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Abstract

This paper proposes several principal component analysisads based oh,-norm optimiza-
tion techniques. In doing so, the objective function is dafimsing theL,-norm with an arbitrary
p value, and the gradient of the objective function is comguwia the basis of the fact that the
number of training samples is finite. In the first part, an @agproblem of extracting only one
feature is dealt with. In this case, principal componen¢ssaarched for either by a gradient ascent
method or by a Lagrangian multiplier method. When more thaa feature is needed, features
can be extracted one by one greedily, based on the proposgmané&econdly, a more difficult
problem is tackled that simultaneously extracts more thaa feature. The proposed methods are
shown to find a local optimal solution. In addition, they aasyeto implement without significantly
increasing computational complexity. Lastly, the progbseethods are applied to several datasets
with different values ofp, and their performances are compared with those of coromaltiPCA

methods.

Index Terms

PCA-Lp, Lp-norm, optimization, principal component argy gradient.

I. INTRODUCTION

Principal component analysis (PCA) [1], a well-known toot tlata analysis and pattern
recognition, is extensively used for visualizing data aaducing its dimensionality. PCA
searches a set of projections to maximize the variance opiibected data or to minimize
the reconstruction error. These projections constituaadimensional linear subspace that
enables us to effectively capture the data structure in tlggnal input space.

Conventional PCA, which is based on tlig-norm (L2-PCA), is optimal in the sense

of mean squared reconstruction error when the data is lalis&d according to a Gaussian
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distribution. However, it is prone to outliers because ieutl with large norms dominate the
objective function owing to the use of thie,-norm. To overcome this problem, objective
functions based on alternative norms have been explored [2]].

In [5], [6] and [7], each component of the reconstructionoenvas assumed to follow
a Laplacian distribution instead of a Gaussian dnehorm PCA (L1-PCA), which tries to
minimize thelL, reconstruction error, was proposed. In order to obtain atieol of L1-PCA,

a heuristic estimate for the genetiag) problem was used in [5], whereas methods based on
the weighted median and convex programming were proposg@]iand [7]. Despite the
robustness of the proposed L1-PCA methods, they are cotignally expensive because of
the application of linear or quadratic programming. Morgartantly, they are not invariant

to rotations because thie,-norm is measured in the input space.

In [8], the sameL;-norm optimization problem was tackled by successivelyregsing
the dimension of the feature space. Unlike other methodsntlethod finds a global optimal
solution. However, it is time-consuming because it need®bee a number of linear programs.

In [4], Ding et al. proposed R1-PCA, which combines the merits of conventi®@ and
L1-PCA. Unlike L1-PCA, it is rotation-invariant, and it stessfully suppresses the effect of
outliers as L1-PCA does. However, this method is highly deleat on the dimensiom of
a subspace to be found. For example, the projection vectairga whenm = 1 may not
be in a subspace obtained when= 2. Moreover, because it is an iterative algorithm based
on the successive use of the power method [11], it consumesidarable time to achieve
convergence, especially when the input dimension is high.

Unlike the above methods, which try to minimize the recamgton error in the input
space, a greedy method that maximizes thenorm in the feature space is presented in
[9] in order to achieve robust and rotation-invariant PCA. distinguish it from L1-PCA,
which minimizes the L1-norm-based reconstruction erdog, tnethod proposed in [9] was
named PCA-L1. The PCA-L1 algorithm is intuitive, simple dagasy to implement, and it
was shown to find a locally maximal solution. Studies on itsste and supervised versions
are described in [12], [13], and [14]. It has also been extdnid a non-greedy version in
[10] in order to simultaneously fingh projections by iterative application of singular value
decomposition (SVD) [11].

In this paper, PCA-L1 [9] is generalized to PCA-Lp, which rimaizes L,-norm-based
dispersion in the feature space with an arbitrary 0 value, and it is shown that conventional

L2-PCA and PCA-L1 are special cases of the proposed PCA-Ith appropriatep values
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(p = 2 andp = 1, respectively). The proposed methods are realized usingdient ascent
method or a Lagrangian multiplier method, and they are shoviind a local optimal solution.
In addition, as an extension of [10], a non-greedy versiolPGA-Lp is proposed, which
simultaneously findsn principal components that maximize thg-norm. Like PCA-L1,
PCA-Lp is intuitive, simple, and easy to implement.

The remainder of this paper is organized as follows. In $acti, the problem is for-
mulated. New algorithms for thé,-norm optimization problem withn = 1 andm > 1
are presented and their local optimality is proven in Sectib and IV respectively. The
proposed methods are applied to several pattern recogmitablems, and their performances
are compared with those of other conventional PCA methodSedation V. Finally, the

conclusions are stated in Section VI.

[I. PROBLEM FORMULATION

Let X = |21, - ,2yn] € RN be a data matrix, wheré and N denote the dimension
and number of data respectively. Without loss of genetrahty can assume that the data has
zero mean, i.ey Y, z; = 0.

Conventional L2-PCA can be formulated as finding< d) orthonormal projection vectors
W e jR>m WTW = I,,,, such that the following total scatter or variance afterjgetion is
maximized.

N
1 1
F(W) =5 ) (W[5 = Str(WTSW). 1)

i=1

Here, I,,, is them x m identity matrix,S = X X7 is the scatter matrix o,

||z is the
Ls-norm of a vector, andr(-) is a trace operator on a square matrix. The global optimal
solution of (1) can be found by solvingll = WA, whereA is a diagonal matrix containing
eigenvalues of.

Because the total scatter (1) is dominated by samples wile laorms, the following alter-
native objective function based dn-norm (instead ofl.;-norm) dispersion was introduced
in [9].

BW) =3 W il =3 ) lwfwl )

i=1 j=1
Here, w; is the j-th column of W and || - ||; denotes thel,-norm of a vector. In [9], the
problem was reduced to a special casenof= 1, and a local optimal solution was found

using PCA-L1. Then, a greedy algorithm was introduced to &irsgries of projection vectors
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by taking the reconstruction errors as new data to which RCAvas applied successively.
On the other hand, in [10], for a given, (2) was directly maximized by iterative application
of SVD.

In the previous approaches, the norm of a vedétz; was defined using an integer
value p = 2 or p = 1). However, it can also be defined using an arbitrary norngene
value. With the use of an arbitrady,-norm, PCA is expected to better fit more datasets with
non-Gaussian distributions.

The problem formulation in this paper is as follows. Consitiee following L,-norm

(p > 0) maximization problem with the constraifit” W = I,,,.

N N m
1 1
F, (W) == [[Whail[p = = > Jwf . 3)
P P j=1
Here, W = [wy,- -, w,,] € R™™ is a projection matrix. Note that the objective function (3)

is identical to (1) wherp = 2. Likewise, whernp = 1, it coincides with (2).

The above optimization problem is difficult to solve when> 1. Therefore, for now, we
restrict our attention to only those cases in whigh= 1. In case more than one projection
vectors are required, i.emp > 1, a greedy algorithm can be used, as in [9]. On the other
hand, in Section IV, (3) is tackled directly and a non-greediution is obtained for general

cases ofm.

[1l. ALGORITHM: PCA-LP (m = 1)
A. Solution - Gradient Ascent
Let m = 1. Then, (3) becomes
1 N
w* = argmax Fj,(w) = argmax — Z |w ;[P
w v Phio (4)
subject tow’w = 1.

This optimization problem can be solved by taking the graidad F,(w) with respect to
w. However, the gradient may not be well defined owing to theohibs value operation.

This technical difficulty can be alleviated by introducirigetsign function as follows:

December 9, 2013 DRAFT



With the sign function,F,(w) in (4) can be rewritten as

1 N

Fyw) = 2 3 [s(@al’ (5)
wherea; £ wlx;.

Taking the gradient of’,(w) with respect tow, we get

dF(w) = dFy(w) da
V= dw _;

da; dw

[s(ai)a;P s (a;)ai + s(a;)];

I
AMZ

=1

N N (6)
= Z s'(a;)sPHa)abx; + Z sP(a;)a? '
=1 i=1
N N
=2 5(a;)s" ai)alz; + Y s(ag)|a; P,
=1 i=1
whered(-) in the last equality is the Dirac delta function.
The first term vanishes if;(= w”z;) # 0 for all z; (i = 1,---, N), and we get
N
V= Z s(wha;)|wha; P ;. (7)

=1
Moreover, whenp > 1, even for the singular pointsu(s) wherew”z; = 0 for somex;’s,
the first term vanishes and the gradient is well defined, whetomes (7).

