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Abstract. In this paper, we propose a new feature extraction method for regres-
sion problems. It is a modified version of linear discriminant analysisA)LD
which is a very successful feature extraction method for classificatimslgms.

In the proposed method, the between class and the within class scatteemiatric
LDA are modified so that they fit in regression problems. The samplesswitl
differences in the target values are used to constitute the within class soatter
trix while the ones with large differences in the target values are used dor th
between class scatter matrix. We have applied the proposed method intestima
ing the head pose and compared the performance with the conventaiale
extraction methods.
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1 Introduction

Regression, which is a process of estimating a real-valoetifan based on a finite
set of noisy samples, is one of the classical problems issta, machine learning
and pattern recognition societies. When dealing with diassion problems, regression
problems can be classified as supervised learning, wheredatseconsisting of pairs
of input objects and desired outputs are given. The inpuatbjand the desired outputs
are usually called thimput variables and thetarget variables, respectively.

It is well known that reducing the number of input variablesough dimension-
ality reduction techniques such as feature selection dufeaxtraction is desirable.
Reducing the dimensionality of the feature space may ingtbg learning process by
considering only the most important data representatiossiply with elements retain-
ing the maximum information of the original data and bettemeyalization capabilities
[1]. Dimensionality reduction is quite desirable not oniytihe aspect of the number of
required data, but also in terms of data storage and conipaghtomplexity.

In this paper, we focus on the linear feature extraction oeshor regression prob-
lems to reduce the dimensionality of input space.
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Many studies have been performed to solve the feature ¢ixingaroblems among
which the principal component analysis (PCA) [2] and theepehdent component
analysis (ICA) [3] have been widely used. Although PCA is ofi¢he most popular
and widely used methods, which is very useful in reducingdingension of a feature
space to a manageable size, it can still be improved for siggel learning problems
since it is an unsupervised learning method that does noé msé of the target infor-
mation. Likewise, ICA, which is another unsupervised l@agrmethod, leaves much
room for improvement to be used for supervised learninglprob. Unlike PCA and
ICA, linear discriminant analysis (LDA) [4] was originallgeveloped for supervised
learning, especially to find the optimal linear discrimingtfunctions for classification
problems.

Although many feature extraction methods have been desdlfgr classification
problems, relatively little attention has been given tadea extraction for regression
problems in the machine learning society.

On the other hand, in statistics, several algorithms haea bdeveloped for dimen-
sionality reduction in regression problems, among whiehdlassical multivariate lin-
ear regression (MLR) [5] can be a starting point. AlthoughR/ik optimal in the sense
of least squared error, it has the limitation that it can paedonly one feature. To
overcome this limitation, a local linear dimensionalitguetion method based on the
nearest neighbor scheme has been proposed [6]. Slicedémegression (SIR) [7] and
principal hessian directions (PHD) [8] are also very popdiamensionality reduction
techniques for regression problems in statistics.

In this paper, we propose a new feature extraction methokfpession problems.
It is a generalization of LDA to regression problems whidegrto maximize the ra-
tio of distances of samples with large differences in tavgdtie and those with small
differences in target value. The experimental results stimt/the proposed method
performs well for many regression problems. In additiortgauese it only needs to solve
the eigenvalue decomposition problem, it is relativelydathan iterative methods such
as ICA-FX[9].

The paper is organized as follows. In Section II, we brieflgroiew the conven-
tional feature extraction methods for regression problefnsew feature extraction
method is presented in Section Il and the experimentaltseare shown in Section IV.
Finally, the conclusions and future works follow in Sectin

2 Conventional Methods: Linear Feature Extraction for
Regression

Consider a set of predictor/resporigeairs{(z;,y;)}?-, wherez; € R¥*! y, € RI*!
andn denotes the number of given predictor/response pairs., ldésethe number of
input variables and is the number of target variables which will be equal to 1 irstno
problems?.

3 Note that instead of the terngsedictor andresponse, input andtarget can be used without
notification.

4 From now on, we will assume= 1 and instead of the vector forgy the scalar formy will
be used without notification.
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In this regression setting, we want to find a set of linearsf@amations of that can
constitute sufficient statistics for target vecgoiThis transformation can be denoted as
fi = wlz, where f; is thei-th new feature andv; € R¥*! is the corresponding
coefficient or weight vector.

