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Hierarchical Compositionality (DEEP) @M
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VISION
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Deep Learning @M~A

LABORATORY

‘car

What is deep learning?
@ Nothing new!
@ (Many) cascades of nonlinear transformations

@ End-to-end learning (no human intervention / no fixed
features)
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Shallow(?) Learning Examples - Supervised [}l
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Deep Learning Examples - Supervised @M~A ¢

LABORATOR

Classification

OCR

“2345”
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Artificial Neural Networks (ANN) @A

LABORATORY

@ Biologically inspired models
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Variants of ANNs

LY

Neuron Percentron Multi-layer
(in brain) P perceptron

Deep neural
network
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A Brief History of ANNs @M~

LABORATORY

Deep Neural Network
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A Brief History of ANNs @=A

LABORATOR

@ First Generation: 1957 ~

o Perceptron: Rosenblatt,
1957

o Adaline: Widrow and
Hoff, 1960

+

Qs are adjustable
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A Brief History of ANNs @=A

LABORATOR

@ First Generation: 1957 ~ @ Second Generation: 1986 ~
o Perceptron: Rosenblatt,
1957 o MLP with BP: Rumelhart
o Adaline: Widrow and

Hoff, 1960

+

Qs are adjustable

Input Patterns

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)



A Brief History of ANNs

@LABORATORV

@ Third Generation: 2006 ~

e RBM: Hinton and Salkhutdinov
e Reinvigorated research in Deep Learning
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Classification problems

e Given inputs z, and outputs ¢t € {—1,1}
e Find a hyperplane that divides the space into half (binary

classification)

= SVM tries to maximize the margin.

X;

o
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Classification problems

@M=A ¢

e Given inputs z, and outputs t € {—1,1}

e Find a hyperplane that divides the space into half (binary
classification)

y = sign(wlz + b)

= SVM tries to maximize the margin.

X;

o

X1
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Nonlinear predictors @

LABORATORY

How can we make our classifier more powerful?
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Nonlinear predictors @M=A

LABORATORY

How can we make our classifier more powerful?

@ Compute nonlinear functions of the input

y:F(maw)
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Nonlinear predictors @=A

LABORATOR

How can we make our classifier more powerful?

@ Compute nonlinear functions of the input
Yy = F(ma ’l.U)

Two types of widely used approaches
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Nonlinear predictors @=A

LABORATOR

How can we make our classifier more powerful?

@ Compute nonlinear functions of the input
Yy = F(ma ’l.U)

Two types of widely used approaches

@ Kernel Trick: Fixed functions and optimize linear parameters
on nonlinear mappings ¢(x)

y = sign(w”¢(z) + b)
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Nonlinear predictors @=A

LABORATOR

How can we make our classifier more powerful?

@ Compute nonlinear functions of the input
Yy = F(ma ’l.U)

Two types of widely used approaches

@ Kernel Trick: Fixed functions and optimize linear parameters
on nonlinear mappings ¢(x)

y = sign(w”¢(z) + b)
@ Deep Learning: Learn parametric nonlinear functions
Yy = F((II,’w) = --~(h2(w2Th1(w1T$~l—b1)+ bz)

hi2: activation function at layer 1 or 2
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Neural Networks

@ Deep learning uses composite of simpler functions, e.g., RelLU,
sigmoid, tanh, max

@ Note: a composite of linear functions is linear!

\Pg
®

i
o0

are not taken as a layer)
e e
‘\‘.'//A . output layer

e Example: 2 layer NNet (Convention: input and output layers
LN ISX
input layer

\
<

Y

hidden layer 1 hidden layer 2
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Neural Networks @W]IPH

LABORATOR

@ Deep learning uses composite of simpler functions, e.g., RelLU,
sigmoid, tanh, max

@ Note: a composite of linear functions is linear!