An exceptional case is when< 1. In this case, the gradient is not well defined {gs if
there exist some;’s wherew” z; = 0. However, because of a finite number of samples, this
singularity condition can be technically avoided by sllghthoving w, the operating point
of the gradientv,,.

Then, the steepest gradient method can be applied to ob&iprojection that maximizes
the objective function (4). The overall optimization prdaee is represented as PCA-Lp(G)

in the following:

Algorithm 1-1. PCA-Lp(G) (Input: X, p, Output: w*)

1) Initialization: ¢ + 0. Setw(0) such that/|w(0)||, = 1.
2) Singularity check (applies only jf < 1)
o If 3i, such thatw? (t)z; = 0, w(t) < (w(t) + 0)/||w(t) + J||. Here,d is a small

random vector.
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3) Computation of gradien?,, using (7).
4) Gradient searcho(t + 1) < w(t) + oV, wherea is the learning rate.
5) Normalization:
o t+t+1.
o w(t) < w(t)/[[w)]l2
6) Convergence check
o If |Jw(t) —w(t —1)|]2 > ¢, goto Step 2.

« Else,w* < w(t). Stop iteration.

Because PCA-Lp(G) is based on the steepest gradient methfidgs a local optimal
solution that is dependent on the initial projection veetod). Therefore, the choice af(0)
can be critical to the performance of PCA-Lp(G). Naturadlygood candidate fow(0) may
be the solution of conventional L2-PCA. Another choice carntliee direction of the sample
with the largest norm. For simplicity, in this paper, unlegsecified explicitly, the initial
projection vectorw(0) is set to the direction of the sample with the largest norm.

For the steepest gradient method, when the learningaratevery high, it is difficult to
ensure convergence; on the other hand, very small values@s$ult in slow convergence. In
this paper, unless specified explicitty,is set t00.1/N, whereN is the number of training
samples.

Note that the singularity check (Step 2) is only necessargnyh< 1. Further, note that
the normalization step (Step 5) ensures the constfgint, = 1.

With the constraint|w||; = 1, the search space of the gradient is restricted only to the
orthogonal direction of the weight vectar, which can be easily obtained by

Vi =V, —ww'V,) = s —ww')V,

N (8)
= (I; — ww?) Z s(wl ) |wx;|P .

i=1
Therefore, in the above PCA-Lp(G) procedu¥e. can be used instead &, in Step 4. In
this caseV, can be directly used to check for convergence. Hencef&thwill be referred

to as thegradient orthogonal
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B. Interpretation - force

The gradient orthogonaV/: can be considered as the net force exerted on aubar

Rewriting the gradient orthogonal, we get

N N
Vi; = ZCZ‘UZ' = Z fi, (9)
=1 i=1

wherec; = s(w?x;)|wTz;[P~1 andv; = z; — w(wTx;). In this interpretation, each sampie
exerts an orthogonal directional forge= c;u; on w, as shown in Fig. 1. In the figure, the
origin o is fixed, andw is free to move according to the exerted forces until the ostef
becomes 0. The length; in the figure corresponds ta”x;|. If the inner productw” z; is
positive (e.g.,r;), the pointz; pulls the barw towards itself. On the other hand,f’ z; is
negative (e.g.z, andzxs), z; pulls —w towards itself, which is equivalent to pushingin the
opposite direction. The magnitude of the fortelue to the sample point; is | f;| = af*1|vi|.
Consider conventional PCA with = 2. In this case, the magnitude of the force duecto

becomesf;| = a;|v;|. If the magnitude:; of the inner product between andz; is large and

|v;|, the distance of; from the barw, is large, the effect of the sample pointis increased.

On the other hand, whem= 1, | f;| = |v;|. In this caseq; does not contribute to the force,
and the only important factor is the distance of the sampietgmm the barw. Considering
that outliers are normally far from the origin and therefdrave largez; and|v;| with high
probability, we can expect PCA-L1 to be more robust to otgliban conventional PCA-L2.

In addition, if p < 1, a; negatively affects the force, and the effect of outliersugHer
reduced. In this casdf;| = a‘f’—_L = (%)1—p|vi|p = |tand|'"?|v;|P, whered is the angle
betweenw andz;. If z; Lw, thé point exerts an infinite force on the har For this reason,
we have included the singularity check (Step 2) in the PCA)palgorithm.

In the extreme case of — 0, |f:| — |vi|/a; = |tand|. However, note that the problem

(4) is not defined at all fop = 0 because)’ is not well defined.

C. Alternative Solution - Lagrangian

Here, instead of a gradient ascent method, an alternativieathdased on the Lagrangian
is derived to solve (4).

Consider the Lagrangian of the constrained optimizatiablem (4):

L(w, \) = Fp(w) + Mw"w — 1). (10)
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Fig. 1. lllustration of gradient as force

Then, the necessary condition for the optimal solution ¢fo@n be obtained by setting the
derivative of the Lagrangian to zero, i.e.,

dL(w, \)
dw

This condition indicates that andV,, should be parallel (i.ew || V,,) at the optimakhw.

= Vo + \w = 0. (11)

From the constrainfjw||» = 1, w can be directly updated as «+ ||vvu1;]||2.

Indeed, (11) is true not only for the maximum points but algp the minimum points.
However, in the vicinity of a minimum point, the gradient etition diverges from the
minimum point. On the other hand, in the neighborhood of aimam point, the gradient
converges to the maximum point. Therefore, we can expeettive application of the update
rule to find a maximum point, but not a minimum point.

Before we move on to the introduction of an alternative PGaAalgorithm, we show that
the iterative methodv «+ HVVW is indeed non-decreasing fpr> 1.

Theorem 1ilet [[w]|; = 1 andw’ = - Then, forp > 1, F,(w') > Fy(w).

Proof See Appendix.

Using this property, we can obtain an alternative algorithat solves the PCA-Lp problem

as follows:

Algorithm 1-2. PCA-Lp(L) (Input: X, p, Output: w*)
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1) Initialization: ¢ + 0. Setw(0) such that/|w(0)||, = 1.
2) Singularity check (applies only j < 1)
o If 3i, such thatw? (t)z; = 0, w(t) < (w(t) + 0)/||w(t) + J||. Here,d is a small
random vector.
3) Computation of gradien? ., using (7).
4) Projection vector update:
o t4t+1.
o w(t) < Vi /[[Vul[2.
5) Convergence check
o If [Jw(t) —w(t —1)||]2 > ¢, goto Step 2.

« Else,w* < w(t). Stop iteration.

Because the objective function (4) is upper bounded andyeteration of PCA-Lp(L)
increases the objective function accordingiteeorem 1we can show that PCA-Lp(L) finds
a local maximal solution as PCA-Lp(G).

The solution of PCA-Lp(L) depends on the initial projectigactor w(0). However, in
the next subsection, we will show that the performance of RPA.) is not as significantly
affected by the initialization as that of PCA-Lp(G).

Note that in this alternative version, Step 4 replaces thepsst gradient search (Step 4
and 5 in PCA-Lp(G)). Indeed, PCA-Lp(L) is equivalent to PCA(G) whena = oco. Both
PCA-Lp(G) and PCA-Lp(L) may fall into a local maximum poitiowever, because PCA-
Lp(L) does not make use of a low learning rateit is normally faster than PCA-Lp(G)
as long as the level set df,(w) is smooth. Although PCA-Lp(L) was not shown to be
non-decreasing fgy < 1 in Theorem 1it works well, even for small values @f in practice.

Like PCA-L1, both PCA-Lp(G) and PCA-Lp(L) have computat@dicomplexityO(Nd) x
ni;, wheren;; is the number of iterations for convergence. Clearly, thenloer of iterations
does not depend on the dimensiérof the input space, but on the number of samplés
Therefore, PCA-Lp can be applied to problems with a large meminput variables without

significantly increasing the computational complexity.
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D. Comparison of the two algorithms

To investigate the local maximality and convergence prioggeiof PCA-Lp(G) and PCA-

Lp(L), we consider the following example.

