
Boosted-PCA for Binary Classification Problems

Seaung Lok, Ham and Nojun Kwak

School of Electrical and Computer Engineering

Ajou University

San 5, Woncheon-Dong, Yeungtong-Gu,

Suwon, 443-749 Korea

[hihiham|nojunk]@ajou.ac.kr

Abstract— In this paper, a Boosted-PCA algorithm is proposed

for efficient classification of two class data. Conventionally, in

classification problems, the roles of feature extraction and

classification have been distinct, i.e., a feature extraction method

and a classifier are applied sequentially to classify input variable

into several categories. In this paper, these two steps are

combined into one resulting in a good classification performance.

More specifically, each principal component is treated as a weak

classifier in Adaboost algorithm to constitute a strong classifier

for binary classification problems. The proposed algorithm is

applied to UCI data set and showed better recognition rates than

sequential application of feature extraction and classification

methods such as PCA+1NN and PCA+SVM.

I. INTRODUCTION

In pattern recognition and machine learning society,
classification has been a classical problem and the most
widely used classifiers include support vector machines (SVM)
[1], k-nearest neighbors (k-NN) [2] and neural networks [3].
Nowadays, combinations of multiple classifiers are gaining
attention [4], among which methods based on boosting
techniques are very popular [5].

Adaptive boosting a.k.a. Adaboost has been successfully
applied to binary classification problems [6]. It is a kind of
boosting algorithm capable of constructing a strong classifier
through a weighted combination of weak classifiers [4] [5] [6].
From many weak classifiers, the one with smallest weighted
error on the training data is selected. Once a weak classifier is
selected, each training sample gets a new weight value and the
procedure of selecting a weak classifier is repeated T times.
Finally, the selected weak classifiers are combined to make a
strong classifier. In doing so, Adaboost increases the weight of
erroneous samples while decreasing the weight of correctly
classified samples at each stage and selects the weak classifier
with the lowest weighted error. The Viola-Jones algorithm is a
successful example of applying Adaboost in object detection
problems where Haar-like features are used as weak classifiers
[7].

In this paper, to construct a weak classifier of the
Adaboost algorithm, principal component analysis (PCA) is

applied. PCA [8] [9] is one of the most popular linear feature
extraction methods used mainly for dimensionality reduction.
It is a powerful tool for reducing the number of observed
variables into a smaller number of artificial variables that
account for most of the variance in the data set. In PCA, the
eigenvectors corresponding to the largest eigenvalues of
sample covariance matrix is searched for, which corresponds
to the direction of principal components of sample data. The
principal components may then be used as predictor or
criterion variables in subsequent analyses. For example, in
classification problems, these principal components may be
used as inputs to a classifier. Like this scenario,
conventionally, the roles of feature extraction and
classification have been distinct, i.e., a feature extraction
method and a classifier are applied sequentially to classify
input variable into several categories. Others propose a PCA
features representation for later stages [12], however there
used PCA features in the late stages of boosting. In this paper,
by using PCA in constructing weak classifiers of Adaboost,
the two steps of feature extraction and classification are
combined into one resulting in a better classification
performance. The proposed method is named as Boosted-PCA.

The paper is organized as follows. Adaboost algorithm and
PCA are briefly reviewed in section II and section III
respectively. In section IV, Boosted-PCA is proposed. The
experimental results on UCI dataset are shown in section V.
Finally, conclusions and future works follow in Section VI.

II. ADABOOST ALGORITHM

The Adaboost algorithm introduced in 1995 by Freund and
Schapire [5] uses a series of weak classifiers to constitute a
strong classifier. Consider the training samples ()
where x is a data vector, y is a binary class label and N is the
number of training samples. We assume . In
addition, consider a set of candidate weak classifier or weak
learner which is denoted as where k is the total

number candidate weak classifiers. Among the candidate weak
classifiers, a set of weak classifiers is selected based
on the weighted error on the training samples. Here, T is the
number of weak classifiers or round of iterations in Adaboost.

The final strong classifier is denoted as H. Given an input
vector x, the role of any cl assifier (candidate weak, weak, and
strong) is to classify x into one of the classes (0 or 1).

The Adaboost algorithm is outlined in Fig. 1. Given
training samples, in step 1, each training sample is allocated
with a corresponding weight value. Here, the sum of weights
belonging to each class is set to be equal to one half.