@ Example: 2 layer NNet (Convention input and output layers

are not taken as a layer)
2

x—»[ hl (W x) ]—»[ h2 (W, ht) ]—»[ Wy h? ]—»y

z is the input

9y is the output

h’ is the i-th hidden layer output

W is the set of parameters of the i-th layer
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Nonlinearity - Activation function @M~A

LABORATORY

o wo

m w @ A singlue neuron can be
DR A DN S0 Ey used as a binary linear
cell body f(Zw,z, : b) classifier
2t ks @ Regularization has the
activation
cton interpretation of gradual
forgetting

Classical NNs used sigmoid or tanh function as an activation

function.
@ sigmoid: o(z) = H%
e tanh: tanh(z) = zﬁjrz:z

Sigmoid tanh(x)
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LABORATORY

Sigmoid function @M

I S @ Squashes numbers to range
[0.1]
/ @ Historically popular since
i they have nice
- A . . interpretation as a
saturating “firing rate” of a
Sigmoid neuron
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LABORATORY

Sigmoid function @M

N @ Squashes numbers to range
' [0.1]
/ @ Historically popular since
' i they have nice
A . . interpretation as a
saturating “firing rate” of a
Sigmoid neuron

2 BIG problems:

@ Saturated neurons kill the gradients (cannot backprop further)
= Major bottleneck for the conventional NNs: not able to
train more than 2 or 3 layers

@ Sigmoid outputs are not zero-centered
= Restriction on the gradient directions
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RelLU: Rectified Linear Unit QMIPH

1o Vi e f(z) =max(0,z)
’ / @ Does not saturate

/ o Computationally very

/ efficient

@ Converges much faster than
sigmoid/tanh in practice

RelLU (e.g. 6x)

“10 -5 2 5 10
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RelLU: Rectified Linear Unit

@lABORATORV

DATA

CLOuD

active ReLU

> )

\

dead ReLU
will never activate
=> never update

e f(z) = max(0,z)
@ Does not saturate

o Computationally very
efficient

@ Converges much faster than
sigmoid/tanh in practice
(e.g. 6x)

@ One annoying problem = Dead neurons

Nojun Kwak
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RelLU: Rectified Linear Unit @NPH

N\
(4

f(x) = max(0, )
Does not saturate

~
.
(4

N
N
()

Computationally very
2t 7 efficient

e : i o Converges much faster than
sigmoid/tanh in practice

Leaky ReLU (e.g. 6x)

@ One annoying problem = Dead neurons
@ Solution: leaky ReLU (small slope for negative input)

e Never dies.
e However, almost the same performance in practice.
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4 4
Piecewise linear tiling: mapping is locally linear

Montufar et al. “On the number of linear regions of DNNs", arXiv 2014
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Forward Pass: Evaluating the function @M~A

LABORATOR

Forward propagation: compute the output y given the input z
2

ht h
X—>[ max(0, W, x) ]—»[ max(0, W, ht) ]—v[ Wy h? ]—>)‘

Fully connected layer

Nonlinearity comes from RelLU

Do it in a compositional way

t=hl=h =y
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Alternative graphical representation @M~A

LABORATOR

hk+1
— 1ax (0, W R — —| 7 I _/ .

R N
N e ol

Slide from M. Ranzato
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Why many layers? @=A

LABORATOR

Hierarchically distributed representations

[1T1T00010100001T101...] motorbike

0010000100110010...] tuck

Lee et al. “Convolutional DBN's - - - " ICML 2009
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Why many layers? @M~A

LABORATORY

Hierarchically distributed representations

predictionAof class

high-level | =
parts dly  eee (A0

= distributed representations

mid-level .
parts s feature gharmg
= compositionality
low level
parts
Input image

Lee et al. “Convolutional DBN's - - - " ICML 2009
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@lABORATORV

ht h?
x—»[ max(0, W, x) ]—[ max(0, W, ht) ]—[ Wy h? ]—y

@ We want to estimate the parameters, biases and
hyper-parameters (e.g., number of layers, number of neurons)
for good predictions.

o Collect a training set of input-output pairs {z;, t;} ;.

e Encode the output with 1-K encoding ¢t = [0,--- ,1,---,0].
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@lABORATORV

2

ht h
x—»[ max(0, W, x) ]—[ max(0, W, ht) ]—[ Wy h? ]—y

@ We want to estimate the parameters, biases and
hyper-parameters (e.g., number of layers, number of neurons)
for good predictions.

o Collect a training set of input-output pairs {z;, t;} ;.

e Encode the output with 1-K encoding ¢t = [0,--- ,1,---,0].

