approaches

Kernel Trick: Fixed functions and optimize linear parameters
on nonlinear mappings φ(xxx)

y = sign(wwwTφ(xxx) + b)

Deep Learning: Learn parametric nonlinear functions

y = F(xxx,www) = · · · (hhh2(wwwT
2 hhh1(wwwT

1 xxx + b1) + b2) · · ·

hhh1,2: activation function at layer 1 or 2

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Nonlinear predictors

How can we make our classifier more powerful?
Compute nonlinear functions of the input

y = F(xxx,www)

Two types of widely used approaches
Kernel Trick: Fixed functions and optimize linear parameters
on nonlinear mappings φ(xxx)

y = sign(wwwTφ(xxx) + b)

Deep Learning: Learn parametric nonlinear functions

y = F(xxx,www) = · · · (hhh2(wwwT
2 hhh1(wwwT

1 xxx + b1) + b2) · · ·

hhh1,2: activation function at layer 1 or 2

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Nonlinear predictors

How can we make our classifier more powerful?
Compute nonlinear functions of the input

y = F(xxx,www)

Two types of widely used approaches
Kernel Trick: Fixed functions and optimize linear parameters
on nonlinear mappings φ(xxx)

y = sign(wwwTφ(xxx) + b)

Deep Learning: Learn parametric nonlinear functions

y = F(xxx,www) = · · · (hhh2(wwwT
2 hhh1(wwwT

1 xxx + b1) + b2) · · ·

hhh1,2: activation function at layer 1 or 2

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Neural Networks

Deep learning uses composite of simpler functions, e.g., ReLU,
sigmoid, tanh, max
Note: a composite of linear functions is linear!
Example: 2 layer NNet (Convention: input and output layers
are not taken as a layer)

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Neural Networks

Deep learning uses composite of simpler functions, e.g., ReLU,
sigmoid, tanh, max
Note: a composite of linear functions is linear!
Example: 2 layer NNet (Convention: input and output layers
are not taken as a layer)

xxx is the input
yyy is the output
hhhi is the i-th hidden layer output
W i is the set of parameters of the i-th layer

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Nonlinearity - Activation function

A singlue neuron can be
used as a binary linear
classifier
Regularization has the
interpretation of gradual
forgetting

Classical NNs used sigmoid or tanh function as an activation
function.

sigmoid: σ(x) = 1
1+e−x

tanh: tanh(x) = ex−e−x

ex+e−x

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Sigmoid function

Squashes numbers to range
[0,1]
Historically popular since
they have nice
interpretation as a
saturating “firing rate” of a
neuron

2 BIG problems:
1 Saturated neurons kill the gradients (cannot backprop further)
⇒ Major bottleneck for the conventional NNs: not able to
train more than 2 or 3 layers

2 Sigmoid outputs are not zero-centered
⇒ Restriction on the gradient directions

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Sigmoid function

Squashes numbers to range
[0,1]
Historically popular since
they have nice
interpretation as a
saturating “firing rate” of a
neuron

2 BIG problems:
1 Saturated neurons kill the gradients (cannot backprop further)
⇒ Major bottleneck for the conventional NNs: not able to
train more than 2 or 3 layers

2 Sigmoid outputs are not zero-centered
⇒ Restriction on the gradient directions

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

ReLU: Rectified Linear Unit

f (x) = max(0, x)
Does not saturate
Computationally very
efficient
Converges much faster than
sigmoid/tanh in practice
(e.g. 6x)

One annoying problem ⇒ Dead neurons
Solution: leaky ReLU (small slope for negative input)

Never dies.
However, almost the same performance in practice.

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

ReLU: Rectified Linear Unit

f (x) = max(0, x)
Does not saturate
Computationally very
efficient
Converges much faster than
sigmoid/tanh in practice
(e.g. 6x)

One annoying problem ⇒ Dead neurons

Solution: leaky ReLU (small slope for negative input)
Never dies.
However, almost the same performance in practice.

