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Abstract

This paper proposes several principal component analysis methods based onLp-norm optimiza-

tion techniques. In doing so, the objective function is defined using theLp-norm with an arbitrary

p value, and the gradient of the objective function is computed on the basis of the fact that the

number of training samples is finite. In the first part, an easier problem of extracting only one

feature is dealt with. In this case, principal components are searched for either by a gradient ascent

method or by a Lagrangian multiplier method. When more than one feature is needed, features

can be extracted one by one greedily, based on the proposed method. Secondly, a more difficult

problem is tackled that simultaneously extracts more than one feature. The proposed methods are

shown to find a local optimal solution. In addition, they are easy to implement without significantly

increasing computational complexity. Lastly, the proposed methods are applied to several datasets

with different values ofp, and their performances are compared with those of conventional PCA

methods.

Index Terms

PCA-Lp, Lp-norm, optimization, principal component analysis, gradient.

I. INTRODUCTION

Principal component analysis (PCA) [1], a well-known tool for data analysis and pattern

recognition, is extensively used for visualizing data and reducing its dimensionality. PCA

searches a set of projections to maximize the variance of theprojected data or to minimize

the reconstruction error. These projections constitute a low-dimensional linear subspace that

enables us to effectively capture the data structure in the original input space.

Conventional PCA, which is based on theL2-norm (L2-PCA), is optimal in the sense

of mean squared reconstruction error when the data is distributed according to a Gaussian
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distribution. However, it is prone to outliers because outliers with large norms dominate the

objective function owing to the use of theL2-norm. To overcome this problem, objective

functions based on alternative norms have been explored [2]– [10].

In [5], [6] and [7], each component of the reconstruction error was assumed to follow

a Laplacian distribution instead of a Gaussian andL1-norm PCA (L1-PCA), which tries to

minimize theL1 reconstruction error, was proposed. In order to obtain a solution of L1-PCA,

a heuristic estimate for the generalL1 problem was used in [5], whereas methods based on

the weighted median and convex programming were proposed in[6] and [7]. Despite the

robustness of the proposed L1-PCA methods, they are computationally expensive because of

the application of linear or quadratic programming. More importantly, they are not invariant

to rotations because theL1-norm is measured in the input space.

In [8], the sameL1-norm optimization problem was tackled by successively decreasing

the dimension of the feature space. Unlike other methods, this method finds a global optimal

solution. However, it is time-consuming because it needs tosolve a number of linear programs.

In [4], Ding et al. proposed R1-PCA, which combines the merits of conventionalPCA and

L1-PCA. Unlike L1-PCA, it is rotation-invariant, and it successfully suppresses the effect of

outliers as L1-PCA does. However, this method is highly dependent on the dimensionm of

a subspace to be found. For example, the projection vector obtained whenm = 1 may not

be in a subspace obtained whenm = 2. Moreover, because it is an iterative algorithm based

on the successive use of the power method [11], it consumes considerable time to achieve

convergence, especially when the input dimension is high.

Unlike the above methods, which try to minimize the reconstruction error in the input

space, a greedy method that maximizes theL1-norm in the feature space is presented in

[9] in order to achieve robust and rotation-invariant PCA. To distinguish it from L1-PCA,

which minimizes the L1-norm-based reconstruction error, the method proposed in [9] was

named PCA-L1. The PCA-L1 algorithm is intuitive, simple, and easy to implement, and it

was shown to find a locally maximal solution. Studies on its tensor and supervised versions

are described in [12], [13], and [14]. It has also been extended to a non-greedy version in

[10] in order to simultaneously findm projections by iterative application of singular value

decomposition (SVD) [11].

In this paper, PCA-L1 [9] is generalized to PCA-Lp, which maximizes Lp-norm-based

dispersion in the feature space with an arbitraryp > 0 value, and it is shown that conventional

L2-PCA and PCA-L1 are special cases of the proposed PCA-Lp with appropriatep values
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(p = 2 andp = 1, respectively). The proposed methods are realized using a gradient ascent

method or a Lagrangian multiplier method, and they are shownto find a local optimal solution.

In addition, as an extension of [10], a non-greedy version ofPCA-Lp is proposed, which

simultaneously findsm principal components that maximize theLp-norm. Like PCA-L1,

PCA-Lp is intuitive, simple, and easy to implement.

The remainder of this paper is organized as follows. In Section II, the problem is for-

mulated. New algorithms for theLp-norm optimization problem withm = 1 and m > 1

are presented and their local optimality is proven in Section III and IV respectively. The

proposed methods are applied to several pattern recognition problems, and their performances

are compared with those of other conventional PCA methods inSection V. Finally, the

conclusions are stated in Section VI.

II. PROBLEM FORMULATION

Let X = [x1, · · · , xN ] ∈ ℜd×N be a data matrix, whered andN denote the dimension

and number of data respectively. Without loss of generality, we can assume that the data has

zero mean, i.e.,
∑N

i=1 xi = 0.

Conventional L2-PCA can be formulated as findingm(< d) orthonormal projection vectors

W ∈ ℜd×m,W TW = Im, such that the following total scatter or variance after projection is

maximized.

F2(W ) =
1

2

N
∑

i=1

||W Txi||22 =
1

2
tr(W TSW ). (1)

Here,Im is them×m identity matrix,S = XXT is the scatter matrix ofX, || · ||2 is the

L2-norm of a vector, andtr(·) is a trace operator on a square matrix. The global optimal

solution of (1) can be found by solvingSW = WΛ, whereΛ is a diagonal matrix containing

eigenvalues ofS.

Because the total scatter (1) is dominated by samples with large norms, the following alter-

native objective function based onL1-norm (instead ofL2-norm) dispersion was introduced

in [9].

F1(W ) =

N
∑

i=1

||W Txi||1 =
N
∑

i=1

m
∑

j=1

|wT
j xi|. (2)

Here,wj is the j-th column ofW and || · ||1 denotes theL1-norm of a vector. In [9], the

problem was reduced to a special case ofm = 1, and a local optimal solution was found

using PCA-L1. Then, a greedy algorithm was introduced to finda series of projection vectors
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by taking the reconstruction errors as new data to which PCA-L1 was applied successively.

On the other hand, in [10], for a givenm, (2) was directly maximized by iterative application

of SVD.

In the previous approaches, the norm of a vectorW Txi was defined using an integer

value (p = 2 or p = 1). However, it can also be defined using an arbitrary non-integer p

value. With the use of an arbitraryLp-norm, PCA is expected to better fit more datasets with

non-Gaussian distributions.

The problem formulation in this paper is as follows. Consider the following Lp-norm

(p > 0) maximization problem with the constraintW TW = Im.

Fp(W ) =
1

p

N
∑

i=1

||W Txi||pp =
1

p

N
∑

i=1

m
∑

j=1

|wT
j xi|p. (3)

Here,W = [w1, · · · , wm] ∈ ℜd×m is a projection matrix. Note that the objective function (3)

is identical to (1) whenp = 2. Likewise, whenp = 1, it coincides with (2).

The above optimization problem is difficult to solve whenm > 1. Therefore, for now, we

restrict our attention to only those cases in whichm = 1. In case more than one projection

vectors are required, i.e.,m > 1, a greedy algorithm can be used, as in [9]. On the other

hand, in Section IV, (3) is tackled directly and a non-greedysolution is obtained for general

cases ofm.

III. A LGORITHM: PCA-LP (m = 1)

A. Solution - Gradient Ascent

Let m = 1. Then, (3) becomes

w⋆ = argmax
w

Fp(w) = argmax
w

1

p

N
∑

i=1

|wTxi|p

subject towTw = 1.

(4)

This optimization problem can be solved by taking the gradient of Fp(w) with respect to

w. However, the gradient may not be well defined owing to the absolute value operation.

This technical difficulty can be alleviated by introducing the sign function as follows:

s(a) =























1 a > 0

0 a = 0

−1 a < 0.
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With the sign function,Fp(w) in (4) can be rewritten as

Fp(w) =
1

p

N
∑

i=1

[s(ai)ai]
p, (5)

whereai , wTxi.