@ Define a loss per training example and minimize the empirical
loss

|
L(w) = N Z l(w,z;,t;) + R(w)
=1

N: number of training examples
R: regularizer
w: set of all parameters
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e Softmax (Probability of class k given input):

exp(Yx)

—1lg) = — DIk
ple = 1) Y2 exp(y;)
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e Softmax (Probability of class k given input):

exp(Yx)

—1lg) = — DIk
ple = 1) Y2 exp(y;)

@ Cross entropy (most popular loss function for classification):

c
l(’wvmv t) - = Z t(k) logp(ck’m)
k=1
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@lABORATORV

Zl'w Ti, t;) + R(w)

e Softmax (Probability of class k given input):

exp(y)
Y2 exp(y;)

@ Cross entropy (most popular loss function for classification):

plex = 1z) =

l(w,z,t) Z t®) log p(cx|z)
k=1

@ Gradient descent to train the network

w* = argmin L(w)
w
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Backpropagation

e Efficient way of computing gradient (Chain rule)

o Partial derivatives and gradients

f(z,y) ==y g{;-y gi—x
df(z) _ .. flz+h) - f(z) _ df (z)
de llzlg%) h fl@+h)=f(z)+h dx
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Backpropagation

e Efficient way of computing gradient (Chain rule)
o Partial derivatives and gradients

fle,y) =2y — g{;-y gi—x
df(z) _ .. flz+h)—f(z) _ df (z)
o = lim - fle+h)=f(z)+h

dx
e Example: z =4,y = -3 = f(z,y) = —12

of of _[of of
or - ° ap * Vf_{@w’@y}
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Backpropagation

e Efficient way of computing gradient (Chain rule)
o Partial derivatives and gradients

f(z,y) ==y g{;-y gi—x
df(z) _ .. flz+h) - f(z) _ df (z)
de llzlg%) h fl@+h)=f(z)+h dx

e Example: z =4,y = -3 = f(z,y) = —12

of __, 0f _ o o

or oz 4 i [&L ay}

@ Question: If | increase = by h, how would the output f
change?
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Backpropagation @M

LABORATORY

Compound expressions with graphics (example from F.F. Li)

i . Of _ 9f 9q
Chain rule: 5c = 0q 01

A

d
g=z+y 87«1_ ,8%—1
g Yo
I YR PR

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)



Backpropagation: Another Example @M~A ¢

1

1 + e~ (wozo+wizy+wy)

Another example:  f(w,z) =

w0 200

Fei-Fei Li & Andrej Karpathy Lecture 5 - 14 21 Jan 2015
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Backpropagation: Another Example @M~A ¢

LABORATORY

1

T 1 4+ e~ (wozotwizitw,)

Another example: f(w,z)

w0 200

-1/(1.3742) = -0.53

Fei-Fei Li & Andrej Karpathy Lecture 5 - 15 21 Jan 2015
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Backpropagation: Another Example @M~A ¢

LABORATORY

1

T 1 4+ e~ (wozotwizitw,)

Another example: f(w,z)

w0 200

[local gradient] x [its gradient]
[1] x [-0.53] =-0.53

Fei-Fei Li & Andrej Karpathy Lecture 5 - 16 21 Jan 2015
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Backpropagation: Another Example @M~A ¢

1

T 1 4+ e~ (wozotwizitw,)

Another example: f(w,z)

w0 200

[local gradient] x [its gradient]
[eM(-1)] x [-0.53] = -0.20

Fei-Fei Li & Andrej Karpathy Lecture 5 - 17 21 Jan 2015
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Backpropagation: Another Example @M~A ¢

LABORATORY

1

T 1 4+ e~ (wozotwizitw,)

Another example: f(w,z)

w0 200

[local gradient] x [its gradient]
[-1]1x[-0.2] =0.2

Fei-Fei Li & Andrej Karpathy Lecture 5- 18 21 Jan 2015
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Backpropagation: Another Example @M~A

LABORATORY

|
F(,2) = T oy

Another example:

[local gradient] x [its gradient]
[11x[0.2]=0.2
[11x[0.2]1 = 0.2 (both inputs!)