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

ReLU: Rectified Linear Unit

f (x) = max(0, x)
Does not saturate
Computationally very
efficient
Converges much faster than
sigmoid/tanh in practice
(e.g. 6x)

One annoying problem ⇒ Dead neurons
Solution: leaky ReLU (small slope for negative input)

Never dies.
However, almost the same performance in practice.

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Why ReLU?

Piecewise linear tiling: mapping is locally linear
Montufar et al. “On the number of linear regions of DNNs”, arXiv 2014

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Forward Pass: Evaluating the function

Forward propagation: compute the output yyy given the input xxx

Fully connected layer
Nonlinearity comes from ReLU
Do it in a compositional way

xxx ⇒ hhh1 ⇒ hhh2 ⇒ yyy

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Alternative graphical representation

Slide from M. Ranzato

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Why many layers?

Hierarchically distributed representations

Lee et al. “Convolutional DBN’s · · · ” ICML 2009

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Why many layers?

Hierarchically distributed representations

Lee et al. “Convolutional DBN’s · · · ” ICML 2009

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Training

We want to estimate the parameters, biases and
hyper-parameters (e.g., number of layers, number of neurons)
for good predictions.
Collect a training set of input-output pairs {xxx i , ti}Ni=1.
Encode the output with 1-K encoding t = [0, · · · , 1, · · · , 0].

Define a loss per training example and minimize the empirical
loss

L(www) = 1
N

N∑
i=1

l(www,xxx i , ti) +R(www)

N : number of training examples
R: regularizer
www: set of all parameters

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Training

We want to estimate the parameters, biases and
hyper-parameters (e.g., number of layers, number of neurons)
for good predictions.
Collect a training set of input-output pairs {xxx i , ti}Ni=1.
Encode the output with 1-K encoding t = [0, · · · , 1, · · · , 0].
Define a loss per training example and minimize the empirical
loss

L(www) = 1
N

N∑
i=1

l(www,xxx i , ti) +R(www)

N : number of training examples
R: regularizer
www: set of all parameters

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Loss functions

L(www) = 1
N

N∑
i=1

l(www,xxx i , ti) +R(www)

Softmax (Probability of class k given input):

p(ck = 1|xxx) = exp(yk)∑C
j=1 exp(yj)

Cross entropy (most popular loss function for classification):

l(www,xxx, t) = −
C∑

k=1
t(k) log p(ck |xxx)

Gradient descent to train the network

www∗ = argmin
www

L(www)

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Loss functions

L(www) = 1
N

N∑
i=1

l(www,xxx i , ti) +R(www)

Softmax (Probability of class k given input):

p(ck = 1|xxx) = exp(yk)∑C
j=1 exp(yj)

Cross entropy (most popular loss function for classification):

l(www,xxx, t) = −
C∑

k=1
t(k) log p(ck |xxx)

Gradient descent to train the network

www∗ = argmin
www

L(www)

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Loss functions

L(www) = 1
N

N∑
i=1

l(www,xxx i , ti) +R(www)

Softmax (Probability of class k given input):

p(ck = 1|xxx) = exp(yk)∑C
j=1 exp(yj)

Cross entropy (most popular loss function for classification):

l(www,xxx, t) = −
C∑

k=1
t(k) log p(ck |xxx)

Gradient descent to train the network

www∗ = argmin
www

L(www)

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Backpropagation

Efficient way of computing gradient (Chain rule)
Partial derivatives and gradients

f (x, y) = xy → ∂f
∂x = y ∂f

∂y = x

df (x)
dx = lim

h→0

f (x + h)− f (x)
h f (x + h) = f (x) + h df (x)

dx

Example: x = 4, y = −3⇒ f (x, y) = −12

∂f
∂x = −3 ∂f

∂x = 4 ∇f =
[
∂f
∂x ,

∂f
∂y

]

Question: If I increase x by h, how would the output f
change?

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Backpropagation

Efficient way of computing gradient (Chain rule)
Partial derivatives and gradients

f (x, y) = xy → ∂f
∂x = y ∂f

∂y = x

df (x)
dx = lim

h→0

f (x + h)− f (x)
h f (x + h) = f (x) + h df (x)

dx

Example: x = 4, y = −3⇒ f (x, y) = −12

∂f
∂x = −3 ∂f

∂x = 4 ∇f =
[
∂f
∂x ,

∂f
∂y

]

Question: If I increase x by h, how would the output f
change?