Ex. 1 Consider the zero-mean two-dimensional data matrix

—-0.8 02 1.2 —-38 3.2
-2 -1 0 1 2
with 5 samples.

Figure 2 shows level sets &f,(w) for this example with different values of In the figures,
the inner contour corresponds to the levelget: F,(w) = ¢, }, Whereas the outer contour
corresponds to the level sé : F,(w) = ¢paz }- HErE, i, aNd ey, are the minimum and
maximum of F,(w) with the constraint|w||, = 1. BecauseF,(cw) = ¢’ F,(w) for ¢ > 0, the
inner and outer contours are similar. The circles betweerctimtours correspond to points of
||lw||]2 = 1; the minimum projection vectors,,;, and the maximum projection vectots,,,.
are also shown in the figures. The points denoted loy the circles are the local maximal
points. As expected, at these poinisy), the gradient directiofv/,,, which is orthogonal to
the tangent of the contour, is parallel o Further, the scaled versions of five data points
are shown in the figures by.

Note that wherp = 2 where the level set is an ellipsoid, the local maximum cqoesls
to the global maximum. Likewise, when= 1.5, there is no local maximal point. However,
for other cases, there exist local but non-global maximahtgoFurther, ap decreases, the
level sets become less smooth.

For this dataset, we compared the performance of PCA-Lp(@) RCA-Lp(L) with the
initial projection vector beingu(0) = [cos(#), sin(6)], whered was varied from)° to 180°
in steps 0f0.1°. In PCA-Lp(G), the learning factax was set to 0.02. The stopping tolerarnce
and the maximum number of iterations wefe ° and1, 000 respectively for both algorithms.

Table | compares PCA-Lp(G) and PCA-Lp(L) in terms of the ssscrates of finding the
global maximum and the average numbers of iterations faowawalues op. An experiment
is considered as successful if the final valuefgfw) is the global maximum. The success
rate is obtained by dividing the number of successful expenits by the total number of
experiments (1,800). In Table I, the numbers in parenthesksate the standard deviations

of the experiments.
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Fig. 2. Level sets ofF,(w) for Ex. 1. The points denoted by on the circle are the local maximal points. The global

maximum and minimum points are also indicated. The pointotisl as« are the five data points with a scaling of 0.5.
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TABLE |
COMPARISON OFPCA-LP(G) AND PCA-LP(L) FOR VARIOUS VALUES OFp. TOTAL 1,800INITIAL PROJECTION
VECTORSw(0)'S WERE TESTED TO CHECK WHETHER THE CORRESPONDING FINAL PRGJEHON VECTORS CONSTITUTE
THE GLOBAL OPTIMAL SOLUTION. THE SUCCESS RATE IS THE PERCENTAGE THAT RESULTED IN THE GLOBARPTIMAL

SOLUTION. THE AVERAGE NUMBERS OF ITERATIONS AS WELL AS THE STANDARD DEVATIONS ARE LISTED.

PCA-Lp(G) PCA-Lp(L)
P success number of success number of
rate (%) iterations rate (%) iterations
0.1 39.33 57.82 (30.62) 22.06 1000 (0)

0.25| 37.33 | 59.39 (28.19) | 100 | 177.46 (14.03)
0.5 || 35.78 | 69.28 (27.23) || 100 39.64 (4.45)
1 74.00 | 135.51 (19.90)|| 74.00 | 2.59 (0.80)
15 100 | 113.38 (11.11)|| 100 19.51 (1.96)
2 100 80.40 (5.74) 100 21.82 (1.43)

In the table, we can see that PCA-Lp(L) is generally bettefiriding a global maximal
point whenp is not so small. In terms of the number of iterations, PCAL)pé faster than
PCA-Lp(G) for an appropriately large value. In particular, whep = 1, it takes less than
3 iterations on average to converge. PCA-Lp(L) requires aaymterations for convergence
when p is small because the contour is very spiky for a smallalue and the gradient
direction changes abruptly near the spiky points (see Ri), 2e) and (f)).

The success rate of PCA-Lp(L) is exactly 100%, except when0.1 andp = 1. When
p = 0.1, the number of iterations indicates that the algorithm dal converge within the
predefined maximum number of iterations. On the other haritenw = 1, the average
number of iterations is very small (2.59). Fig. 2(c) showt tthe level set op = 1 consists
of only straight lines. Considering that the gradient isiogonal to the tangent of the level
set contour, the number of gradient directions is finite whea1l. Hence, depending on the
initial projection vectorw(0), PCA-Lp(L) with p = 1 has a good chance to be stuck to one
of these gradient directions, which is a local optimal Solut Therefore, the success rate of
PCA-Lp(L) whenp =1 is only 74% with a small number of iterations.

Unlike the case op = 1, the other values gf do not contain straight lines in their level set
contours in Fig. 2. Therefore, jf # 1, different directions ofv result in differentv,,, and the
algorithm checks differeni for its optimality as it iterates. Ip > 1, the level set contours

are smooth and PCA-Lp(L) gradually updates its projectienter w like PCA-Lp(G). In
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this case, as can be seen in Fig. 2(a) and (b), there are not lmead optimal solutions,
and both PCA-Lp(L) and PCA-Lp(G) have a good chance to findgtbbal optimal solution
regardless of the initial projection vectar(0).

On the other hand, whep < 1, as can be seen in Fig. 2(d), (e), and (f), the level set
contours are very spiky and the projection vectors at cariseciterations (i.e.w(t) and
w(t+1)) differ radically. Hence, ifp < 1, w(0) does not affect the performance of PCA-Lp(L)
significantly, whereas the performance of PCA-Lp(G) is naependent on the initialization.
Therefore, the success rate of PCA-Lp(G) is lower than th&@A-Lp(L) whenp = 0.25
andp = 0.5.

Combining the above analysis of both cases when 1 andp < 1, we can conjecture
that if p # 1, PCA-Lp(L) has a good chance of finding a global optimal solutegardless
of the initial projection vectorw(0).

As a conclusion from this simple example, we recommend tietéaders use PCA-Lp(L)

unlessp is very small, in which case, convergence may be a problem.

E. Relationship with conventional PCAs

1) PCA-L2: Consider conventional PCA, which optimizes the objectivection (4) with
p = 2. Then, the gradient (7) becomes

N
V= Zazzx?w = Sw, (12)
i=1

whereS = 3"V z2T = X X7 is the scatter matrix ok

Conventional PCA-L2, which optimizes (1), is obtained bgezivalue decomposition of
S, and the optimal solution is the eigenvector corresponttinthe largest eigenvalue.

In the following, we will show the equivalence of eigenveastof S and the points where
the gradient orthogonaV. is zero.

Theorem 2Let p = 2. In this case, for the eigenvectauss of S, the gradient orthogonal

Vi is zero. In addition, itV = 0 at some pointv, thenw is an eigenvector of.
Proof See Appendix.

Ex. 2 To visualizeV: = 0 at the eigenvectors df, consider the following example. Lét=
2 and N = 100. Suppose that each sample is generated according to a @adsstribution

with zero mean and sample covariance maffix [105, —43; —43, 35].
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Fig. 3. 2-D example. An arrow starting from a point on the leire: indicatesV. As expectedV3'’s computed at the

tWo eigenvectorau,., andwmin are zero. Neatv,,q., Vi COnverges tavq.., while it diverges fromw,r,.

For this example, we set = [cos 6, sin §]T and computedV: for various values of), as
shown in Fig. 3. In the figure, the magnitude Gf. is scaled appropriately, and we can see
that V. is orthogonal to the corresponding

When we solve the eigenvalue decomposition probleny pthe resultant eigenvalues are
A1 = 125.30 and )\, = 14.75, and the corresponding eigenvectors afe= [—0.903, 0.431]"
andw, = [—0.431, —0.903]7, respectively. These two eigenvectors are shown in Fig. 3.