Taking the gradient ofFp(w) with respect tow, we get

∇w =
dFp(w)

dw
=

N
∑

i=1

dFp(w)

dai

dai
dw

=
N
∑

i=1

[s(ai)ai]
p−1[s′(ai)ai + s(ai)]xi

=

N
∑

i=1

s′(ai)s
p−1(ai)a

p
ixi +

N
∑

i=1

sp(ai)a
p−1
i xi

= 2
N
∑

i=1

δ(ai)s
p−1(ai)a

p
ixi +

N
∑

i=1

s(ai)|ai|p−1xi,

(6)

whereδ(·) in the last equality is the Dirac delta function.

The first term vanishes ifai(= wTxi) 6= 0 for all xi (i = 1, · · · , N), and we get

∇w =

N
∑

i=1

s(wTxi)|wTxi|p−1xi. (7)

Moreover, whenp > 1, even for the singular points (w’s) wherewTxi = 0 for somexi’s,

the first term vanishes and the gradient is well defined, whichbecomes (7).

An exceptional case is whenp ≤ 1. In this case, the gradient is not well defined forw’s if

there exist somexi’s wherewTxi = 0. However, because of a finite number of samples, this

singularity condition can be technically avoided by slightly moving w, the operating point

of the gradient∇w.

Then, the steepest gradient method can be applied to obtain the projection that maximizes

the objective function (4). The overall optimization procedure is represented as PCA-Lp(G)

in the following:

Algorithm 1-1. PCA-Lp(G) (Input: X, p, Output: w⋆)

1) Initialization: t← 0. Setw(0) such that||w(0)||2 = 1.

2) Singularity check (applies only ifp ≤ 1)

• If ∃i, such thatwT (t)xi = 0, w(t) ← (w(t) + δ)/||w(t) + δ||2. Here,δ is a small

random vector.
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3) Computation of gradient∇w using (7).

4) Gradient search:w(t+ 1)← w(t) + α∇w, whereα is the learning rate.

5) Normalization:

• t← t + 1.

• w(t)← w(t)/||w(t)||2.

6) Convergence check

• If ||w(t)− w(t− 1)||2 > ǫ, goto Step 2.

• Else,w⋆ ← w(t). Stop iteration.

Because PCA-Lp(G) is based on the steepest gradient method,it finds a local optimal

solution that is dependent on the initial projection vectorw(0). Therefore, the choice ofw(0)

can be critical to the performance of PCA-Lp(G). Naturally,a good candidate forw(0) may

be the solution of conventional L2-PCA. Another choice can be the direction of the sample

with the largest norm. For simplicity, in this paper, unlessspecified explicitly, the initial

projection vectorw(0) is set to the direction of the sample with the largest norm.

For the steepest gradient method, when the learning rateα is very high, it is difficult to

ensure convergence; on the other hand, very small values ofα result in slow convergence. In

this paper, unless specified explicitly,α is set to0.1/N , whereN is the number of training

samples.

Note that the singularity check (Step 2) is only necessary when p ≤ 1. Further, note that

the normalization step (Step 5) ensures the constraint||w||2 = 1.

With the constraint||w||2 = 1, the search space of the gradient is restricted only to the

orthogonal direction of the weight vectorw, which can be easily obtained by

∇⊥
w = ∇w − w(wT∇w) = (Id − wwT )∇w

= (Id − wwT )
N
∑

i=1

s(wTxi)|wTxi|p−1xi.
(8)

Therefore, in the above PCA-Lp(G) procedure,∇⊥
w can be used instead of∇w in Step 4. In

this case,∇⊥
w can be directly used to check for convergence. Henceforth,∇⊥

w will be referred

to as thegradient orthogonal.
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B. Interpretation - force

The gradient orthogonal∇⊥
w can be considered as the net force exerted on a barw.

Rewriting the gradient orthogonal, we get

∇⊥
w =

N
∑

i=1

civi =
N
∑

i=1

fi, (9)

whereci = s(wTxi)|wTxi|p−1 andvi = xi − w(wTxi). In this interpretation, each samplexi

exerts an orthogonal directional forcefi = civi on w, as shown in Fig. 1. In the figure, the

origin o is fixed, andw is free to move according to the exerted forces until the net force

becomes 0. The lengthai in the figure corresponds to|wTxi|. If the inner productwTxi is

positive (e.g.,x1), the pointxi pulls the barw towards itself. On the other hand, ifwTxi is

negative (e.g.,x2 andx3), xi pulls−w towards itself, which is equivalent to pushingw in the

opposite direction. The magnitude of the forcefi due to the sample pointxi is |fi| = ap−1
i |vi|.

Consider conventional PCA withp = 2. In this case, the magnitude of the force due toxi

becomes|fi| = ai|vi|. If the magnitudeai of the inner product betweenw andxi is large and

|vi|, the distance ofxi from the barw, is large, the effect of the sample pointxi is increased.

On the other hand, whenp = 1, |fi| = |vi|. In this case,ai does not contribute to the force,

and the only important factor is the distance of the sample point from the barw. Considering

that outliers are normally far from the origin and therefore, have largeai and |vi| with high

probability, we can expect PCA-L1 to be more robust to outliers than conventional PCA-L2.

In addition, if p < 1, ai negatively affects the force, and the effect of outliers is further

reduced. In this case,|fi| = |vi|

a
1−p
i

= ( |vi|
ai
)1−p|vi|p = | tan θ|1−p|vi|p, where θ is the angle

betweenw andxi. If xi⊥w, the point exerts an infinite force on the barw. For this reason,

we have included the singularity check (Step 2) in the PCA-Lp(G) algorithm.

In the extreme case ofp → 0, |fi| → |vi|/ai = | tan θ|. However, note that the problem

(4) is not defined at all forp = 0 because00 is not well defined.

C. Alternative Solution - Lagrangian

Here, instead of a gradient ascent method, an alternative method based on the Lagrangian

is derived to solve (4).

Consider the Lagrangian of the constrained optimization problem (4):

L(w, λ) = Fp(w) + λ(wTw − 1). (10)
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Fig. 1. Illustration of gradient as force

Then, the necessary condition for the optimal solution of (4) can be obtained by setting the

derivative of the Lagrangian to zero, i.e.,

dL(w, λ)

dw
= ∇w + λw = 0. (11)

This condition indicates thatw and∇w should be parallel (i.e.,w ‖ ∇w) at the optimalw.

From the constraint||w||2 = 1, w can be directly updated asw ← ∇w

||∇w||2
.

Indeed, (11) is true not only for the maximum points but also for the minimum points.

However, in the vicinity of a minimum point, the gradient direction diverges from the

minimum point. On the other hand, in the neighborhood of a maximum point, the gradient

converges to the maximum point. Therefore, we can expect iterative application of the update

rule to find a maximum point, but not a minimum point.

Before we move on to the introduction of an alternative PCA-Lp algorithm, we show that

the iterative methodw ← ∇w

||∇w||2
is indeed non-decreasing forp ≥ 1.

Theorem 1:Let ||w||2 = 1 andw′ = ∇w

||∇w||2
. Then, forp ≥ 1, Fp(w

′) ≥ Fp(w).

Proof See Appendix.

Using this property, we can obtain an alternative algorithmthat solves the PCA-Lp problem

as follows:

Algorithm 1-2. PCA-Lp(L) (Input: X, p, Output: w⋆)
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1) Initialization: t← 0. Setw(0) such that||w(0)||2 = 1.

2) Singularity check (applies only ifp ≤ 1)

• If ∃i, such thatwT (t)xi = 0, w(t) ← (w(t) + δ)/||w(t) + δ||2. Here,δ is a small

random vector.

3) Computation of gradient∇w using (7).

4) Projection vector update:

• t← t + 1.

• w(t)← ∇w/||∇w||2.

5) Convergence check

• If ||w(t)− w(t− 1)||2 > ǫ, goto Step 2.

• Else,w⋆ ← w(t). Stop iteration.

Because the objective function (4) is upper bounded and every iteration of PCA-Lp(L)

increases the objective function according toTheorem 1, we can show that PCA-Lp(L) finds

a local maximal solution as PCA-Lp(G).

The solution of PCA-Lp(L) depends on the initial projectionvector w(0). However, in

the next subsection, we will show that the performance of PCA-Lp(L) is not as significantly

affected by the initialization as that of PCA-Lp(G).