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Backpropagation

Efficient way of computing gradient (Chain rule)
Partial derivatives and gradients

f (x, y) = xy → ∂f
∂x = y ∂f

∂y = x

df (x)
dx = lim

h→0

f (x + h)− f (x)
h f (x + h) = f (x) + h df (x)

dx

Example: x = 4, y = −3⇒ f (x, y) = −12

∂f
∂x = −3 ∂f

∂x = 4 ∇f =
[
∂f
∂x ,

∂f
∂y

]

Question: If I increase x by h, how would the output f
change?

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Backpropagation

Compound expressions with graphics (example from F.F. Li)

q = x + y ∂q
∂x = 1, ∂q

∂x = 1

f = qz ∂f
∂q = z, ∂f

∂z = q

Chain rule: ∂f
∂x = ∂f

∂q
∂q
∂x

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Backpropagation: Another Example

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Backpropagation: Another Example

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Backpropagation: Another Example

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Backpropagation: Another Example

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Backpropagation: Another Example

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Backpropagation: Another Example

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Backpropagation: Another Example

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Backpropagation: Key Idea

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Backpropagation: Patterns in BP

Add: gradient distributor
Max: gradient router
Mul: gradient switcher

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Learning via Gradient Descent

Gradient descent to train the network

www∗ = argmin
www

1
N

N∑
i=1

l(www,xxx i , ti) +R(www)

At each iteration, we need to compute

wwwn+1 = wwwn − γn∇L(wwwn)

Use the backward pass to compute ∇L(wwwn) efficiently
Recall that the backward pass requires the forward pass first

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Dealing with Big Data

At each iteration, we need to compute

wwwn+1 = wwwn − γn∇L(wwwn)

with

∇L(wwwn) = 1
N

N∑
i=1
∇l(wwwn ,xxx i , ti) +∇R(wwwn)

Too expensive when having millions of training examples

Instead, approximate the gradient with a mini-batch (subset of
examples: 100 ∼ 1,000) - called stochastic gradient descent

1
N

N∑
i=1
∇l(wwwn ,xxx i , ti) ≈

1
|S |

∑
i∈S
∇l(wwwn ,xxx i , ti)

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Dealing with Big Data

At each iteration, we need to compute

wwwn+1 = wwwn − γn∇L(wwwn)

with

∇L(wwwn) = 1
N

N∑
i=1
∇l(wwwn ,xxx i , ti) +∇R(wwwn)

Too expensive when having millions of training examples
Instead, approximate the gradient with a mini-batch (subset of
examples: 100 ∼ 1,000) - called stochastic gradient descent

1
N

N∑
i=1
∇l(wwwn ,xxx i , ti) ≈

1
|S |

∑
i∈S
∇l(wwwn ,xxx i , ti)

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

SGD with momentum

Stochastic Gradient Descent update

wwwn+1 = wwwn − γn∇L(wwwn)

with
∇L(wwwn) = 1

|S |
∑
i∈S
∇l(wwwn ,xxx i , ti)

We can use momentum

www ←− www − γ∆
∆←− κ∆ +∇L

We can also decay learning rate γ as iterations goes on

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Fully Connected Layer

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Locally Connected Layer

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Locally Connected Layer

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Convolutional Neural Networks

Idea: statistics are similar at different locations (Lecun 1998)
Connect each hidden unit to a small input patch and share
the weight across space
This is called convolution layer and the network is a
convolutional neural network

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Convolutional Neural Networks

Number of filters (neurons) is considered as a new dimension
(depth)
⇒ Volumetric representation

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Convolutional Neural Networks

Number of filters (neurons) is considered as a new dimension
(depth)
⇒ Volumetric representation

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Convolutional Neural Networks