As expectedVi’'s computed at the two eigenvectors were zero. Note that itieetibns

of V1’s aroundw; are towardsw;, while those aroundv, are away fromws.

Ex. 3 Let us consider another example with three-dimensionalitigpace. Suppose that
d = 3, N = 100, and each sample is generated according to a Gaussiarbulistn with
zero mean and sample covariance maffix [295, 64, —99; 64, 85, —7; —99, —7, 39].

The three eigenvectors Sfarew; = [—0.923, —0.234, 0.305]%, w, = [0.153, —0.952, —0.266]7,
and ws = [0.353,—0.199,0.914]7. To visualizeV_., we parameterized by the latitudeg
and the longitudé asw = [cos ¢ cos 6, cos ¢ sin §, sin ¢|. Then, we compute¥ . at various
points fromé¢ € {—180°,---,180°} and ¢ € {0°,---,90°}. The gradient orthogonals are

shown in Fig. 4.

In the figure, theo symbols denote the three eigenvectors where the leftmastison,,
rightmost isw, and top isws. From the figure, we can see that the gradient orthogonal near

the o symbols are very small in magnitude. In addition, we can akse that the gradient

December 9, 2013 DRAFT



15

90¢\L¢%[?é$§}\RN¢$¢ﬂ‘ﬂﬁgggxgwg
sow\ﬂ¢¢kk.é$§RNT1ﬁﬂﬂﬁagggNNQ)A
)
GON ¢M[kgée(,xxyb¢yysgg&XNA
%SON ¢M[kéérayyyw\b¢¢¢xﬁggNNA
4ON¢¢Zkkék‘NNN&/Q/\L¢¢¢\$§$KXA
DR I T A
20%@51%%%%%ng wﬂxfiw%%%%*
lon@&$$§é‘&§&§§} &MKKKOI%JZJA
ARA RN AN e 1 111
-150 -100 -50 90 50 100 150

Fig. 4. 3-D example. The three eigenvectors are denoted akere the gradient orthogonals are zero. Near the global
maximal pointw;, V; converges tav;, while near the global minimal poinbs, it diverges fromws. we acts as a saddle

point.

orthogonals neat, are oriented towards);, while those neaiv; are oriented away from
ws. On the other handy, acts like a saddle point.

We have seen that the proposed gradient search method capledao implement the
conventional PCA-L2 algorithm; however, because the cotweal method directly finds the
optimal solution using eigenvalue decomposition, the psel method is slower and is not
recommended whep = 2.

2) PCA-L1: Consider the case= 1. In this case, the optimization problem (4) has already
been solved in [9]. Withp = 1, the gradient becomég,, = Ef;l s(wTz;)z;. ReplacingV,,
with this value, we can easily check that PCA-L1 in [9] is dkathe same as PCA-Lp(L)
with p = 1.
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IV. M ULTIPLE FEATURE EXTRACTION (m > 1)
A. Greedy solution

In this section, the PCA-Lp algorithm is extended to muétifgature extraction problems.
The proposed method can be easily extended to extract amagybnumber of features by

applying the same procedure greedily to the remainder optbgcted samples as follows:

Algorithm 2-1. Greedy PCA-Lp (Input: X, p, m, Output: W*)

1) Letwy =0 and X, = X.
2) Fori=1---m

a) SetX; = (I — w;_ywl ) X; 1.

b) Apply PCA-Lp(G) or PCA-Lp(L) onX;,. i.e., w; = PCA-Lp X}, p)
3) OutputiW™ = [wy, -+, Wy,).

It is easy to show that the above greedy algorithm providdsogonal projection vectors
and it is expected that these projections suboptimally mepe L, dispersion. The merit of
the greedy method is that the output projection vectors dachange with different values
of m. However, the greedy algorithm does not provide an optirokit®n to (3). Therefore,

in the following, problem (3) is tackled directly and a lo@gtimal solution is provided.

B. Non-greedy solution

Consider the constrained optimization problem (3). ForewiV = [wy, - ,w,] €
Rdm(m < d), wherew; denotes the-th projection vector, the gradient is

dF,(W)
Vi — =V, .V, 1
W dW [ w1 Y 'UJm] ( 3)

Here,V,,, is given by (7).
The Lagrangian for the constrained optimization problemnd@n be introduced for the

case ofm > 1 as follows:
LW, T,,) = F,(W)+T,, : (W'W — L,). (14)

Here, the Lagrange multiplier,, € R®™*™ is a symmetric matrix and! : B denotes the

Frobenius inner product of two matrices and B with the same dimension, i.e4 : B =
Zi Zj AijBij = tT’(ATB)
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Then, the necessary condition for the optimal solution 9gfg@n be obtained by setting
the derivative of the Lagrangian to zero, i.e.,

dL(W,T,)
AW

However, unlike the previous case with a simple constramtte norm [w||, = 1), the

= Vi + 2WT,, = 0. (15)

orthonormality constrainti{’” W = I,,,) is harder to meet and the iterative updéfe«— %
cannot be used sindé,, is not a scalar. Instead, we try to makeé as close as possible to
Vyw in each iteration by solving the following optimization ptem:
W’ = argmax G(Q) = argmax tr(Q” V)
Q Q (16)
subject toQ”Q = I,,,.
In the following theorem, we show that the solution to the\aboptimization problem

(16) always improves the objective functidfy(1V).

Theorem 3:Let W' be the solution to (16). Then, for> 1, F,(W') > F,(W).
Proof See Appendix.

Now, the solution to (16) can be obtained by the same proeediunon-greedy PCA-L1
described in [10].

Theorem 4:Suppose that the SVD oy, is Vi = UAVT, whereU € R4 andV €
Rm>m are unitary matrices and € R?¥™ is a matrix whose non-diagonal elements are
identically zero. Then, the solution of (16) &’ = U[/,,|0]"V7, where0 € R™*(d-™) js

the zero matrix.
Proof See Appendix.

Finally, the non-greedy PCA-Lp is obtained as follows:

Algorithm 2-2. Non-greedy PCA-Lp (Input: X, p, m, Output: W*)

1) Initialization: t < 0. SetW (0) such thatiV (0)TW (0) = I,,,.
2) Computation of gradien?y, using (13).

3) SVD of Vyy: Vi = UAVT.

4) Projection matrix update:

o t—t+1.
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o« W(t) « UlL,|0]"VT.
5) Convergence check
o If [|W(t) —=W(t—1)||r > ¢ goto Step 2.
Here,||A||» denotes the Frobenius norm of a matdxvhich is defined a§ A||r =
VA: A= /tr(AT A).
« Else,W* « W (t). Stop iteration.

To differentiate the greedy and non-greedy versions of R@Ahenceforth, the former
and the latter will be denoted by G-PCA-Lp and NG-PCA-Lp pexgively. Note that NG-
PCA-Lp can be regarded as an extension of NG-PCA-L1 [10] foa®bitraryp value.

V. EXPERIMENTAL RESULTS

In this section, we applied the proposed PCA-Lp algorithnith warious values op to
several pattern recognition problems and compared thenpeahces with those of R1-PCA
[4] and L2-PCA. The experimental settings of R1-PCA werectydhe same as those in [4].
The maximum number of iterations for R1-PCA was set to 50. G&?CA-Lp, PCA-Lp(L)
was used instead of PCA-Lp(G) to extract successive weigtiiovs. The stopping tolerance
¢ and the maximum number of iterations wei@ ° and 100, respectively, for PCA-Lp(L).
In Step 5 of NG-PCA-Lp, the Frobenius norm was used witlialue of 10~° and the
maximum number of iterations wa$)0. In all the experiments, the initial projection vector
of PCA-Lp(L) was set to the sample with the largest L2-norm.,, w(0) = argmax,_||z;||2.
On the other hand, in NG-PCA-Lp, the initial projection nmatwas set to the solution of
L2-PCA.

A. UCI dataset

We applied PCA-Lp to several datasets in UCI machine legrn@positories [15], and
compared the classification rates with those of L2-PCA andPRA.

Table 1l shows a brief summary of the datasets used in thiempdfost of these datasets
have been previously used in [9].