Note that in this alternative version, Step 4 replaces the steepest gradient search (Step 4

and 5 in PCA-Lp(G)). Indeed, PCA-Lp(L) is equivalent to PCA-Lp(G) whenα =∞. Both

PCA-Lp(G) and PCA-Lp(L) may fall into a local maximum point.However, because PCA-

Lp(L) does not make use of a low learning rateα, it is normally faster than PCA-Lp(G)

as long as the level set ofFp(w) is smooth. Although PCA-Lp(L) was not shown to be

non-decreasing forp < 1 in Theorem 1, it works well, even for small values ofp, in practice.

Like PCA-L1, both PCA-Lp(G) and PCA-Lp(L) have computational complexityO(Nd)×
nit, wherenit is the number of iterations for convergence. Clearly, the number of iterations

does not depend on the dimensiond of the input space, but on the number of samplesN .

Therefore, PCA-Lp can be applied to problems with a large number input variables without

significantly increasing the computational complexity.
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D. Comparison of the two algorithms

To investigate the local maximality and convergence properties of PCA-Lp(G) and PCA-

Lp(L), we consider the following example.

Ex. 1 Consider the zero-mean two-dimensional data matrix

X =





−0.8 0.2 1.2 −3.8 3.2

−2 −1 0 1 2





with 5 samples.

Figure 2 shows level sets ofFp(w) for this example with different values ofp. In the figures,

the inner contour corresponds to the level set{w : Fp(w) = cmin}, whereas the outer contour

corresponds to the level set{w : Fp(w) = cmax}. Here,cmin andcmax are the minimum and

maximum ofFp(w) with the constraint||w||2 = 1. BecauseFp(cw) = cpFp(w) for c ≥ 0, the

inner and outer contours are similar. The circles between the contours correspond to points of

||w||2 = 1; the minimum projection vectorswmin and the maximum projection vectorswmax

are also shown in the figures. The points denoted by◦ on the circles are the local maximal

points. As expected, at these points (w’s), the gradient direction∇w, which is orthogonal to

the tangent of the contour, is parallel tow. Further, the scaled versions of five data points

are shown in the figures by∗.
Note that whenp = 2 where the level set is an ellipsoid, the local maximum corresponds

to the global maximum. Likewise, whenp = 1.5, there is no local maximal point. However,

for other cases, there exist local but non-global maximal points. Further, asp decreases, the

level sets become less smooth.

For this dataset, we compared the performance of PCA-Lp(G) and PCA-Lp(L) with the

initial projection vector beingw(0) = [cos(θ), sin(θ)]T , whereθ was varied from0◦ to 180◦

in steps of0.1◦. In PCA-Lp(G), the learning factorα was set to 0.02. The stopping toleranceǫ

and the maximum number of iterations were10−10 and1, 000 respectively for both algorithms.

Table I compares PCA-Lp(G) and PCA-Lp(L) in terms of the success rates of finding the

global maximum and the average numbers of iterations for various values ofp. An experiment

is considered as successful if the final value ofFp(w) is the global maximum. The success

rate is obtained by dividing the number of successful experiments by the total number of

experiments (1,800). In Table I, the numbers in parenthesesindicate the standard deviations

of the experiments.
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(b) p = 1.5
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(c) p = 1.0
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(d) p = 0.5
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(e) p = 0.25
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(f) p = 0.1

Fig. 2. Level sets ofFp(w) for Ex. 1. The points denoted by◦ on the circle are the local maximal points. The global

maximum and minimum points are also indicated. The points denoted as∗ are the five data points with a scaling of 0.5.
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TABLE I

COMPARISON OFPCA-LP(G) AND PCA-LP(L) FOR VARIOUS VALUES OFp. TOTAL 1,800INITIAL PROJECTION

VECTORSw(0)’ S WERE TESTED TO CHECK WHETHER THE CORRESPONDING FINAL PROJECTION VECTORS CONSTITUTE

THE GLOBAL OPTIMAL SOLUTION. THE SUCCESS RATE IS THE PERCENTAGE THAT RESULTED IN THE GLOBALOPTIMAL

SOLUTION. THE AVERAGE NUMBERS OF ITERATIONS AS WELL AS THE STANDARD DEVIATIONS ARE LISTED.

PCA-Lp(G) PCA-Lp(L)

p success number of success number of

rate (%) iterations rate (%) iterations

0.1 39.33 57.82 (30.62) 22.06 1000 (0)

0.25 37.33 59.39 (28.19) 100 177.46 (14.03)

0.5 35.78 69.28 (27.23) 100 39.64 (4.45)

1 74.00 135.51 (19.90) 74.00 2.59 (0.80)

1.5 100 113.38 (11.11) 100 19.51 (1.96)

2 100 80.40 (5.74) 100 21.82 (1.43)

In the table, we can see that PCA-Lp(L) is generally better infinding a global maximal

point whenp is not so small. In terms of the number of iterations, PCA-Lp(L) is faster than

PCA-Lp(G) for an appropriately largep value. In particular, whenp = 1, it takes less than

3 iterations on average to converge. PCA-Lp(L) requires so many iterations for convergence

when p is small because the contour is very spiky for a smallp value and the gradient

direction changes abruptly near the spiky points (see Fig. 2(d), (e) and (f)).

The success rate of PCA-Lp(L) is exactly 100%, except whenp = 0.1 and p = 1. When

p = 0.1, the number of iterations indicates that the algorithm did not converge within the

predefined maximum number of iterations. On the other hand, when p = 1, the average

number of iterations is very small (2.59). Fig. 2(c) shows that the level set ofp = 1 consists

of only straight lines. Considering that the gradient is orthogonal to the tangent of the level

set contour, the number of gradient directions is finite whenp = 1. Hence, depending on the

initial projection vectorw(0), PCA-Lp(L) with p = 1 has a good chance to be stuck to one

of these gradient directions, which is a local optimal solution. Therefore, the success rate of

PCA-Lp(L) whenp = 1 is only 74% with a small number of iterations.

Unlike the case ofp = 1, the other values ofp do not contain straight lines in their level set

contours in Fig. 2. Therefore, ifp 6= 1, different directions ofw result in different∇w, and the

algorithm checks differentw for its optimality as it iterates. Ifp > 1, the level set contours

are smooth and PCA-Lp(L) gradually updates its projection vectorw like PCA-Lp(G). In
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this case, as can be seen in Fig. 2(a) and (b), there are not many local optimal solutions,

and both PCA-Lp(L) and PCA-Lp(G) have a good chance to find theglobal optimal solution

regardless of the initial projection vectorw(0).

On the other hand, whenp < 1, as can be seen in Fig. 2(d), (e), and (f), the level set

contours are very spiky and the projection vectors at consecutive iterations (i.e.,w(t) and

w(t+1)) differ radically. Hence, ifp < 1, w(0) does not affect the performance of PCA-Lp(L)

significantly, whereas the performance of PCA-Lp(G) is moredependent on the initialization.

Therefore, the success rate of PCA-Lp(G) is lower than that of PCA-Lp(L) whenp = 0.25

andp = 0.5.

Combining the above analysis of both cases whenp > 1 and p < 1, we can conjecture

that if p 6= 1, PCA-Lp(L) has a good chance of finding a global optimal solution regardless

of the initial projection vectorw(0).

As a conclusion from this simple example, we recommend that the readers use PCA-Lp(L)

unlessp is very small, in which case, convergence may be a problem.

E. Relationship with conventional PCAs

1) PCA-L2: Consider conventional PCA, which optimizes the objective function (4) with

p = 2. Then, the gradient (7) becomes

∇w =
N
∑

i=1

xix
T
i w = Sw, (12)

whereS =
∑N

i=1 xix
T
i = XXT is the scatter matrix ofX.

Conventional PCA-L2, which optimizes (1), is obtained by eigenvalue decomposition of

S, and the optimal solution is the eigenvector correspondingto the largest eigenvalue.

In the following, we will show the equivalence of eigenvectors of S and the points where

the gradient orthogonal∇⊥
w is zero.

Theorem 2:Let p = 2. In this case, for the eigenvectorsw’s of S, the gradient orthogonal

∇⊥
w is zero. In addition, if∇⊥

w = 0 at some pointw, thenw is an eigenvector ofS.

Proof See Appendix.