In this section, we introduce several conventional mettiodghis purpose.

2.1 Sliced Inverse Regression (SIR)

The following is the standard SIR algorithm. For simpliciigt us assume that= 1
and the covariance matri%, of input variablest is d x d identity matrix.

Step 1. Sort the datg in increasing order.

Step 2. Divide the ordered data set ititglices to make the slice size as equally as possible.
Let n; be the number of examples in slite

Step 3. Within each slice, compute the sample mean of = n% > icsiicer Ti-

Step 4. Compute the covariance matrix for the slice meamswéighted by the slice sizes.

L
Sy = % > (@ —z) (@ —z)" (1)
=1

Here,z denotes the sample meamo$uch thatt = % Sz
Step 5. Find thé&-th SIR directiorw;, by conducting the eigenvalue decompositiorbf

Sqwi = Wi, A1 > A2 >0 >N\ ()

Note the similarity of SIR to PCA. SIR takdspoints each of which is the sample
mean ofn; points in each sliceand then performs the PCA to thesgoints. However,
the difference is that in generating tiepoints,zs that are associated with similgr
values are averaged out to capture the relationship betihegnputz and the targey.

2.2 Principal Hessian Directions (PHD)

As in SIR, let us assume that= 1 and letf(z) be the regression functioB (Y |z).
Here,E(-) denotes expectation. Consider the Hessian maf(ix) of f(z) whose(i, j)
component is as follows:

82

wherexy, is thek-th component of the vectar.

Hessian matrices are important in studying multivariatelinear functions and
PHD focuses on the utilization of the properties of Hessiatrives for dimensionality
reduction. In the PHD algorithm, the principal Hessian diesw;s (k = 1,--- ,d)
are obtained by solving the following eigenvalue decompmsiproblem:

Hij(x) f(=), 3)

SyzaWr = MWr, A1 > [Xo| > -+ > |Aq] (4)
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whereS, ., can be estimated by
1 n ~ ~
Syacac = E Z(yl - 37)(:1:, - .'L')(.’l:z - x)T' (5)
=1

Because the PHD is based on the Hessian matrix, it perfororsymmn the problems
where targets are linearly related to the input variables.

2.3 Linear Discriminant Analysis (L DA)

Unlike the methods previously described in this sectionAlfBcuses on the classifica-
tion problem where instead of a continuous target varigbkediscrete class identifier
c€{l,---,N.}is used. Here], is the number of classes.

In LDA, we try to optimize the following Fisher’s criteriorush that the ratio of
the between-covariance matrdy = %Zi\’;l ne(Z. — z)(x. — )T and the within-
covariance matri, = & 3°0) e faass-c} (&1 — &) (@i — Z:)” is maximized.

(WTS,W|
W = arg max m (6)
Here,x = % >, x; is the total mean of the samples, is the number of samples be-
longing to the clasgandz,. = ni >_ic{class=c} Ti IS the mean of the samples belonging
to the class.

The optimization problem in (6) is equivalent to the follogigeneralized eigen-
value problem,
Spwp = A\pSuWr A1 > Ag >0 > Ag, (7)

wherew; is the most discriminant componeat; is the second, and so on.

3 TheProposed Method: L DA for regression

In the classification problems, LDA has been a very successdthod for dimensional-
ity reduction and many variants have been also developedesaribed in the previous
section, the gist of LDA lies in maximizing Fisher’s criten which tries to maximize
the between-class scatter while minimizing the withirsslacatter.

In this section, we extend this idea to the regression prabland a new feature
extraction algorithm for regression is proposed. From nawtlee new method will be
referred to a& DA-r.