1) Dataset 1 to 12:As in [9], for each dataset except “Letter” (dataset 13), wegmed
10-fold cross validation (CV) 10 times and computed the agerclassification rate. Before

training, each input variable in the training set was norpeal to have zero mean and unit
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TABLE I

UCI| DATASETS USED IN THE EXPERIMENTS

Dataset Data set No. of No. of | No. of
ID variables ) | classes| instances
1 Australian 14 2 690
2 Balance 4 3 625
3 Breast cance 2 683
4 Dermatology 34 6 358
5 Heart disease 13 2 297
6 lonosphere 33 2 351
7 Iris 4 3 150
8 Liver 2 345
9 Sonar 60 2 208
10 Vehicle 18 4 846
11 Waveform 21 3 4999
12 Yeast 8 10 1484
13 Letter 16 26 20000

variance. The variables in the test set were also normalizgty the means and variances
of the training set. As a classifier, one nearest neighbatt{@eNN) classifier was used.

Table Il shows the classification rates of each datasetgusire featurer¢ = 1) along
with the corresponding standard deviations in the pareetheFor each dataset, the best
classification rate is written in bold face. In the figure, wan see that the best PCA for
different classification problems depends on the datasst. bidowever, as can be seen in the
last row of the table, PCA-Lp witlp = 1.0 andp = 1.5 is slightly better than L2-PCA and
R1-PCA, on average. In this experiment, because- 1, we can expect that the results of
G-PCA-Lp and NG-PCA-Lp are exactly the same. However, threyséightly different in the
table owing to the different initial projection vectors asipping criteria. This phenomenon
is more clear forp = 0.5, where a relatively large number of local optimal solutie@xsst
(see Fig. 2).

To show the statistical significance of the performanceediffice between PCA-Lp and
R1-PCA, two versions of one tailed Welch’s T-test [16] werrfprmed on Table Ill. The
null (H,) and alternative #/ 4) hypotheses for each statistical test are as follows:

« Test 1: Best PCA-Lp vs. R1-PCA
— Hy: The best classification rate of PCA-Lp methods and that ofPRA are the

December 9, 2013 DRAFT



20

TABLE 11l
CLASSIFICATION RATES OFUCI DATASETS(m = 1). FOR EACH DATASET, 10F0LD CV WAS PERFORMED10 TIMES.

STANDARD DEVIATIONS ARE IN PARENTHESES BOLD-FACED LETTERS ARE THE BEST CLASSIFICATION RATES

G-PCA-Lp NG-PCA-Lp L2-PCA R1-PCA
Dataset ID p=20.5 p=1.0 p=15 p=0.5 p=1.0 p=1.5 p=20
1 77.14 (1.66) | 77.84 (0.66)| 77.14 (0.93)|| 78.28 (1.63)| 77.84 (0.66)| 77.14 (0.93)|| 75.01 (1.70)|| 75.72 (1.03)
2 53.25 (5.44) | 54.99 (4.23)| 52.38 (3.53)|| 53.52 (4.31)| 54.85 (4.04)| 52.99 (3.61)|| 51.09 (6.11) || 49.97 (4.57)
3 96.41 (0.52)| 96.25 (0.48)| 96.00 (0.45)|| 96.41 (0.52)| 96.25 (0.48)| 96.00 (0.45)|| 95.93 (0.32) || 96.05 (0.39)
4 51.54 (2.47)| 53.65 (1.91)| 52.84 (1.77)|| 52.17 (2.17)| 53.65 (1.91)| 52.84 (1.77)|| 52.43 (1.33)|| 52.90 (2.51)
5 59.94 (3.06)| 66.40 (1.47)| 70.31 (0.93)|| 62.15 (2.43)| 66.40 (1.47)| 70.31 (0.93)|| 69.92 (1.45)|| 70.03 (1.80)
6 73.37 (1.90)| 72.93 (3.54)| 72.83 (1.83)|| 72.66 (2.08)| 74.51 (1.86)| 72.93 (3.54)|| 73.43 (2.37) || 72.83 (1.83)
7 88.73 (1.46) | 88.87 (2.04)| 91.47 (1.29)|| 88.07 (1.27)| 88.87 (2.04)| 91.47 (1.29)|| 90.33 (1.27) || 89.47 (1.50)
8 68.83 (1.57)| 69.26 (2.12)| 69.74 (1.12) || 68.95 (1.27)| 69.26 (2.12)| 69.74 (1.12)|| 69.77 (1.91)| 68.86 (2.24)
9 51.30 (4.22) | 54.47 (3.62)| 55.24 (2.71) || 53.80 (2.48)| 54.47 (3.62)| 55.34 (2.90)|| 53.46 (3.18)|| 52.02 (4.22)
10 35.82 (1.04)| 37.25 (1.37)| 37.58 (1.40) || 36.17 (1.86)| 37.25 (1.37)| 37.58 (1.40)|| 36.18 (1.28) || 36.44 (1.28)
11 52.52 (0.79)| 52.42 (0.71)| 52.34 (0.73)|| 52.59 (0.89) | 52.42 (0.71)| 52.34 (0.73)|| 52.87 (0.72)|| 52.86 (0.61)
12 32.92 (1.77)| 32.35 (1.23)| 32.46 (1.44)|| 33.15 (1.00)| 32.35 (1.23)| 32.46 (1.44)|| 33.40 (1.22)|| 32.72 (1.15)
average || 61.81 63.06 6336 || 6233 63.18 6343 || 6281 [ 6248

same.
— H,: The best PCA-Lp outperforms R1-PCA
« Test 2: Worst PCA-Lp vs. R1-PCA
— Hy: The worst classification rate of PCA-Lp methods and that &fFCA are the
same.
— H,: The worst PCA-Lp is worse than R1-PCA.

The computed’-value, degree of freedom (DoF), and the corresponding 36get value
Tysy, are shown in Table IV. For each test, if tHévalue is greater thafysy, the null
hypothesis is rejected with 95% confidence; thus, the alternative hygsisH 4 is adopted.

Loosely speaking, if the hypothesi, is accepted, we can say that the performance of the
two compared methods are not significantly different. Ondtieer hand, ifH 4 is accepted,
we can say that one is better than the other.

Test 1 shows that the best PCA-Lp is better than R1-PCA fagrseatasets out of twelve,
while Test 2 shows that R1-PCA is better than the worst PCAdrnly one dataset (Heart
disease). For the remaining four datasets (datasets 4,,8nti112), the performances of
PCA-Lp and R1-PCA are not significantly different.

Figure 5 shows the average correct classification ratesré s the datasets with various

numbers of extracted features. In the parentheses in tlendsg ‘G’ and ‘N’ denote G-
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TABLE IV
ONE TAILED T-TESTS ONUCI DATASETS BASED ONTABLE Il (m = 1). TEST1 1S THE COMPARISON BETWEEN THE
BEST CLASSIFICATION RATE OFPCA-LP METHODS AND THAT OFR1-PCA ,WHILE TEST2 COMPARES THE WORST
CLASSIFICATION RATE OFPCA-LP’ S AND THAT OF R1-PCA. FOR BOTH TESTS IF THE T-VALUE IS GREATER

(SMALLER) THAN Ty59, Ha (Hp) IS ACCEPTED

Test 1: Best PCA-Lp vs. R1-PCA Test 2: Worst PCA-Lp vs. R1-PCA
Dataset 1D T-value ‘ DoF ‘ To5% Accepted Hypo. T-value ‘ DoF ‘ Tos% Accepted Hypo.
1 4.20 15 1.75 H,x 112 15 1.75 Hy
2 2.55 18 1.73 H,x -0.46 17 1.73 Ho
3 1.75 17 1.73 Hy 0.75 17 1.73 Hy
4 0.75 17 1.73 Hy 0.69 18 1.73 Hy
5 0.43 13 177 Hy 8.98 15 1.75 Ha
6 2.04 18 1.73 Hy 0.19 18 1.73 Hy
7 3.19 18 1.73 Hy 111 18 1.73 Hy
8 0.97 18 1.73 Hy 0.03 16 1.74 Hy
9 2.05 16 1.74 H,x 0.38 18 1.73 Hy
10 1.90 18 1.73 Hy 1.18 17 1.73 Hy
11 0.03 18 1.73 Hy 1.72 17 1.73 Hy
12 1.28 18 1.73 Hy 0.69 18 1.73 Hy

PCA-Lp and NG-PCA-Lp, respectively. L2-PCA is denoted by &hd it corresponds to
p = 2.0.