Ex. 2 To visualize∇⊥
w = 0 at the eigenvectors ofS, consider the following example. Letd =

2 andN = 100. Suppose that each sample is generated according to a Gaussian distribution

with zero mean and sample covariance matrixS = [105,−43;−43, 35].
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Fig. 3. 2-D example. An arrow starting from a point on the circle w indicates∇⊥

w . As expected,∇⊥

w ’s computed at the

two eigenvectorswmax andwmin are zero. Nearwmax, ∇⊥

w converges towmax, while it diverges fromwmin.

For this example, we setw = [cos θ, sin θ]T and computed∇⊥
w for various values ofθ, as

shown in Fig. 3. In the figure, the magnitude of∇⊥
w is scaled appropriately, and we can see

that∇⊥
w is orthogonal to the correspondingw.

When we solve the eigenvalue decomposition problem onS, the resultant eigenvalues are

λ1 = 125.30 andλ2 = 14.75, and the corresponding eigenvectors arew1 = [−0.903, 0.431]T

andw2 = [−0.431,−0.903]T , respectively. These two eigenvectors are shown in Fig. 3.

As expected,∇⊥
w ’s computed at the two eigenvectors were zero. Note that the directions

of ∇⊥
w ’s aroundw1 are towardsw1 while those aroundw2 are away fromw2.

Ex. 3 Let us consider another example with three-dimensional input space. Suppose that

d = 3, N = 100, and each sample is generated according to a Gaussian distribution with

zero mean and sample covariance matrixS = [295, 64,−99; 64, 85,−7;−99,−7, 39].
The three eigenvectors ofS arew1 = [−0.923,−0.234, 0.305]T , w2 = [0.153,−0.952,−0.266]T ,

andw3 = [0.353,−0.199, 0.914]T . To visualize∇⊥
w , we parameterizedw by the latitudeφ

and the longitudeθ asw = [cosφ cos θ, cosφ sin θ, sinφ]T . Then, we computed∇⊥
w at various

points from θ ∈ {−180◦, · · · , 180◦} and φ ∈ {0◦, · · · , 90◦}. The gradient orthogonals are

shown in Fig. 4.

In the figure, the◦ symbols denote the three eigenvectors where the leftmost one is w1,

rightmost isw2 and top isw3. From the figure, we can see that the gradient orthogonal near

the ◦ symbols are very small in magnitude. In addition, we can alsosee that the gradient
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Fig. 4. 3-D example. The three eigenvectors are denoted as◦ where the gradient orthogonals are zero. Near the global

maximal pointw1, ∇⊥

w converges tow1, while near the global minimal pointw3, it diverges fromw3. w2 acts as a saddle

point.

orthogonals nearw1 are oriented towardsw1, while those nearw3 are oriented away from

w3. On the other hand,w2 acts like a saddle point.

We have seen that the proposed gradient search method can be applied to implement the

conventional PCA-L2 algorithm; however, because the conventional method directly finds the

optimal solution using eigenvalue decomposition, the proposed method is slower and is not

recommended whenp = 2.

2) PCA-L1: Consider the casep = 1. In this case, the optimization problem (4) has already

been solved in [9]. Withp = 1, the gradient becomes∇w =
∑N

i=1 s(w
Txi)xi. Replacing∇w

with this value, we can easily check that PCA-L1 in [9] is exactly the same as PCA-Lp(L)

with p = 1.
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IV. M ULTIPLE FEATURE EXTRACTION (m > 1)

A. Greedy solution

In this section, the PCA-Lp algorithm is extended to multiple feature extraction problems.

The proposed method can be easily extended to extract an arbitrary number of features by

applying the same procedure greedily to the remainder of theprojected samples as follows:

Algorithm 2-1. Greedy PCA-Lp (Input: X, p,m, Output: W ⋆)

1) Let w0 = 0 andX0 = X.

2) For i = 1 · · ·m

a) SetXi = (Id − wi−1w
T
i−1)Xi−1.

b) Apply PCA-Lp(G) or PCA-Lp(L) onXi. i.e.,wi = PCA-Lp(Xi, p)

3) OutputW ⋆ = [w1, · · · , wm].

It is easy to show that the above greedy algorithm provides orthogonal projection vectors

and it is expected that these projections suboptimally maximizeLp dispersion. The merit of

the greedy method is that the output projection vectors do not change with different values

of m. However, the greedy algorithm does not provide an optimal solution to (3). Therefore,

in the following, problem (3) is tackled directly and a localoptimal solution is provided.

B. Non-greedy solution

Consider the constrained optimization problem (3). For a given W = [w1, · · · , wm] ∈
ℜd×m(m ≤ d), wherewi denotes thei-th projection vector, the gradient is

∇W =
dFp(W )

dW
= [∇w1

, · · · ,∇wm
]. (13)

Here,∇wi
is given by (7).

The Lagrangian for the constrained optimization problem (3) can be introduced for the

case ofm > 1 as follows:

L(W,Γm) = Fp(W ) + Γm : (W TW − Im). (14)

Here, the Lagrange multiplierΓm ∈ ℜm×m is a symmetric matrix andA : B denotes the

Frobenius inner product of two matricesA andB with the same dimension, i.e.,A : B =
∑

i

∑

j AijBij = tr(ATB).
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Then, the necessary condition for the optimal solution of (3) can be obtained by setting

the derivative of the Lagrangian to zero, i.e.,

dL(W,Γm)

dW
= ∇W + 2WΓm = 0. (15)

However, unlike the previous case with a simple constraint on the norm (||w||2 = 1), the

orthonormality constraint (W TW = Im) is harder to meet and the iterative updateW ← ∇W

||∇W ||

cannot be used sinceΓm is not a scalar. Instead, we try to makeW as close as possible to

∇W in each iteration by solving the following optimization problem:

W ′ = argmax
Q

G(Q) = argmax
Q

tr(QT∇W )

subject toQTQ = Im.

(16)

In the following theorem, we show that the solution to the above optimization problem

(16) always improves the objective functionFp(W ).

Theorem 3:Let W ′ be the solution to (16). Then, forp ≥ 1, Fp(W
′) ≥ Fp(W ).

Proof See Appendix.

Now, the solution to (16) can be obtained by the same procedure of non-greedy PCA-L1

described in [10].

Theorem 4:Suppose that the SVD of∇W is ∇W = UΛV T , whereU ∈ ℜd×d andV ∈
ℜm×m are unitary matrices andΛ ∈ ℜd×m is a matrix whose non-diagonal elements are

identically zero. Then, the solution of (16) isW ′ = U [Im|0]TV T , where0 ∈ ℜm×(d−m) is

the zero matrix.

Proof See Appendix.

Finally, the non-greedy PCA-Lp is obtained as follows:

Algorithm 2-2. Non-greedy PCA-Lp (Input: X, p,m, Output: W ⋆)

1) Initialization: t← 0. SetW (0) such thatW (0)TW (0) = Im.

2) Computation of gradient∇W using (13).

3) SVD of∇W : ∇W = UΛV T .

4) Projection matrix update:

• t← t + 1.
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• W (t)← U [Im|0]TV T .

5) Convergence check

• If ||W (t)−W (t− 1)||F > ǫ, goto Step 2.

Here,||A||F denotes the Frobenius norm of a matrixA which is defined as||A||F =
√
A : A =

√

tr(ATA).

• Else,W ⋆ ← W (t). Stop iteration.

To differentiate the greedy and non-greedy versions of PCA-Lp, henceforth, the former

and the latter will be denoted by G-PCA-Lp and NG-PCA-Lp, respectively. Note that NG-

PCA-Lp can be regarded as an extension of NG-PCA-L1 [10] for an arbitraryp value.

V. EXPERIMENTAL RESULTS

In this section, we applied the proposed PCA-Lp algorithms with various values ofp to

several pattern recognition problems and compared the performances with those of R1-PCA

[4] and L2-PCA. The experimental settings of R1-PCA were exactly the same as those in [4].

The maximum number of iterations for R1-PCA was set to 50. ForG-PCA-Lp, PCA-Lp(L)

was used instead of PCA-Lp(G) to extract successive weight vectors. The stopping tolerance

ǫ and the maximum number of iterations were10−10 and100, respectively, for PCA-Lp(L).

In Step 5 of NG-PCA-Lp, the Frobenius norm was used withǫ value of 10−10 and the

maximum number of iterations was100. In all the experiments, the initial projection vector

of PCA-Lp(L) was set to the sample with the largest L2-norm, i.e.,www(0) = argmaxxxxi
||xxxi||2.