(D 35-6--O-5B
w2 300 A
0.20
d
fl)=e* s % =e fl2) = % - % =-1/a’
- af _ _ af _
fo(@) =0z - i fl@)=c+=z - o =1

Fei-Fei Li & Andrej Karpathy Lecture 5 - 19 21 Jan 2015
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Backpropagation: Another Example @M~A ¢

LABORATORY

1

T 1 4+ e~ (wozotwizitw,)

Another example: f(w,z)

w0 200

[local gradient] x [its gradient]
x0:[2] x[0.2] ~=0.4
w0: [-1]x [0.2] =-0.2

1.00 1.00 037 137
R R G

f@)=1 - 9 =y

f(@)=c+z — - =1

Fei-Fei Li & Andrej Karpathy Lecture 5 - 20 21 Jan 2015
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Backpropagation: Key ldea @0

LABORATOR

B ———
= agate hanging out |——p
 —

Every gate during backprop computes, for all its inputs:

[LOCAL GRADIENT] x [GATE GRADIENT]

Can be computed right away, The gate receives this during
even during forward pass backpropagation
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Backpropagation: Patterns in BP @M~A

LABORATORY

@ Add: gradient distributor
e Max: gradient router

e Mul: gradient switcher

1000 /5 _ -20.00
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Learning via Gradient Descent @0

LABORATOR

Gradient descent to train the network

N
1
w” = arginin izg 1 (w,z;, ;) + R(w)

At each iteration, we need to compute

Wnpy1 = Wy — ’an»c(wn)

Use the backward pass to compute VL(w,,) efficiently

Recall that the backward pass requires the forward pass first
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Dealing with Big Data @I=A

LABORATOR

@ At each iteration, we need to compute
Wni1 = Wy — Yo VL(Wy)
with

VL(w,) = ZVZ Wy, i, t;) + VR(wy,)

@ Too expensive when having millions of training examples
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Dealing with Big Data @

R E&

LABORATORY

@ At each iteration, we need to compute
Wni1 = Wy — Yo VL(Wy)
with

VL(w,) = ZVZ Wy, i, t;) + VR(wy,)

@ Too expensive when having millions of training examples

@ Instead, approximate the gradient with a mini-batch (subset of
examples: 100 ~ 1,000) - called stochastic gradient descent

| N
—ZVl(wn,xl, i ZVZ W, Ty, t;)
N i=1 |S| €S
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SGD with momentum @A

LABORATOR

@ Stochastic Gradient Descent update
Wpy1 = Wy — ’an»c(wn)

with
V n ‘S| ZVZ wnaxw z)

€S

@ We can use momentum

w— w— YA
A+—rkA+VL

@ We can also decay learning rate v as iterations goes on
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Fully Connected Layer @I=A

LABORATOR

Example: 200x200 image
40K hidden units
m) ~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough
training samples anyway..
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Locally Connected Layer

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g.,
face recognition).
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Locally Connected Layer @M~A |

LABORATORY

STATIONARITY? Statistics is similar at
different locations

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g.,
face recognition).

_O
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Convolutional Neural Networks @M~A

o Idea: statistics are similar at different locations (Lecun 1998)

@ Connect each hidden unit to a small input patch and share
the weight across space

@ This is called convolution layer and the network is a
convolutional neural network

Share the same parameters across
different locations (assuming input is
1 stationary):

\ Convolutions with learned kernels

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)
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Convolutional Neural Networks @M~A

LABORATORY

e Number of filters (neurons) is considered as a new dimension
(depth)
= Volumetric representation

before:

output layer
input
layer hidden layer

now:

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)



Convolutional Neural Networks

e Number of filters (neurons) is considered as a new dimension
(depth)
= Volumetric representation

All Neural Net
actlvatlon_s HEIGHT
arranged in 3
dimensions:
/ WIDTH
—_—
DEPTH

For example, a CIFAR-10 image is a 32x32x3 volume
32 width, 32 height, 3 depth (RGB channels)