For each of the UCI datasets, the number of extracted fesatuiis varied from one to the
dimension of the original input spack and the average classification ratesnoft=1---d
are reported in Table V. In the table, we can see that the ifitad®on rates of PCA-Lp
with p < 2 are generally better than those of L2-PCA and R1-PCA thohgly &ire highly
dependent on the specific dataset used. This phenomenoeaidycteen from the average
classification rates of all the twelve datasets in the last b the table. The performances
of G-PCA-Lp and NG-PCA-Lp do not differ much in most caseswdwer, note that the
features of NG-PCA-Lp change with the number of extracteatuieesm, while those of
G-PCA-Lp are independent of.

Table VI shows the average classification rates of the twaditasets with a fixed number of
extracted features.. The last row of the table also shows the averages of the lassification
rates up to half of the total number of input variablég2). For all the cases, PCA-Lp with
p = 1.0 andp = 1.5 outperforms L2-PCA and R1-PCA. PCA-Lp with= 0.5 is also better
than the conventional methods, except when= 1. The averages of the best classification
rates up taid/2 are highest with NG-PCA-Lpp(= 1.5), and both versions of PCA-Lp show
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TABLE V
AVERAGE CLASSIFICATION RATES OFUCI| DATASETS (AVERAGE OFm = 1---d). THE LAST ROW IS THE AVERAGE OF

THE TWELVE DATASETS. THE BEST CLASSIFICATION RATES ARE DENOTED IN BOLD FACE

G-PCA-Lp NG-PCA-Lp L2-PCA || R1-PCA
Dataset 1D p:0.5‘p:1.0‘p:1.5 p:0.5‘p:1.0‘p:1.5 p=20
1 78.97 78.41 78.11 79.53 78.96 78.19 77.24 77.85
2 67.47 67.07 69.15 67.08 67.09 69.17 61.84 63.18
3 95.65 95.62 95.70 95.94 95.77 95.68 95.69 95.79
4 55.45 55.83 55.79 55.48 55.72 54.93 55.96 55.37
5 92.50 92.41 92.61 92.60 92.81 92.63 92.50 92.49
6 76.27 75.90 75.65 75.64 75.80 75.48 75.72 75.76
7 91.12 91.17 91.65 91.15 91.37 91.67 91.48 89.99
8 86.86 87.02 86.96 86.60 87.09 87.05 86.96 86.79
9 84.32 84.72 85.25 84.33 84.53 85.30 85.26 84.52
10 62.84 63.43 62.85 63.57 63.70 63.55 63.28 62.33
11 77.52 77.65 77.61 77.58 77.61 77.63 77.55 77.56
12 47.15 46.95 46.68 47.55 47.22 46.40 4591 46.06

average || 76.34 | 76.35 | 7650 || 7642 | 7647 | 7648 || 7578 || 75.64 |

TABLE VI
AVERAGE CLASSIFICATION RATES OFUCI DATASETS WITH FIXEDm (m = 1- - - 3). THE LAST ROW SHOWS THE

AVERAGES OF THE BEST CLASSIFICATION RATES UP TO HALF OF THE TL NUMBER OF INPUT VARIABLES (d).

G-PCA-Lp NG-PCA-Lp L2-PCA || R1-PCA
m p:0.5‘p:1.0‘p:1.5 p:0.5‘p:1.0‘p:1.5 p=20
1 61.81 63.06 63.36 62.33 63.18 63.43 62.81 62.48
2 69.94 69.45 69.56 70.17 70.04 69.41 68.64 68.26
3 74.05 73.37 73.88 73.93 73.96 74.44 73.37 72.93

Bestuptom=d/2 | 77.82 | 77.42 | 7812 || 7760 | 7764 | 7822 || 7688 || 7683 |

higher averages than L2-PCA and R1-PCA.

2) Dataset 13 (Letter):The ‘Letter’ dataset is composed of 26 classes of the English
alphabet. Each class contains around 750 samples rangimg734 to 813, a total of 20,000
samples. Because the number of samples is large with onlyplé variables, the samples are
close to each other in the feature space and the 1-NN clas$ifés not work well. Actually,
the correct classification rate of the 1-NN classifier agpte the features extracted by L2-
PCA was only around 4 to 5%. The situation is almost the sam@@A-Lp and R1-PCA.
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Therefore, we used theearest to the subspace classifier compare the performances of
various PCAs as follows.

For each class, the first 300 examples were chosen to formrdhreng sets, while the
others were used as test data. For each elass principal components (PC3y, ¢ R!6xm
and their mean vectors:,. € R'® were obtained using the corresponding training set with
various versions of PCA. Then, once a test samplis given, the reconstruction error is
computed using the PCs and the mean vector correspondinactoatass. Finally, the test
sample is classified as the class with the minimum recorsgtruerror as follows.

¢* = argmin ||z — Z.||
‘ (17)
wherei, = m, + W.W  (z — m,).

Table VII (a) shows the classification rates of various @rsiof PCA when the number
of extracted features: varies from 1 to 7. Before applying PCAs, each input variakdes
normalized to have zero mean and unit variance. For eacthe best classification rate is
denoted in bold face. In the table, we can see that the clzsiin rates of both versions
of PCA-Lp do not differ by more than 1%, except for the thresesaofp = 0.5 with m
=5, 6, and 7. The best performances are obtained by R1-PC&RQAL and PCA-Lp with
p = 1.5 depending onn. Their performance differences are less than 1% for all dees.
The performance of PCA-Lp with = 1.0 is slightly worse than the three best ones. PCA-Lp
with p = 0.5 works worst for allm. Because PCA-Lp with large values f = 1.5 and2.0)
is better than that with smaller values f = 1.0 and 0.5), it can be conjectured that the
distribution of the dataset is quite close to a Gaussiamibligion.

To show that PCA-Lp is more robust to outliers, the origimairting dataset was modified
to contain spot noise. More specifically, after normalizeach input variable to have zero
mean and unit variance, for each training sample, 1% of tpetiaariables on average were
randomly replaced with a value of 15 or -15. Then, tiearest to the subspace classifisr
applied to classify the test data.

Table VII (b) shows the classification rates using the smagad training data. In the table,
the best classification rates were obtained when PCA-Lp wvith0.5 was used, except when
m = 1, where PCA-Lp withp = 1.0 performed best. Comparing the performance of NG-
PCA-Lp and G-PCA-Lp, G-PCA-Lp was better than NG-PCA-Lppexsally for largem.
For this noised dataset, L2-PCA performed worst regardiéss. This phenomenon was

expected as a number of outliers were deliberately intredu®1-PCA worked relatively
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TABLE VII

CLASSIFICATION RATES ONLETTER DATASET WITH VARIOUS™ (m = 1---7).

(a) Original dataset (without noise)
G-PCA-Lp NG-PCA-Lp L2-PCA || R1-PCA

m p:0.5‘p:1.0‘p:1.5 p:0.5‘p:1.0‘p:1.5 p=20

1 61.56 62.45 62.70 60.68 62.45 62.70 62.80 62.86
2 66.47 67.83 68.16 66.97 67.39 67.99 67.46 67.67
3 71.81 72.39 73.11 71.39 72.52 73.03 72.87 73.07
4 75.35 77.14 77.90 74.82 77.08 77.66 78.01 78.16
5 76.83 79.25 79.67 75.48 79.34 80.28 79.38 80.08
6 77.84 79.98 80.80 76.02 80.33 80.68 80.48 80.73
7 78.68 80.42 80.85 74.78 80.02 80.63 80.69 80.61

(b) Dataset with 1% of spot noise
G-PCA-Lp NG-PCA-Lp L2-PCA || R1-PCA

m p:0.5‘p:1.0‘p:1.5 p:0.5‘p:1.0‘p:1.5 p=20

1 57.26 60.01 59.01 59.02 60.01 59.01 56.00 59.66
2 63.34 61.95 61.01 63.70 61.48 61.18 56.52 62.45
3 66.31 66.09 63.76 64.71 64.83 63.75 58.32 63.39
4 69.77 67.16 64.23 66.54 66.58 64.70 59.75 66.26
5 70.30 68.02 63.43 67.47 66.52 63.39 57.59 65.84
6 70.52 67.54 62.65 67.68 65.00 62.20 56.44 66.53
7 70.66 66.63 61.17 66.27 64.97 60.12 54.51 65.12

well but not as well as PCA-Lp witlp = 0.5.