On the other hand, in NG-PCA-Lp, the initial projection matrix was set to the solution of

L2-PCA.

A. UCI dataset

We applied PCA-Lp to several datasets in UCI machine learning repositories [15], and

compared the classification rates with those of L2-PCA and R1-PCA.

Table II shows a brief summary of the datasets used in this paper. Most of these datasets

have been previously used in [9].

1) Dataset 1 to 12:As in [9], for each dataset except “Letter” (dataset 13), we performed

10-fold cross validation (CV) 10 times and computed the average classification rate. Before

training, each input variable in the training set was normalized to have zero mean and unit
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TABLE II

UCI DATASETS USED IN THE EXPERIMENTS

Dataset Data set No. of No. of No. of

ID variables (d) classes instances

1 Australian 14 2 690

2 Balance 4 3 625

3 Breast cancer 9 2 683

4 Dermatology 34 6 358

5 Heart disease 13 2 297

6 Ionosphere 33 2 351

7 Iris 4 3 150

8 Liver 6 2 345

9 Sonar 60 2 208

10 Vehicle 18 4 846

11 Waveform 21 3 4999

12 Yeast 8 10 1484

13 Letter 16 26 20000

variance. The variables in the test set were also normalizedusing the means and variances

of the training set. As a classifier, one nearest neighborhood (1-NN) classifier was used.

Table III shows the classification rates of each dataset using one feature (m = 1) along

with the corresponding standard deviations in the parentheses. For each dataset, the best

classification rate is written in bold face. In the figure, we can see that the best PCA for

different classification problems depends on the dataset used. However, as can be seen in the

last row of the table, PCA-Lp withp = 1.0 andp = 1.5 is slightly better than L2-PCA and

R1-PCA, on average. In this experiment, becausem = 1, we can expect that the results of

G-PCA-Lp and NG-PCA-Lp are exactly the same. However, they are slightly different in the

table owing to the different initial projection vectors andstopping criteria. This phenomenon

is more clear forp = 0.5, where a relatively large number of local optimal solutionsexist

(see Fig. 2).

To show the statistical significance of the performance difference between PCA-Lp and

R1-PCA, two versions of one tailed Welch’s T-test [16] were performed on Table III. The

null (H0) and alternative (HA) hypotheses for each statistical test are as follows:

• Test 1: Best PCA-Lp vs. R1-PCA

– H0: The best classification rate of PCA-Lp methods and that of R1-PCA are the
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TABLE III

CLASSIFICATION RATES OFUCI DATASETS (m = 1). FOR EACH DATASET, 10-FOLD CV WAS PERFORMED10 TIMES.

STANDARD DEVIATIONS ARE IN PARENTHESES. BOLD-FACED LETTERS ARE THE BEST CLASSIFICATION RATES.

G-PCA-Lp NG-PCA-Lp L2-PCA R1-PCA

Dataset ID p = 0.5 p = 1.0 p = 1.5 p = 0.5 p = 1.0 p = 1.5 p = 2.0

1 77.14 (1.66) 77.84 (0.66) 77.14 (0.93) 78.28 (1.63) 77.84 (0.66) 77.14 (0.93) 75.01 (1.70) 75.72 (1.03)

2 53.25 (5.44) 54.99 (4.23) 52.38 (3.53) 53.52 (4.31) 54.85 (4.04) 52.99 (3.61) 51.09 (6.11) 49.97 (4.57)

3 96.41 (0.52) 96.25 (0.48) 96.00 (0.45) 96.41 (0.52) 96.25 (0.48) 96.00 (0.45) 95.93 (0.32) 96.05 (0.39)

4 51.54 (2.47) 53.65 (1.91) 52.84 (1.77) 52.17 (2.17) 53.65 (1.91) 52.84 (1.77) 52.43 (1.33) 52.90 (2.51)

5 59.94 (3.06) 66.40 (1.47) 70.31 (0.93) 62.15 (2.43) 66.40 (1.47) 70.31 (0.93) 69.92 (1.45) 70.03 (1.80)

6 73.37 (1.90) 72.93 (3.54) 72.83 (1.83) 72.66 (2.08) 74.51 (1.86) 72.93 (3.54) 73.43 (2.37) 72.83 (1.83)

7 88.73 (1.46) 88.87 (2.04) 91.47 (1.29) 88.07 (1.27) 88.87 (2.04) 91.47 (1.29) 90.33 (1.27) 89.47 (1.50)

8 68.83 (1.57) 69.26 (2.12) 69.74 (1.12) 68.95 (1.27) 69.26 (2.12) 69.74 (1.12) 69.77 (1.91) 68.86 (2.24)

9 51.30 (4.22) 54.47 (3.62) 55.24 (2.71) 53.89 (2.48) 54.47 (3.62) 55.34 (2.90) 53.46 (3.18) 52.02 (4.22)

10 35.82 (1.04) 37.25 (1.37) 37.58 (1.40) 36.17 (1.86) 37.25 (1.37) 37.58 (1.40) 36.18 (1.28) 36.44 (1.28)

11 52.52 (0.79) 52.42 (0.71) 52.34 (0.73) 52.59 (0.89) 52.42 (0.71) 52.34 (0.73) 52.87 (0.72) 52.86 (0.61)

12 32.92 (1.77) 32.35 (1.23) 32.46 (1.44) 33.15 (1.00) 32.35 (1.23) 32.46 (1.44) 33.40 (1.22) 32.72 (1.15)

average 61.81 63.06 63.36 62.33 63.18 63.43 62.81 62.48

same.

– HA: The best PCA-Lp outperforms R1-PCA

• Test 2: Worst PCA-Lp vs. R1-PCA

– H0: The worst classification rate of PCA-Lp methods and that of R1-PCA are the

same.

– HA: The worst PCA-Lp is worse than R1-PCA.

The computedT -value, degree of freedom (DoF), and the corresponding 95% target value

T95% are shown in Table IV. For each test, if theT -value is greater thanT95%, the null

hypothesisH0 is rejected with 95% confidence; thus, the alternative hypothesisHA is adopted.

Loosely speaking, if the hypothesisH0 is accepted, we can say that the performance of the

two compared methods are not significantly different. On theother hand, ifHA is accepted,

we can say that one is better than the other.

Test 1 shows that the best PCA-Lp is better than R1-PCA for seven datasets out of twelve,

while Test 2 shows that R1-PCA is better than the worst PCA-Lpfor only one dataset (Heart

disease). For the remaining four datasets (datasets 4, 8, 11, and 12), the performances of

PCA-Lp and R1-PCA are not significantly different.

Figure 5 shows the average correct classification rates of some of the datasets with various

numbers of extracted features. In the parentheses in the legends, ‘G’ and ‘N’ denote G-
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TABLE IV

ONE TAILED T-TESTS ONUCI DATASETS BASED ONTABLE III (m = 1). TEST 1 IS THE COMPARISON BETWEEN THE

BEST CLASSIFICATION RATE OFPCA-LP METHODS AND THAT OFR1-PCA,WHILE TEST 2 COMPARES THE WORST

CLASSIFICATION RATE OFPCA-LP’ S AND THAT OF R1-PCA. FOR BOTH TESTS, IF THE T -VALUE IS GREATER

(SMALLER) THAN T95% , HA (H0) IS ACCEPTED.

Test 1: Best PCA-Lp vs. R1-PCA Test 2: Worst PCA-Lp vs. R1-PCA

Dataset ID T -value DoF T95% Accepted Hypo. T -value DoF T95% Accepted Hypo.

1 4.20 15 1.75 HA 1.12 15 1.75 H0

2 2.55 18 1.73 HA -0.46 17 1.73 H0

3 1.75 17 1.73 HA 0.75 17 1.73 H0

4 0.75 17 1.73 H0 0.69 18 1.73 H0

5 0.43 13 1.77 H0 8.98 15 1.75 HA

6 2.04 18 1.73 HA 0.19 18 1.73 H0

7 3.19 18 1.73 HA 1.11 18 1.73 H0

8 0.97 18 1.73 H0 0.03 16 1.74 H0

9 2.05 16 1.74 HA 0.38 18 1.73 H0

10 1.90 18 1.73 HA 1.18 17 1.73 H0

11 0.03 18 1.73 H0 1.72 17 1.73 H0

12 1.28 18 1.73 H0 0.69 18 1.73 H0

PCA-Lp and NG-PCA-Lp, respectively. L2-PCA is denoted by ‘O’ and it corresponds to

p = 2.0.