Unlike the classification problems, it is difficult to defingetbetween-class scat-
ter and within-class scatter matrices in regression prbleecause the target variable
is continuous. The simple idea that the samples with smé#rdinces in the target
values are considered as belonging to the same class, Wwhilenes with large differ-
ences are considered as belonging to different classesed&to define the between-
class and within-class scatter matrices. The followingsthe modified within-class
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and between-class scatter matrices for LDA-r:

wr = Z f m])(xL 7$j)T (8)
(z,J)EA
Z fly —zj)(z; — ;)" )
Z] GAb
Here,sz{(i,j): Iyz_y7‘ <T, i,jE{l,"',n}, Z#J}lAb:{(Zaj)
lyi —y;l > 7, 4,7 € {1,---,n}, i# j}andn, = |Ay,| andn, = |4,]. The

function f(-) is a weight functlon positive values. Note that + n;, = %

Using this modified scatter matrices, the Fisher’s critedan be rewritten for re-
gression problems as
WISy, W]
wWTS,, W|
As stated earlier, maximizing the above Fisher’s critei®rquivalent to solving the
generalized eigenvalue problem:

W = arg max (20)

Sprwi = ApSwrWr A1 > A > -0 > Ag (11)
which is again equivalent to the following eigenvalue deposition problem:
St Spwy = Mawy, A1 > Ao > > Mg (12)

wherew, is the most important componenmi;, is the second, and so on.

In modifying LDA for regression problems, we could have segied the given
dataset into several virtual classes based on the targetsvalith fixed boundaries and
applied the conventional LDA for classification problem#haugh this method is sim-
ple, the results can be highly dependent on how to segmentaoies and the number
of virtual classes. In addition, this approach may not take account the different lev-
els of similarity among different classes. Therefore, inA-D) soft boundaries which
are different from one sample to another are used.

Note that the threshold parameteplays an important role in setting the boundary.
If 7 is small,n,, becomes small while, becomes large and vise versa. The threshold
7 can be represented as a multiple of the standard deviajiofitarget variabley such
thatT = ao,,. Typical range forv is 0.1 to 1.0.

Although the weight functiory(-) can be set as a constant, efjiz) = 1, itis
probably better to maké(x) take different values for different inputs. Becauge—
y;| = 7 sets a boundary whether the pgirj) should belong to4,, or A, the effect of
(i, )-pair which is near this boundary can be reduced by sefting ~ 0 for |z| ~ 7.
Typical examples off (-) fulfilling this requirement ar¢f (x) = ||z| — 7| and f(z) =

[l —7].

Note that LDA-r is not invariant to transformation of inpetatures and susceptible
to scaling of input features as in LDA. Therefore, it is dable to preprocess the given
dataset by applying PCA which is often called the spherimg@ss [2].

The computational complexity of LDA-r can be decomposed imto parts. The
first part is related to obtaining the covariance matricesvshin (9) and it is propor-
tional to the square of the number of examples, (85?). The second part is related
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(a) Linear Target (b) Quadratic Target

Fig. 1. One thousand random points drawn frévi{0, I>). The slanted lines and ellipses in red
are the contour map which connects the points that have thegaaiee.

to solving the eigenvalue decomposition problem in (11)iaisctypically proportional
to the cubic of the input dimension, i.€(d?).

Comparing this to the complexity of LDA, because the seccerd is common in
LDA and LDA-r, we see that LDA-r is somewhat more computagibncomplex than
LDA which requiresO(n) operations in obtaining the scatter matrices. Howeverafor
largen, a subset of samples can be selected in computing the stetteces to reduce
the computational complexity.

4 Experimental Results

4.1 Linear and Quadratic Targets

Consider two independent input featurgsandz, which have normal distribution with
zero mean and variance of 1. In addition, suppose the tatgptibvariabley has the
following relationships with the input:

Linear: y =221 + X9 (13)
Quadratic: y = 4(zy — 222)? + (221 + 22)°. (14)

In Fig. 1(a) and (b), we have plotted 1,000 samples each.dn figure, a contour
map was drawn in red which connects the points that have the gavalue (slanted
lines for the linear case, and ellipsoids for the quadratgeg. For these empirical data,
we have applied SIR, PHD, and LDA-r.

Linear target: For the linear case, the optimal featurefis= 224y + z2 which corre-
sponds to the optimal weight vectar = [2,1]7.

Considering that the area between the neighboring slaimesidan be considered as
a slice in SIR, there will be significant differences in theamealues; (I = 1,--- , L)
of each slices and we expect the SIR will work well for thislgem. As expected, SIR
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producedw = [0.89,0.45]7 which is very close to the optimal value*. The number
of slices was set td, = 10 in this case.