B. USPS dataset

Here, we applied the proposed PCA-Lp with various valuep @b the USPS dataset
[17] and compared the classification rates with those of entional L2-PCA and R1-PCA.
The USPS dataset consists t§ x 16 handwritten digits. As in the experiments on the
"Letter” dataset described in the previous subsection,nimerest to the subspace classifier
was used. Each of the ten digits contains 1,100 examplesiroith we chose the first 300
examples to form the training sets, while the other 800 wexeduas test data. For each
digit c € {0,---,9} , 30 principal components (PC8), € R*°<30 and their mean vectors
m. € N2°¢ are obtained using the corresponding training set withouariversions of PCA.
Then, once a test sampleis given, the reconstruction error was computed using the PC

and the mean vector corresponding to each digit. Finallytéist sample is classified as the
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TABLE VI

CORRECTCLASSIFICATION RATES ONUSPSDATA WITH GAUSSIAN NOISE

noise level G-PCA-Lp NG-PCA-Lp L2-PCA || R1-PCA

o p:0.5‘p:1.0‘p:1.5 p:0.5‘p:1.0‘p:1.5 p=20

0 94.88 95.52 95.51 94.62 95.38 95.65 95.46 95.30
10 94.90 95.53 95.52 94.62 95.37 95.65 95.45 95.30
20 94.97 95.57 95.55 94.58 95.35 95.63 95.46 95.30
30 94.92 95.53 95.46 94.58 95.37 95.61 95.40 95.25
40 94.81 95.48 95.43 94.46 95.23 95.60 95.33 95.15
50 94.70 95.25 95.31 94.55 95.28 95.35 95.21 95.21

TABLE IX

CORRECTCLASSIFICATION RATES ONUSP SDATA WITH SALT AND PEPPER NOISE

noise level G-PCA-Lp NG-PCA-Lp L2-PCA || R1-PCA
n p:O.S‘p:LO‘p:LS p:O.S‘pzl.O‘pzlﬁ p=20
0 94.88 95.52 95.51 94.62 95.38 95.65 95.46 95.30
0.1 94.67 95.07 94.93 93.95 95.11 95.11 94.92 94.61
0.2 93.20 93.20 93.32 92.82 93.63 93.35 93.21 92.51
0.3 90.36 90.45 89.96 90.47 89.88 90.40 89.97 90.33
0.4 86.16 85.21 85.06 87.28 86.18 85.35 84.98 85.23
0.5 80.75 78.27 78.70 81.13 79.10 78.95 77.43 78.73

digit with the minimum reconstruction error.

For this dataset, two types of noise are added to the tesIIsefirst one is Gaussian noise
with zero mean and varianee. The second type is “salt and pepper” noise with noise level
n, wheren /2 is the probability that a pixel flips to black (0) or white (95%he classification
rates for the test set using various versions of PCA are regpan Table VIII and IX.

In Table VIII, we can see that NG-PCA-Lp with= 1.5 shows the maximum classification
rate regardless of the noise level. However, we can alschseétte classification rates do not
depend significantly on the specific types of PCA when adai®aussian noise is present.
On the other hand, when salt and pepper noise is present,G&8A-Lp and NG-PCA-
Lp perform better than L2-PCA and R1-PCA, especially whes tloise level increases.
Note that the best performance is moving frpm= 1.5 towardsp = 0.5 as the noise level
increases. This shows that PCA-Lp with a smaNalue better fits samples with large salt

and pepper noise because they can cope with large numbetl&rauFrom the tables, we
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can see that conventional L2-PCA can cope with additive &aoshoise while PCA-Lp is

preferred when non-Gaussian noise is present.

C. Face reconstruction

In this subsection, the proposed PCA-Lp algorithm was appib Yale face reconstruction
problems and the performances were compared with thosehef obethods. For all the
experiments, both G-PCA-Lp and NG-PCA-Lp performed almbstsame, and henceforth,
the performances of G-PCA-Lp are reported. For all the ga$es maximum number of
iterations was set to 100.

The Yale face database consists of 165 gray-scale images ioflividuals. It includes 11
images per subject with different facial expressions orfigomations. In [18], the authors
report two types of databases: a closely cropped set and &abd set. In this paper, the
full face set of size 100« 80 pixels was used. Each of the 8,000 pixels was regarded as an
input variable.

In the first experiment, 20% of the total 165 face images warelomly selected and
occluded with rectangular noise consisting of random blac#f white dots of size at least
15 x 10 located at a random position. The leftmost column of Figh@ws typical examples
of occluded images.

To this image set, we applied L2-PCA (eigenface [19]), RIAP&nd PCA-Lp withp =
0.5,1.0, and 1.5 and extracted various numbers of features. By using onlaeiétm of the
features, we could reconstruct images such as the ones shiovime second to the sixth
columns of Fig. 6, and we computed the average reconstruetimr e(m) with respect to

the original unoccluded images as follows:

N m
1 or
e(m) = I Z ||z — ijwfxiHQ. (18)
i=1 j=1

Here, N is the number of samples (165 in this case},’ and z; are thei-th original
unoccluded image and theth image used in training respectively, andis the number of
extracted features.

Figure 7 shows the average reconstruction errors for vamoumbers of extracted features.
In the figure, when the number of extracted features is sith@laverage reconstruction errors
for different methods are almost the same. However, fromraddlO features, the difference
among different methods becomes apparent and L2-PCA pesfaorse than other methods.

After around 20 features, PCA-Lp wih= 0.5 outperforms the other methods, followed by
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Fig. 6. Face images with occlusion and the reconstructegsfatst column: original, 2nd — 4th columns: PCA-lzp=£
0.5,1.0 and 1.5 respectively), 5th column: L2-PCA, 6th column: R1-PCA ¢mestructed with 20 projection vectors).

PCA-Lp (p = 1,0), PCA-Lp (p = 1.5), and L2-PCA. Note that L2-PCA corresponds to PCA-
Lp with p = 2.0. R1-PCA performs best when the number of features is veryl sma its
performance is overtaken by PCA-Lp with= 0.5 andp = 1.0 afterwards. The fluctuation of
the reconstruction errors for R1-PCA is because R1-PCAimbtifferent projection vectors
for different values of extracted features, while the projection vectors of G-PCA-Lp and
L2-PCA do not change withn.

Figure 6 shows the original occluded face images and thenstaeted ones using 20
projection vectors respectively. In the figure, we can saéttie images reconstructed by L2-
PCA have intensive dots while the intensity decreasesdexcreases towards 0.5. Comparing
the reconstruction images, the ones from R1-PCA are thenestawith least dots, but the
detailed shape and expressions are quite different frororiganal face images. On the other
hand, the ones from PCA-Lp have many dots, but the they argasito the original ones.