For each of the UCI datasets, the number of extracted featuresm is varied from one to the

dimension of the original input spaced, and the average classification rates ofm = 1 · · ·d
are reported in Table V. In the table, we can see that the classification rates of PCA-Lp

with p < 2 are generally better than those of L2-PCA and R1-PCA though they are highly

dependent on the specific dataset used. This phenomenon is clearly seen from the average

classification rates of all the twelve datasets in the last row of the table. The performances

of G-PCA-Lp and NG-PCA-Lp do not differ much in most cases. However, note that the

features of NG-PCA-Lp change with the number of extracted featuresm, while those of

G-PCA-Lp are independent ofm.

Table VI shows the average classification rates of the twelvedatasets with a fixed number of

extracted featuresm. The last row of the table also shows the averages of the best classification

rates up to half of the total number of input variables (d/2). For all the cases, PCA-Lp with

p = 1.0 andp = 1.5 outperforms L2-PCA and R1-PCA. PCA-Lp withp = 0.5 is also better

than the conventional methods, except whenm = 1. The averages of the best classification

rates up tod/2 are highest with NG-PCA-Lp (p = 1.5), and both versions of PCA-Lp show
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Fig. 5. Correct classification rates for some UCI datasets with various numbers of extracted featuresm.December 9, 2013 DRAFT
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TABLE V

AVERAGE CLASSIFICATION RATES OFUCI DATASETS (AVERAGE OFm = 1 · · · d). THE LAST ROW IS THE AVERAGE OF

THE TWELVE DATASETS. THE BEST CLASSIFICATION RATES ARE DENOTED IN BOLD FACE.

G-PCA-Lp NG-PCA-Lp L2-PCA R1-PCA

Dataset ID p = 0.5 p = 1.0 p = 1.5 p = 0.5 p = 1.0 p = 1.5 p = 2.0

1 78.97 78.41 78.11 79.53 78.96 78.19 77.24 77.85

2 67.47 67.07 69.15 67.08 67.09 69.17 61.84 63.18

3 95.65 95.62 95.70 95.94 95.77 95.68 95.69 95.79

4 55.45 55.83 55.79 55.48 55.72 54.93 55.96 55.37

5 92.50 92.41 92.61 92.60 92.81 92.63 92.50 92.49

6 76.27 75.90 75.65 75.64 75.80 75.48 75.72 75.76

7 91.12 91.17 91.65 91.15 91.37 91.67 91.48 89.99

8 86.86 87.02 86.96 86.60 87.09 87.05 86.96 86.79

9 84.32 84.72 85.25 84.33 84.53 85.30 85.26 84.52

10 62.84 63.43 62.85 63.57 63.70 63.55 63.28 62.33

11 77.52 77.65 77.61 77.58 77.61 77.63 77.55 77.56

12 47.15 46.95 46.68 47.55 47.22 46.40 45.91 46.06

average 76.34 76.35 76.50 76.42 76.47 76.48 75.78 75.64

TABLE VI

AVERAGE CLASSIFICATION RATES OFUCI DATASETS WITH FIXEDm (m = 1 · · · 3). THE LAST ROW SHOWS THE

AVERAGES OF THE BEST CLASSIFICATION RATES UP TO HALF OF THE TOTAL NUMBER OF INPUT VARIABLES (d).

G-PCA-Lp NG-PCA-Lp L2-PCA R1-PCA

m p = 0.5 p = 1.0 p = 1.5 p = 0.5 p = 1.0 p = 1.5 p = 2.0

1 61.81 63.06 63.36 62.33 63.18 63.43 62.81 62.48

2 69.94 69.45 69.56 70.17 70.04 69.41 68.64 68.26

3 74.05 73.37 73.88 73.93 73.96 74.44 73.37 72.93

Best up tom = d/2 77.82 77.42 78.12 77.60 77.64 78.22 76.88 76.83

higher averages than L2-PCA and R1-PCA.

2) Dataset 13 (Letter):The ‘Letter’ dataset is composed of 26 classes of the English

alphabet. Each class contains around 750 samples ranging from 734 to 813, a total of 20,000

samples. Because the number of samples is large with only 16 input variables, the samples are

close to each other in the feature space and the 1-NN classifier does not work well. Actually,

the correct classification rate of the 1-NN classifier applied to the features extracted by L2-

PCA was only around 4 to 5%. The situation is almost the same for PCA-Lp and R1-PCA.

December 9, 2013 DRAFT



24

Therefore, we used thenearest to the subspace classifierto compare the performances of

various PCAs as follows.

For each class, the first 300 examples were chosen to form the training sets, while the

others were used as test data. For each classc, m principal components (PCs)Wc ∈ ℜ16×m

and their mean vectorsmc ∈ ℜ16 were obtained using the corresponding training set with

various versions of PCA. Then, once a test samplex is given, the reconstruction error is

computed using the PCs and the mean vector corresponding to each class. Finally, the test

sample is classified as the class with the minimum reconstruction error as follows.

c⋆ = argmin
c

||x− x̂c||

wherex̂c = mc +WcW
T
c (x−mc).

(17)

Table VII (a) shows the classification rates of various versions of PCA when the number

of extracted featuresm varies from 1 to 7. Before applying PCAs, each input variablewas

normalized to have zero mean and unit variance. For eachm, the best classification rate is

denoted in bold face. In the table, we can see that the classification rates of both versions

of PCA-Lp do not differ by more than 1%, except for the three cases ofp = 0.5 with m

= 5, 6, and 7. The best performances are obtained by R1-PCA, L2-PCA, and PCA-Lp with

p = 1.5 depending onm. Their performance differences are less than 1% for all the cases.

The performance of PCA-Lp withp = 1.0 is slightly worse than the three best ones. PCA-Lp

with p = 0.5 works worst for allm. Because PCA-Lp with largep values (p = 1.5 and2.0)

is better than that with smallerp values (p = 1.0 and 0.5), it can be conjectured that the

distribution of the dataset is quite close to a Gaussian distribution.

To show that PCA-Lp is more robust to outliers, the original training dataset was modified

to contain spot noise. More specifically, after normalizingeach input variable to have zero

mean and unit variance, for each training sample, 1% of the input variables on average were

randomly replaced with a value of 15 or -15. Then, thenearest to the subspace classifieris

applied to classify the test data.

Table VII (b) shows the classification rates using the spot-noised training data. In the table,

the best classification rates were obtained when PCA-Lp withp = 0.5 was used, except when

m = 1, where PCA-Lp withp = 1.0 performed best. Comparing the performance of NG-

PCA-Lp and G-PCA-Lp, G-PCA-Lp was better than NG-PCA-Lp, especially for largem.

For this noised dataset, L2-PCA performed worst regardlessof m. This phenomenon was

expected as a number of outliers were deliberately introduced. R1-PCA worked relatively
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TABLE VII

CLASSIFICATION RATES ONLETTER DATASET WITH VARIOUSm (m = 1 · · · 7).

(a) Original dataset (without noise)

G-PCA-Lp NG-PCA-Lp L2-PCA R1-PCA

m p = 0.5 p = 1.0 p = 1.5 p = 0.5 p = 1.0 p = 1.5 p = 2.0

1 61.56 62.45 62.70 60.68 62.45 62.70 62.80 62.86

2 66.47 67.83 68.16 66.97 67.39 67.99 67.46 67.67

3 71.81 72.39 73.11 71.39 72.52 73.03 72.87 73.07

4 75.35 77.14 77.90 74.82 77.08 77.66 78.01 78.16

5 76.83 79.25 79.67 75.48 79.34 80.28 79.38 80.08

6 77.84 79.98 80.80 76.02 80.33 80.68 80.48 80.73

7 78.68 80.42 80.85 74.78 80.02 80.63 80.69 80.61

(b) Dataset with 1% of spot noise

G-PCA-Lp NG-PCA-Lp L2-PCA R1-PCA

m p = 0.5 p = 1.0 p = 1.5 p = 0.5 p = 1.0 p = 1.5 p = 2.0

1 57.26 60.01 59.01 59.02 60.01 59.01 56.00 59.66

2 63.34 61.95 61.01 63.70 61.48 61.18 56.52 62.45

3 66.31 66.09 63.76 64.71 64.83 63.75 58.32 63.39

4 69.77 67.16 64.23 66.54 66.58 64.70 59.75 66.26

5 70.30 68.02 63.43 67.47 66.52 63.39 57.59 65.84

6 70.52 67.54 62.65 67.68 65.00 62.20 56.44 66.53

7 70.66 66.63 61.17 66.27 64.97 60.12 54.51 65.12

well but not as well as PCA-Lp withp = 0.5.