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)



Convolutional Neural Networks @NPH

LABORATOR

CNNs are just neural nets BUT:

1. Local connectivity

2.

a hidden neuron in
next layer

N

|
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Convolutional Neural Networks @M>A ¢

image: 32x32x3 volume

CNNs are just neural nets BUT: pefore: fully  connected:
1. Local connectivity 32x32x3 weights

now: one neuron will connect

32
a hidden neuron in to, e.g., 5x5x3 chunk (recep-
next layer tive field) and only have 5x5x3
weights

B\

connectivity is:

@ local in space (5x5
instead of 32x32)

e but full in depth (all 3
depth channels)

N

|

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)



Convolutional Neural Networks @M

~A §

LABORATORY

CNNs are just neural nets BUT:
1. Local connectivity

/ 32 depth dimensiorl
00000

before: “hidden layer of 200 neurons”
now: “output volume of depth 200”

|
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Convolutional Neural Networks @M

~A §

LABORATORY

CNNs are just neural nets BUT:
1. Local connectivity

/ 32 depth dimension  Multiple neurons all look-

ing at the same region of

>Q OQO000O the input volume, stacked

along depth.
before: “hidden layer of 200 neurons”
now: “output volume of depth 200”

|
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Convolutional Neural Networks

CNNs are just neural nets BUT:
2. Weight sharing

/ %
@§
32
T

—=00000
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Convolutional Neural Networks @M~A

CNNs are just neural nets BUT:

2. Weight sharing

4

|

32

LABORATORY

@ Weights are
shared across

§

different

locations

00000

o Each depth slice

is called one
feature map

Nojun Kwak
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Convolutional Layer
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Convolutional Neural Networks

Convolutional Layer




Convolutional Neural Networks

Convolutional Layer




Convolutional Layer: Summary

Input volume of size [W1 x H1 x D1]

using K neurons with receptive fields F x F
and applying them at strides of S gives
Output volume: [W2, H2, D2]

W2 = (W1-F)/S+1,

H2 = (H1-F)/S+1,

D2 =K
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Feature (Filter) Visualization @M~A

LABORATO

Low-Level| |Mid-Level| |High-Level Trainable
L3 L, i
Feature Feature Feature Classifier
A

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
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@lABORATORV

In CNNs, Conv layers are often followed by Pool layers

@ Pooling layer: makes the representations smaller and more
manageable without losing too much information

X . Single depth slice
@ Increased receptive field NIREREE
] 56|78 mammer 8
@ Most common: MAX pooling si21]0 g
11234

@ Others: average, L2 pooling - - -

y

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.
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Improving Generalization @0

LABORATOR

Weight sharing (Reduce the number of parameters)

e Data augmentation (e.g., jittering, noise injection,
tranformations)

e Dropout [Hinton et al.]: randomly drop units (along with their
connections) from the neural network during training. Use for
the fully connected layers only

Regularization: Weight decay (L2, L1)
Sparsity in the hidden units
Multi-task learning

Transfer learning
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Improving Generalization @0

LABORATOR

e Dropout [Hinton et al.]: randomly drop units (along with their
connections) from the neural network during training. Use for
the fully connected layers only

(a) Standard Neural Net (b) After applying dropout.

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)
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@ Common knowledge: for non-convex problems, training does
not work because we get stuck to local minima

Loss

Nojun Kwak

parameter

Introduction to Convoluti
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@lABORATORV

@ Common knowledge: for non-convex problems, training does
not work because we get stuck to local minima

Loss

/ p?iqn;er

@ Not truel!l!