Regarding PHD, becaugss linear with respect tm, all the elements in the Hessian
matrix of this problem are zeros and we can expect PHD canatet shis problem.
As a matter of fact, for the empirical data shown in Fig. 1@HD producedw =
[0.88,—0.51] which is far fromw*.

The reason PHD fails to this problem lies in the form of thegheifunction. In
PHD, the weight function is just the deviation from the tamgeeany. Therefore, the
points in the lower left part in Fig. 1(a) have negative weésgl; — i < 0) and the other
points which are located in the upper right part have pasitreights ¢; — 5 > 0). As
a result, contributions of any two points which are symneetiith respect to the center
cancel out each other in the formation%y,, and the eigenvalues 6%, become very
small resulting in poor performance of PHD.

For this example, LDA-r is also applied with weight functigfe) = /||z| — 7|
anda = 0.3. LDA-r resulted inw = [0.89,0.45]7 which is very close to the optimal
weight. Note that in LDA-r, the scatter matrices are all gesisemi-definite.

Quadratictarget: As shown in Fig. 1(b), for a fixeg, (x1, x2) constitutes an ellipsoid
whose major axis is in the direction @, 1) and the minor axis is ifi—1, 2).

If we are to extract only one feature among the set of linearkinations of input
variablesr; andzs, the major axis is the best projection which correspondséatare
=z —2x9,ie,w* =1, —2]T.

As expected, SIR does not work well for this example becaliskeamean values
of the different slices are near zero and a random directioictwis highly dependent
on a specific data will be chosen. For the empirical data shioviaig. 1(b), SIR with
L = 10 extracted the first weight vectas = [—0.84,0.52]7 which is far from the
optimal valuew* = [1, —2]7.

Unlike SIR, PHD works well for this problem becaugés quadratic with respect
to z and the principal Hessian directions are easily calcula@adtulating the Hessian

16 —12
—12 34
as expected. For the empirical data shown in Fig. 1(b), thB Blgorithm resulted in
w = [0.44, —0.90]7 which is very close to the optimal value.

For this example, LDA-r is also applied with weight functigt) = /||z| — 7]
with « = 0.3. LDA-r resulted imw = [0.44, —0.90]7 which is the optimal vector.

matrix, it becomed? = and the principle Hessian direction i —2]7

4.2 Pose Estimation

In this part, the proposed algorithm is applied to a posenedion problem, by taking
it as a regression problem, and the proposed algorithm anpaxed to some of other
conventional methods.

In face recognition systems, pose variation in a face imagefieantly degrades the
accuracy of face recognition. Therefore, it is importanestimate the pose of a face
image and classify the estimated pose into the correct gass kbefore the recognition
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c27
(b)

Fig. 2. Edge images for different poses: (a) images under various p@exrresponding edge
images.

procedure. Given face images with pose variation, an imagebe assigned to a pose
class by a classification method using a feature extractiethoal.

However, unlike general classification problems, sinceepriasses can be placed
sequentially from left profiles to right profiles in the posmee, there is an order re-
lationship between classes, which can be representedtandes and the distance be-
tween classes can be used as a measure of class similariexafaple, consider a pose
estimation problem which consists of three pose classest'{0°)’, ‘half profile (45°)’
and ‘profile (90°)'. In this problem, ‘profile’ images are neocloser to ‘half profile’
images than ‘front’ images. If a classifier misclassifies @fie’ image, it would be
better to classify it into a ‘half profile’ than a ‘front’ ima&g Thus, we can make use of
the order relationship between classes for feature eidradh this sense, these types
of classification problems are similar to regression pnoislef each of the pose classes
is assigned a numerical target value, the pose estimatayiggn may be regarded as
a regression problem and the feature extraction methodbeased to extract useful
features in discriminating the pose of a face image.