B. USPS dataset

Here, we applied the proposed PCA-Lp with various values ofp to the USPS dataset

[17] and compared the classification rates with those of conventional L2-PCA and R1-PCA.

The USPS dataset consists of16 × 16 handwritten digits. As in the experiments on the

”Letter” dataset described in the previous subsection, thenearest to the subspace classifier

was used. Each of the ten digits contains 1,100 examples fromwhich we chose the first 300

examples to form the training sets, while the other 800 were used as test data. For each

digit c ∈ {0, · · · , 9} , 30 principal components (PCs)Wc ∈ ℜ256×30 and their mean vectors

mc ∈ ℜ256 are obtained using the corresponding training set with various versions of PCA.

Then, once a test samplex is given, the reconstruction error was computed using the PCs

and the mean vector corresponding to each digit. Finally, the test sample is classified as the
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TABLE VIII

CORRECTCLASSIFICATION RATES ON USPSDATA WITH GAUSSIAN NOISE

noise level G-PCA-Lp NG-PCA-Lp L2-PCA R1-PCA

σ p = 0.5 p = 1.0 p = 1.5 p = 0.5 p = 1.0 p = 1.5 p = 2.0

0 94.88 95.52 95.51 94.62 95.38 95.65 95.46 95.30

10 94.90 95.53 95.52 94.62 95.37 95.65 95.45 95.30

20 94.97 95.57 95.55 94.58 95.35 95.63 95.46 95.30

30 94.92 95.53 95.46 94.58 95.37 95.61 95.40 95.25

40 94.81 95.48 95.43 94.46 95.23 95.60 95.33 95.15

50 94.70 95.25 95.31 94.55 95.28 95.35 95.21 95.21

TABLE IX

CORRECTCLASSIFICATION RATES ON USPSDATA WITH SALT AND PEPPER NOISE

noise level G-PCA-Lp NG-PCA-Lp L2-PCA R1-PCA

n p = 0.5 p = 1.0 p = 1.5 p = 0.5 p = 1.0 p = 1.5 p = 2.0

0 94.88 95.52 95.51 94.62 95.38 95.65 95.46 95.30

0.1 94.67 95.07 94.93 93.95 95.11 95.11 94.92 94.61

0.2 93.20 93.20 93.32 92.82 93.63 93.35 93.21 92.51

0.3 90.36 90.45 89.96 90.47 89.88 90.40 89.97 90.33

0.4 86.16 85.21 85.06 87.28 86.18 85.35 84.98 85.23

0.5 80.75 78.27 78.70 81.13 79.10 78.95 77.43 78.73

digit with the minimum reconstruction error.

For this dataset, two types of noise are added to the test set.The first one is Gaussian noise

with zero mean and varianceσ2. The second type is “salt and pepper” noise with noise level

n, wheren/2 is the probability that a pixel flips to black (0) or white (255). The classification

rates for the test set using various versions of PCA are reported in Table VIII and IX.

In Table VIII, we can see that NG-PCA-Lp withp = 1.5 shows the maximum classification

rate regardless of the noise level. However, we can also see that the classification rates do not

depend significantly on the specific types of PCA when additive Gaussian noise is present.

On the other hand, when salt and pepper noise is present, bothG-PCA-Lp and NG-PCA-

Lp perform better than L2-PCA and R1-PCA, especially when the noise level increases.

Note that the best performance is moving fromp = 1.5 towardsp = 0.5 as the noise level

increases. This shows that PCA-Lp with a smallp value better fits samples with large salt

and pepper noise because they can cope with large number of outliers. From the tables, we
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can see that conventional L2-PCA can cope with additive Gaussian noise while PCA-Lp is

preferred when non-Gaussian noise is present.

C. Face reconstruction

In this subsection, the proposed PCA-Lp algorithm was applied to Yale face reconstruction

problems and the performances were compared with those of other methods. For all the

experiments, both G-PCA-Lp and NG-PCA-Lp performed almostthe same, and henceforth,

the performances of G-PCA-Lp are reported. For all the cases, the maximum number of

iterations was set to 100.

The Yale face database consists of 165 gray-scale images of 15 individuals. It includes 11

images per subject with different facial expressions or configurations. In [18], the authors

report two types of databases: a closely cropped set and a full face set. In this paper, the

full face set of size 100× 80 pixels was used. Each of the 8,000 pixels was regarded as an

input variable.

In the first experiment, 20% of the total 165 face images were randomly selected and

occluded with rectangular noise consisting of random blackand white dots of size at least

15× 10 located at a random position. The leftmost column of Fig. 6shows typical examples

of occluded images.

To this image set, we applied L2-PCA (eigenface [19]), R1-PCA, and PCA-Lp withp =

0.5, 1.0, and1.5 and extracted various numbers of features. By using only a fraction of the

features, we could reconstruct images such as the ones shownon the second to the sixth

columns of Fig. 6, and we computed the average reconstruction error e(m) with respect to

the original unoccluded images as follows:

e(m) =
1

N

N
∑

i=1

||xorg
i −

m
∑

j=1

wjw
T
j xi||2. (18)

Here, N is the number of samples (165 in this case),xorg
i and xi are thei-th original

unoccluded image and thei-th image used in training respectively, andm is the number of

extracted features.

Figure 7 shows the average reconstruction errors for various numbers of extracted features.

In the figure, when the number of extracted features is small,the average reconstruction errors

for different methods are almost the same. However, from around 10 features, the difference

among different methods becomes apparent and L2-PCA performs worse than other methods.

After around 20 features, PCA-Lp withp = 0.5 outperforms the other methods, followed by
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Fig. 6. Face images with occlusion and the reconstructed faces: 1st column: original, 2nd – 4th columns: PCA-Lp (p =

0.5, 1.0 and1.5 respectively), 5th column: L2-PCA, 6th column: R1-PCA (reconstructed with 20 projection vectors).

PCA-Lp (p = 1, 0), PCA-Lp (p = 1.5), and L2-PCA. Note that L2-PCA corresponds to PCA-

Lp with p = 2.0. R1-PCA performs best when the number of features is very small, but its

performance is overtaken by PCA-Lp withp = 0.5 andp = 1.0 afterwards. The fluctuation of

the reconstruction errors for R1-PCA is because R1-PCA obtains different projection vectors

for different values of extracted featuresm, while the projection vectors of G-PCA-Lp and

L2-PCA do not change withm.

Figure 6 shows the original occluded face images and the reconstructed ones using 20

projection vectors respectively. In the figure, we can see that the images reconstructed by L2-

PCA have intensive dots while the intensity decreases asp decreases towards 0.5. Comparing

the reconstruction images, the ones from R1-PCA are the cleanest with least dots, but the

detailed shape and expressions are quite different from theoriginal face images. On the other

hand, the ones from PCA-Lp have many dots, but the they are similar to the original ones.

As a second experiment, to the original 165 Yale images, we added 30 dummy images

that consist of random black and white dots and performed L2-PCA, R1-PCA, and PCA-Lp

with p = 0.5, 1.0, and1.5. Figure 8 shows the average reconstruction error of each method

with various numbers of extracted features. In the computation of the average reconstruction

error, (18) was used withN = 165, i.e., 30 dummy images were excluded. In this case,xorg
i

andxi were the same.
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Fig. 7. Average reconstruction errors for occluded Yale images
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Fig. 8. Average reconstruction errors for Yale dataset withdummy training images

In Fig. 8, when the number of extracted features is changed from 6 to 36, the error

of L2-PCA is almost constant. This shows that the dummy images affect the 6th up to

the 36th projection vectors significantly, and these vectors are tuned to explain the dummy

images. For R1-PCA, this phenomenon starts later, at aroundm = 15, and the performance

starts to degrade slowly up to 36 features. On the other hand,PCA-Lp does not suffer
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Fig. 9. Face images trained with dummy images and the reconstructed faces: 1st column: original, 2nd – 4th columns:

PCA-Lp (p = 0.5, 1.0 and1.5 respectively), 5th column: L2-PCA, 6th column: R1-PCA. (reconstructed with 30 projection

vectors)

much from this phenomenon and the reconstruction errors constantly decreases. This can

be explained as follows. For PCA-Lp, especially whenp is small, each projection vector

shares the information on the dummy images, while for R1-PCAand L2-PCA, some of the

projection vectors are dedicated to explain dummy images that have a relatively large norm.