@ If the size of the network is large enough, local descent can
reach a global minimizer from any initialization

Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv'15
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@lABORATORV

Typical ConvNet:
Image — [Conv - ReLU] — (Pool) — [Conv - ReLU] — (Pool) —
FC (fully-connected) — Softmax

CONV CONV POOLCONV CONV POOL CONV CONV POOL  E¢
l RelU l RelLU ReLUl l RelLU l ReLUl (Fully-connected)

truck

v

]

=

I

] -
1L :
< -y
|

==

|

=

@irplane

Ship

horse

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)



£A

LABORATORY

o1: feat C3: f. maps 16@10x10
: feature maps S4: f. maps 16@5x5
INPUT 6@26x28 ps 16@

32x32 S2:f. maps
6@14x14

FullmnAection ‘ Gaussian connections

Convolutions Subsampling Convolutions ~ Subsampling Full connection
Lenet5 (Yann Lecun 1998)
— 1 IR #d
-\ | ) ¢ S ] e B e
I | o I S E i
\ L] 192 [FT] Foz Ihag \dense
48
- ;138 — —
1¥ k 13 13
EN i % i
el ) 3 K ENRRN 3
i 3 e | e iy dense | |densal
'; 1000
[ \] 152 192 128 Max
Max 128 Max paoling T 048
pooling poaling
a8

Alexnet (Alex Krizhevsky et. al., 2012)
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ConvNets - Flavours

filter size 7 [ ‘3
&‘I y€56 “
o2, s st | ooel| aose| | class
stide2 e stride 2] |nor stride units| | units| | softmax
Input Image ‘\ B »112 96 " @]13 ®256
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer6 Layer7 Output
ZFnet: Clarifai (Matt Zeiler and Rob Fergus, 2013)
1 1 A adgnd
g 8 4 g0 Eﬁﬂsﬁﬂggﬂ@ﬂﬁﬂﬁﬁﬂﬂi
Mgy a0 a Hgatag 04 B4
Tl aiag gl gn wa 00 |
0B B g0,
Convolution
Pooling

Googlenet (Google, 2014) Other
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Complexity (Alexnet)

Total nr. params: 60M

M |

many params

(weights)

442K

1.3M
884K

307K

35K

@lABORATORV

16M \

37M |

categon
predi%tioyn Total nr. flops: 832M
LINEAR | 4M
I
FULLY CONNECTED | 16Mm
FULLY CONNECTED | 37m
I
MAX POOLING
CONV 74M
|
CONV 224M
CONV 149M
|
MAX POOLING
LOCAL CONTRAST NORM
CONV 223M
I
MAX POOLING |
LOCAL CONTRAST NORM high complexity
CONV 105M(time, memory)

inpyt
Krizhevsky et al. “ImageNet Classification wlltlﬂpc?eep CNNs” NIPS 2012

Nojun Kwak Introduction to Convolutional Neural Networks (CNNs)



@LABORATORV

Microsoft

Research

Revolution of Depth
{152 layers

\
\
' 7.3

V6.7

357 I

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

2ICCVLS

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.

e Human: 5.1% (Karpathy), Baidu cheating (2015.05) - 4.58%
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Recent Trend

@lABORATORV

a shallower
model
(18 layers)

2ICCVLS

AREHR

ilililils

alalil

layers (=]

]

]
]
]
s

Migrosof
a deeper Research
counterpart
(34 layers)

* A deeper model should not have
higher training error

* Asolution by construction:
* original layers: copied from a
learned shallower model
* extra layers: set as identity
* atleast the same training error

* Optimization difficulties: solvers
cannot find the solution when going
deeper...

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.
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Recent Trend @M=A

LABORATORY

* Plaint net * Residual net

X X

weight layer weight layer

any two

stacked layers F(X) identity
weight layer weight layer X
H(x) HxX)=Fx) +x @
ImageNet plain nets ImageNet ResNets

60| ~pned

50|
; 34-layer ‘ 18-layer

30 =

e ed: traln 18-layer T -~ 34-layer
“o 10 40 50 40 0

20 30
iter. (1e4)

* Deep ResNets can be trained without difficulties
* Deeper ResNets have lower training error, and also lower test error
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@ Deep Learning = learning hierarhical models.
@ ConvNets are the most successful example. Leverage large
labeled datasets.
o Optimization
e Don't we get stuck in local minima? No, they are all the same!
o In large scale applications, local minima are even less of an
issue.
@ Scaling
o GPUs
o Distributed framework (Google)
o Better optimization techniques
@ Generalization on small datasets (curse of dimensionality):

e data augmentation
e weight decay

e dropout

e unsupervised learning
e multi-task learning
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