CNNs are just neural nets BUT:
1. Local connectivity

image: 32x32x3 volume

before: fully connected:
32x32x3 weights

now: one neuron will connect
to, e.g., 5x5x3 chunk (recep-
tive field) and only have 5x5x3
weights

connectivity is:
local in space (5x5
instead of 32x32)
but full in depth (all 3
depth channels)

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Convolutional Neural Networks

CNNs are just neural nets BUT:
1. Local connectivity

image: 32x32x3 volume

before: fully connected:
32x32x3 weights

now: one neuron will connect
to, e.g., 5x5x3 chunk (recep-
tive field) and only have 5x5x3
weights

connectivity is:
local in space (5x5
instead of 32x32)
but full in depth (all 3
depth channels)

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Convolutional Neural Networks

CNNs are just neural nets BUT:
1. Local connectivity

Multiple neurons all look-
ing at the same region of
the input volume, stacked
along depth.

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Convolutional Neural Networks

CNNs are just neural nets BUT:
1. Local connectivity

Multiple neurons all look-
ing at the same region of
the input volume, stacked
along depth.

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Convolutional Neural Networks

CNNs are just neural nets BUT:
2. Weight sharing

Weights are
shared across
different
locations
Each depth slice
is called one
feature map

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Convolutional Neural Networks

CNNs are just neural nets BUT:
2. Weight sharing

Weights are
shared across
different
locations
Each depth slice
is called one
feature map

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Convolutional Neural Networks

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Convolutional Neural Networks

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Convolutional Neural Networks

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Convolutional Neural Networks

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Convolutional Neural Networks

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Convolutional Neural Networks

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Convolutional Layer: Summary

Input volume of size [W1 x H1 x D1]
using K neurons with receptive fields F x F
and applying them at strides of S gives
Output volume: [W2, H2, D2]
W2 = (W1-F)/S+1,
H2 = (H1-F)/S+1,
D2 = K

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Feature (Filter) Visualization

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Pooling

In CNNs, Conv layers are often followed by Pool layers
Pooling layer: makes the representations smaller and more
manageable without losing too much information

Increased receptive field
Most common: MAX pooling
Others: average, L2 pooling · · ·

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Improving Generalization

Weight sharing (Reduce the number of parameters)
Data augmentation (e.g., jittering, noise injection,
tranformations)
Dropout [Hinton et al.]: randomly drop units (along with their
connections) from the neural network during training. Use for
the fully connected layers only
Regularization: Weight decay (L2, L1)
Sparsity in the hidden units
Multi-task learning
Transfer learning

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Improving Generalization

Dropout [Hinton et al.]: randomly drop units (along with their
connections) from the neural network during training. Use for
the fully connected layers only

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Optimality

Common knowledge: for non-convex problems, training does
not work because we get stuck to local minima

Not true!!!
If the size of the network is large enough, local descent can
reach a global minimizer from any initialization

Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv’15

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Optimality

Common knowledge: for non-convex problems, training does
not work because we get stuck to local minima

Not true!!!
If the size of the network is large enough, local descent can
reach a global minimizer from any initialization

Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv’15

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

ConvNets

Typical ConvNet:
Image → [Conv - ReLU] → (Pool) → [Conv - ReLU] → (Pool) →
FC (fully-connected) → Softmax

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

ConvNets - Flavours

Lenet5 (Yann Lecun 1998)

Alexnet (Alex Krizhevsky et. al., 2012)
Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

ConvNets - Flavours

ZFnet: Clarifai (Matt Zeiler and Rob Fergus, 2013)

Googlenet (Google, 2014)

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Complexity (Alexnet)

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Recent Trend

Human: 5.1% (Karpathy), Baidu cheating (2015.05) - 4.58%

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Recent Trend

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Recent Trend

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

Conclusions

Deep Learning = learning hierarhical models.
ConvNets are the most successful example. Leverage large
labeled datasets.
Optimization

Don’t we get stuck in local minima? No, they are all the same!
In large scale applications, local minima are even less of an
issue.

Scaling
GPUs
Distributed framework (Google)
Better optimization techniques

Generalization on small datasets (curse of dimensionality):
data augmentation
weight decay
dropout
unsupervised learning
multi-task learning

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)