As a second experiment, to the original 165 Yale images, wied®d0 dummy images
that consist of random black and white dots and performedPC2, R1-PCA, and PCA-Lp
with p = 0.5,1.0, and 1.5. Figure 8 shows the average reconstruction error of eachadet
with various numbers of extracted features. In the comprtaif the average reconstruction
error, (18) was used withv = 165, i.e., 30 dummy images were excluded. In this cas¥,

and z; were the same.
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Fig. 7. Average reconstruction errors for occluded Yalegesa
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Fig. 8. Average reconstruction errors for Yale dataset witmmy training images

In Fig. 8, when the number of extracted features is changeoh 16 to 36, the error
of L2-PCA is almost constant. This shows that the dummy imaggect the 6th up to
the 36th projection vectors significantly, and these vectre tuned to explain the dummy
images. For R1-PCA, this phenomenon starts later, at areurd15, and the performance

starts to degrade slowly up to 36 features. On the other hB@d-Lp does not suffer
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Fig. 9. Face images trained with dummy images and the retmtstl faces: 1st column: original, 2nd — 4th columns:
PCA-Lp (p = 0.5,1.0 and 1.5 respectively), 5th column: L2-PCA, 6th column: R1-PCA c@mestructed with 30 projection

vectors)

much from this phenomenon and the reconstruction errorstaotly decreases. This can
be explained as follows. For PCA-Lp, especially whems small, each projection vector
shares the information on the dummy images, while for R1-R@A L2-PCA, some of the
projection vectors are dedicated to explain dummy imagashhve a relatively large norm.
For this reason, we can see that with small valueg, dfie performance of PCA-Lp is worse
whenm is small, but it improves as the number of extracted featimegeases. As in the
previous experiment, the fluctuation of R1-PCA is due to tiet that the whole projection
vectors are replaced as the number of extracted featuresiexly

Figure 9 shows the reconstructed images with 30 projectembovs as well as the original
face images. In Fig. 8, when = 30, the performances of PCA-Lp with= 0.5 andp = 1.0
are better than the others, followed by PCA-Ip= 1.5), R1-PCA, and L2-PCA. Although
it is somewhat hard to discern, the images reconstructety BCA-Lp with small values
of p are slightly more similar to the original image in the leftsha@olumn than the ones
with larger values ofp. Further, it is clearly seen that L2-PCA shows worst perfamge.
The quality of the reconstructed images of R1-PCA (rightihizsalmost as good as that of
PCA-Lp with p = 1.5 (4th column).

The average number of iterations of PCA-L1 was 7.61 and Kk 8678msincluding 2,172
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TABLE X

TIME COMPLEXITY OF PCAFOR YALE FACE RECONSTRUCTION PROBLEMS

G-PCA-Lp NG-PCA-Lp L2-PCA || R1-PCA
p=05]p=10]p=15 | p=05]p=10]p=15] p=20

Time complexity

Yale with occlusion:N = 165, m = 50
training time (sec)|| 12.650 3.023 11.533 38.129 9.694 33.393 0.256 186.939
avg. no. iter. 100 8.28 90.84 100 14.78 99.44 1 93.08

Yale with dummy imagesN = 195, m = 50
training time (sec)|| 14.760 | 3.520 | 13.188 || 48.752 | 13.909 | 49.233 0.294 300.704
avg. no. iter. 100 8.34 88.80 100 16.26 98.38 1 98.88

ms which was the time taken for preprocessing by L2-PCA. Fa pinoblem, R1-PCA took
26,555mson average.

To check the complexity of the proposed method, we show thmitrg time and the
average number of iterations of each PCA in Table X. Note #tlathe experiments were
performed usingMatlab on an Intel Core2 Duo CPU in 2.93GHz.

In the table, the training times of G-PCA-Lp are the totalditaken to obtain 50 weight
vectors sequentially. Therefore, the average time foraekitrg one feature is obtained by
dividing the number by 50. For example, when= 0.5, 0.253 (12.650/50) sec are taken
on average to obtain one additional feature. On the othed,hagcause the weight vectors
for NG-PCA-Lp and R1-PCA change with different numbers ofrasted featuresn, the
training time for NG-PCA-Lp and R1-PCA are the total timegakromm = 1 to m = 50.
Unlike G-PCA-Lp, in these cases, the training time increasih m. For example, R1-PCA
takes 3.138 sec when = 1 and it increases to 7.401 whemn = 50. Likewise, NG-PCA-Lp
(p = 1.5) took 0.041 and 1.588 sec when= 1 andm = 50 respectively. Note that PCA-Lp
takes less time than R1-PCA in both experiments. Among reiffeversions of PCA-Lp, it
converges relatively fast when= 1 for both G-PCA-Lp and NG-PCA-Lp. Considering that
PCA-Lp(L) is used instead of PCA-Lp(G) in this experimefhistis in line with the result
of Table I.

VI. CONCLUSION

This paper proposes a number of PCA methods basdd-amorm optimization techniques.

The proposed PCA-Lp methods try to find projections that mé&e the general Lp-norm
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with arbitraryp > 0 in the projected space. In doing so, the gradient of the ailgetunction
is computed on the basis of the fact that the number of trgisamples is finite.

As an initial step, we tackled an easier problem of extrgotine feature. For this problem,
two types of PCA-Lp, namely, PCA-Lp(G) and PCA-Lp(L), wermposed. Both methods
employ the gradient of the objective function. In the firsepthe gradient ascent method
was used, while the second one made use of the Lagrangiaiplmeulimethod to maximize
the objective function. We also showed the local optimatityPCA-Lp(L) for p > 1. In
addition, it was shown that conventional L2-PCA and PCA-I& special cases of PCA-Lp
with p = 2 andp = 1, respectively.

As a second step, the problem of extracting more than oneréeatas also tackled in this
paper. In addition to a simple greedy method, G-PCA-Lp, whée features are extracted
one by one greedily using either PCA-Lp(G) or PCA-Lp(L), axrgreedy version, NG-PCA-
Lp, where more than one feature is extracted simultanepissiyso proposed. The proposed
NG-PCA-Lp can be regarded as an extension of NG-PCA-L1 [1d] the local optimality
of NG-PCA-Lp is proved.

The proposed PCA methods were applied to several pattesgmémon problems, including
face reconstruction problems, and the performances wenpaed with those of conventional
L2-PCA and R1-PCA. The experimental results show that te@gsed methods are usually

faster than R1-PCA and robust to outliers.
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APPENDIX
A. Proof of Theorem 1

From the form of the objective functiof,(w) in (4), we can see that it is convex with
respect tow whenp > 1 because the sum of convex functions is convex [20].
From the first order convexity condition [21], if the funatid,(w) is convex, it follows
that
Fy(w') = Fy(w) = V(0 —w) > 0 (19)

The second inequality holds becauseis parallel toV,, and bothw’ andw have unit norm.
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B. Proof of Theorem 2

1) Without loss of generality, it can be assumed tiat|, = 1. Let w be an eigenvector
of S. In this case, because is an eigenvector of, Sw = A\w for a certain eigenvalue
A. Then, (8) becomes

Vi = MI; —wwhw = Mw —w) =0 (20)

w

The second equality is fromw||s = 1.

2) If p =2, it can be easily shown that

Vi=(I; — ww")Sw. (21)

w

Assume that we hav®; = 0, which is equivalent tavw’ Sw = Sw. Let us denote
ww? as a matrixA and Sw as a vectow. In this case, it becomedv = v, andv

can be interpreted as the eigenvector corresponding toitfeanalue ofl. Because
A =ww” has rank 1, the only eigenvector that satisfies= v is v = A\w. Therefore,

it becomesSw = Aw andw is one of the eigenvectors of.

C. Proof of Theorem 3

The proof is similar to that offheorem 1First, F,,(W) is convex with respect toV if
p > 1. By the first order convexity condition, if,,(W) is convex, then
F(W') = F,(W) =2 (W' = W) : Vi
= tr(W' = W)TVy) (22)
= tr(W"TVy) —tr(WTVy) > 0.
The final inequality holds becaud&’ is the solution of (16).

D. Proof of Theorem 4
Using the SVD ofi, G(Q) = tr(QT V) can be rewritten as

tr(Q"Vw) = tr(QTUAVT) = tr(AVTQTU)
m (23)
=tr(AZ) = Z Nii Ziis
=1
where Z = VTQTU, \;, and z; are thei-th diagonal elements af and Z, respectively.
SinceZZT = I;, zi; < 1. On the other hand);; > 0 because\;; is a singular value oV y.
Thereforetr(QTVw) = >_0" Mz < >_ivy Aii, @nd the equality holds when; = 1 for all
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i(< m). From this,G(Q) is maximum whenZ = [I,,|0] € ®™*?. BecauseZ = VIQTU,

we haveQ = UZTVT and the optimal solution of (16) is
W =UZ"vT = U[L,|0]"VT. (24)

With the above solution, one can verify that the constraifif 1/’ = I,, is automatically

satisfied.
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