We evaluate the performance of pose estimation on the CMUeRtabase [10].
The CMU-PIE database contains more than 40,000 facial imafi&8 individuals,
21 illumination conditions, 12 poses and four different @gsions. Among them, we
selected the images of 65 individuals with seven pose isdi@2, c02, c05, ¢27, ¢29,
cl4, ¢34). Each face was cropped to include only the face and rotatéldeobasis of the
distance among the manually selected points on an imag¢handescaled to a size of
120 x 100 (see Fig. 2(a)). Three images under different illuminatiariation for each
of the 65 individuals in each pose class were used as a tgeseinwhile the other 8190
(65x18x7) images were used for testing. We first divided thieespace into seven pose
classes from left profile to right profile and built a featupase for each pose class
using feature extraction methods explained in the prevéegsion. In order to estimate
a pose of a face image, each of the seven pose classes wasedssigumerical target
value from 1 (left profile) to 7 (right profile).
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Table 1. Error rate in pose classification on face images(%)

Method 22 02 05 27 ¢29 cl4 ¢34 Overall
PHD (1200) 28.80 44.62 28.89 1.37 1.88 5.98 3.76 12.36
SIR (1200) 29.74 44.87 27.95 1.71 2.22 7.61 3.25 16.76

LDA (6) 9.66 0 0 4.539.498.3812.48 6.34
LDA-r(200) 7.61 0.09 0 2.562.824.87 7.18 3.59

Table 2. Error rate in pose classification on edge images(%)

Method 22 c¢02 c05 27 ¢29 cl4 ¢34 Overall
PHD(1200) 9.91 5.04 1.97 2.65 2.65 5.73 4.87 4.69
SIR(1200) 9.32 4.87 1.97 2.65 2.65 5.38 4.44 4.47

LDA (6) 1.03 1.03 0.17 0.26 0.26 1.97 2.56 1.04
LDA-r(200) 0.94 0.94 0 0.350.09 1.03 3.23 0.80

In the experiment below, each of the pixels was used as anfiepiure constituting
a 12,000 dimensional input space and the methods presentad previous section
were used to extract features for estimating the pose. Asbeaseen, this problem
is a typical example of the SSS problem whose input dimengi¢,000) is much
larger than the number of training exampte$1,365). To resolve this SSS problem,
in all the feature extraction methods, we have preproceeedataset with PCA and
reduced the dimension of input space inte- 1. For the proposed method, the weight
function f(z) = /||z| — 7| anda was set to 0.1. With these extracted features, the one
nearest neighborhood rule was used as a classifier with ttl@Ean distancel(2) as
the distance metric.

Table 1 shows the error rates of pose classification for ttanteages using several
methods. Numbers in the parentheses are the number ofdsats can be seen in
Table 1, the proposed method is better than the other methadsst cases. Overall
error rates of PHD and SIR.(= 10) are above 2%, while LDA gives an overall error
rate of6.34%. However, since the pose estimation is a classificationlpnolwhere
levels of similarity among different classes can be defih&\-r is more suitable for
this problem than LDA, and we can see that the overall errigr o8 LDA-r is 2.75%
lower than that of LDA.

On the other hand, the images such as those in Fig. 2(a) noreeéessary informa-
tion for pose estimation as well as other information suctmagllumination condition,
appearance variation, etc. In order to remove the redund#ormation for pose esti-
mation, we transform a face image to an edge image by usin§dbel mask [11]. As
shown in Fig. 2(b), the edge images enhance the geometratabdtion of facial fea-
ture points. Even though the edge images may be sensitillertonation variation, the
pose estimation can be reliably performed on images urlderiiiation variation if the
training set contains edge images under various illumonatonditions. Subsequently,
as can be seen in Table 2, the overall error rates are lowettioge in Table 1. In the
case of edge images, the performance difference betwehbrieztare extraction meth-
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ods became smaller compare to the raw images, but we canadebetperformance of
LDA-r is still better than the other methods.

5 Conclusions

In this paper, we have proposed a new method for linear featuraction for regression
problems. It is a modified version of LDA. The distance infatimn among samples are
utilized in constructing the within class and between ctxsdter matrices.

The two examples in Section 4.1 show the advantage of th@pegimethod against
the conventional methods such as SIR and PHD. It showed gexddrmpnance on both
examples, while SIR and PHD performed poorly in one of tharelas. We also ap-
plied the proposed method to estimating the head pose ofafaage and compared
the performance to those of the conventional feature eidramethods.

The experimental result in pose estimation shows that tbpgzed method pro-
duces better features than the conventional methods sustRa$HD and LDA. The
proposed method is easy to implement and is expected to Ifel usdinding good
linear transformations for regression problems.
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