For this reason, we can see that with small values ofp, the performance of PCA-Lp is worse

whenm is small, but it improves as the number of extracted featuresincreases. As in the

previous experiment, the fluctuation of R1-PCA is due to the fact that the whole projection

vectors are replaced as the number of extracted features is varied.

Figure 9 shows the reconstructed images with 30 projection vectors as well as the original

face images. In Fig. 8, whenm = 30, the performances of PCA-Lp withp = 0.5 andp = 1.0

are better than the others, followed by PCA-Lp (p = 1.5), R1-PCA, and L2-PCA. Although

it is somewhat hard to discern, the images reconstructed using PCA-Lp with small values

of p are slightly more similar to the original image in the leftmost column than the ones

with larger values ofp. Further, it is clearly seen that L2-PCA shows worst performance.

The quality of the reconstructed images of R1-PCA (rightmost) is almost as good as that of

PCA-Lp with p = 1.5 (4th column).

The average number of iterations of PCA-L1 was 7.61 and it took 3,078msincluding 2,172
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TABLE X

TIME COMPLEXITY OF PCA FOR YALE FACE RECONSTRUCTION PROBLEMS

Time complexity
G-PCA-Lp NG-PCA-Lp L2-PCA R1-PCA

p = 0.5 p = 1.0 p = 1.5 p = 0.5 p = 1.0 p = 1.5 p = 2.0

Yale with occlusion:N = 165, m = 50

training time (sec) 12.650 3.023 11.533 38.129 9.694 33.393 0.256 186.939

avg. no. iter. 100 8.28 90.84 100 14.78 99.44 1 93.08

Yale with dummy images:N = 195, m = 50

training time (sec) 14.760 3.520 13.188 48.752 13.909 49.233 0.294 300.704

avg. no. iter. 100 8.34 88.80 100 16.26 98.38 1 98.88

ms, which was the time taken for preprocessing by L2-PCA. For this problem, R1-PCA took

26,555mson average.

To check the complexity of the proposed method, we show the training time and the

average number of iterations of each PCA in Table X. Note thatall the experiments were

performed usingMatlab on an Intel Core2 Duo CPU in 2.93GHz.

In the table, the training times of G-PCA-Lp are the total time taken to obtain 50 weight

vectors sequentially. Therefore, the average time for extracting one feature is obtained by

dividing the number by 50. For example, whenp = 0.5, 0.253 (12.650/50) sec are taken

on average to obtain one additional feature. On the other hand, because the weight vectors

for NG-PCA-Lp and R1-PCA change with different numbers of extracted featuresm, the

training time for NG-PCA-Lp and R1-PCA are the total time taken fromm = 1 to m = 50.

Unlike G-PCA-Lp, in these cases, the training time increases withm. For example, R1-PCA

takes 3.138 sec whenm = 1 and it increases to 7.401 whenm = 50. Likewise, NG-PCA-Lp

(p = 1.5) took 0.041 and 1.588 sec whenm = 1 andm = 50 respectively. Note that PCA-Lp

takes less time than R1-PCA in both experiments. Among different versions of PCA-Lp, it

converges relatively fast whenp = 1 for both G-PCA-Lp and NG-PCA-Lp. Considering that

PCA-Lp(L) is used instead of PCA-Lp(G) in this experiment, this is in line with the result

of Table I.

VI. CONCLUSION

This paper proposes a number of PCA methods based onLp-norm optimization techniques.

The proposed PCA-Lp methods try to find projections that maximize the general Lp-norm
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with arbitraryp > 0 in the projected space. In doing so, the gradient of the objective function

is computed on the basis of the fact that the number of training samples is finite.

As an initial step, we tackled an easier problem of extracting one feature. For this problem,

two types of PCA-Lp, namely, PCA-Lp(G) and PCA-Lp(L), were proposed. Both methods

employ the gradient of the objective function. In the first one, the gradient ascent method

was used, while the second one made use of the Lagrangian multiplier method to maximize

the objective function. We also showed the local optimalityof PCA-Lp(L) for p ≥ 1. In

addition, it was shown that conventional L2-PCA and PCA-L1 are special cases of PCA-Lp

with p = 2 andp = 1, respectively.

As a second step, the problem of extracting more than one feature was also tackled in this

paper. In addition to a simple greedy method, G-PCA-Lp, where the features are extracted

one by one greedily using either PCA-Lp(G) or PCA-Lp(L), a non-greedy version, NG-PCA-

Lp, where more than one feature is extracted simultaneously, is also proposed. The proposed

NG-PCA-Lp can be regarded as an extension of NG-PCA-L1 [10] and the local optimality

of NG-PCA-Lp is proved.

The proposed PCA methods were applied to several pattern recognition problems, including

face reconstruction problems, and the performances were compared with those of conventional

L2-PCA and R1-PCA. The experimental results show that the proposed methods are usually

faster than R1-PCA and robust to outliers.
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APPENDIX

A. Proof of Theorem 1

From the form of the objective functionFp(w) in (4), we can see that it is convex with

respect tow whenp ≥ 1 because the sum of convex functions is convex [20].

From the first order convexity condition [21], if the function Fp(w) is convex, it follows

that

Fp(w
′)− Fp(w) ≥ ∇T

w(w
′ − w) ≥ 0. (19)

The second inequality holds becausew′ is parallel to∇w and bothw′ andw have unit norm.
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B. Proof of Theorem 2

1) Without loss of generality, it can be assumed that||w||2 = 1. Let w be an eigenvector

of S. In this case, becausew is an eigenvector ofS, Sw = λw for a certain eigenvalue

λ. Then, (8) becomes

∇⊥
w = λ(Id − wwT )w = λ(w − w) = 0 (20)

The second equality is from||w||2 = 1.

2) If p = 2, it can be easily shown that

∇⊥
w = (Id − wwT )Sw. (21)

Assume that we have∇⊥
w = 0, which is equivalent towwTSw = Sw. Let us denote

wwT as a matrixA and Sw as a vectorv. In this case, it becomesAv = v, and v

can be interpreted as the eigenvector corresponding to the eigenvalue of1. Because

A = wwT has rank 1, the only eigenvector that satisfiesAv = v is v = λw. Therefore,

it becomesSw = λw andw is one of the eigenvectors ofS.

C. Proof of Theorem 3

The proof is similar to that ofTheorem 1. First, Fp(W ) is convex with respect toW if

p ≥ 1. By the first order convexity condition, ifFp(W ) is convex, then

Fp(W
′)− Fp(W ) ≥ (W ′ −W ) : ∇W

= tr((W ′ −W )T∇W )

= tr(W ′T∇W )− tr(W T∇W ) ≥ 0.

(22)

The final inequality holds becauseW ′ is the solution of (16).

D. Proof of Theorem 4

Using the SVD ofW , G(Q) = tr(QT∇W ) can be rewritten as

tr(QT∇W ) = tr(QTUΛV T ) = tr(ΛV TQTU)

= tr(ΛZ) =

m
∑

i=1

λiizii,
(23)

whereZ = V TQTU , λii, and zii are thei-th diagonal elements ofΛ andZ, respectively.

SinceZZT = Id, zii ≤ 1. On the other hand,λii ≥ 0 becauseλii is a singular value of∇W .

Therefore,tr(QT∇W ) =
∑m

i=1 λiizii ≤
∑m

i=1 λii, and the equality holds whenzii = 1 for all
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i(≤ m). From this,G(Q) is maximum whenZ = [Im|0] ∈ ℜm×d. BecauseZ = V TQTU ,

we haveQ = UZTV T and the optimal solution of (16) is

W ′ = UZTV T = U [Im|0]TV T . (24)

With the above solution, one can verify that the constraintW ′TW ′ = Im is automatically

satisfied.
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