Step 2 is the main step of Adaboost. In this step, firstly, for
each candidate weak classifier, the weighted error is computed
and the one with the smallest weighted error is selected as the
t
th

 weak classifier ht. Determination of each weak classifier
involves evaluation of each candidate on all the training
samples in other to find the best performing candidate. The
best performing candidate is chosen based on the weighted
error it produces. This weighted error is a function of the
weights belonging to the training examples.

Once the weak classifier is selected, weight of each sample
is updated in substeps 3) and 4). In this step, weights of
correctly classified samples are decreased while those of
erroneous samples are increased. This makes the next weak
classifier to have a good chance of correctly classifying the
incorrectly classified samples by the current weak classifier. In
the weight update step, the parameter plays an important

role. Note that if (which we can assume
without loss of generality), and increases if decreases.
For large , the weights of the incorrectly classified samples
increase more rapidly than the case of small .

After selecting T consecutive weak classifiers, finally, in
Step 4, the strong classifier is achieved. Note that the output of
strong classifier H is the weighted sum of those of the weak
classifiers. In this step also, is important. Intuitively, can
be interpreted as measuring the importance that is assigned to
ht. The weak classifier with the smallest weighted error
contributes the most to the combined strong classifier.

III. PCA : PRINCIPAL COMPONENT ANALYSIS

In data analysis problems with a large number of input
variables, dimensionality reduction methods are typically used
to reduce the number of input variables to simplify the
problems without degrading performances. Among them, the
principal component analysis [9] is one of the most popular
methods. PCA seeks to find the vectors that best describe the
data in terms of reproducibility. Also it is proven that the
vectors with best reproducibility correspond to the ones that
maximize the variance of given data. These projections
constitute a low-dimensional linear subspace by which the
data structure in the original input space can effectively be
captured.

In Fig.2, the PCA algorithm is briefly overviewed.
Consider n samples in a d-dimensional space. The objective of
PCA is to find a -dimensional subspace that best describes
the data. Here, it is assumed that . In the first step of
PCA, the sample data are centered by subtracting the mean
vector from each sample vector. Then, the scatter matrix S
is constructed as shown in the figure. Finally, eigenvalues and
eigenvectors of S are obtained by taking eigenvalue
decomposition of S. Once eigenvectors are found from the
scatter matrix, the next step is to order them by eigenvalue,
highest to lowest. This gives the components in order of

() ()

∑

0. Input: training samples

1. Weight initialization: for each sample i=1…N,

initialize each weight as follows:

 {

.

Here m and n are numbers of samples belonging to class 0

and class 1 respectively.

2. Repeat for

1) Computation of error: for each candidate classifier

 , compute the weighted error as follows:

 ∑ | () |

 .

2) Selection of weak classifier: choose the candidate

classifier with the lowest error and set it as ht, i.e.,

3) Weight update: update the weights as follows:

 | () |,

where (

).

4) Weight normalization: Normalize each weight as

follows:

4. Output: the final strong classifier is:

 () { ∑ ()

.

 ()

0. Input : training samples
Objective: find a dimensional subspace where the

reconstruction error of in this subspace is

minimized.

1. Construction of scatter matrix:

 ∑ (
)()

∑

 .

2. Eigenvalue decomposion:

V = [

3. Output: a projection matrix V.

4. Projection: When a new data is presented,

becomes the principal component of x.

Figure 2. PCA algorithm

Figure 1. Adaboost algorithm

significance. Now, you can decide to ignore the components
of lesser significance by selecting only the important
components. Finally, the projection matrix V = [
is the result of PCA where is the eigenvector of S
corresponding to the i

th
 largest eigenvalue. When a new data

 is presented, () becomes the principal
component of x.

IV. PROPOSED ALGORITHM: BOOSTED-PCA

In this section, a candidate weak classifier based on PCA
is used in the Adaboost algorithm. To adapt PCA in Adaboost
algorithm, the conventional PCA should be modified to
incorporate the concept of sample weight.

Consider the i
th
 training sample has a weight in the t

th

stage of Adaboost. Then the first step of modified PCA is to
calculate the weighted sample mean as follows:

 ∑

 (1)

Then the weighted scatter matrix is obtained based on this
weighted mean as follows:

 ∑ (

)()

 . (2)

Once the weighted scatter matrix is obtained, by
eigenvalue decomposition, we can obtain k eigenvectors
 , where k is the rank of S.

For each principal component , one can easily construct

a candidate weak classifier that classifies a vector x into one of
two classes as follows:

 () {

. (3)

Here, and are the polarity and

threshold of j
th
 candidate classifier respectively which are set

to be the optimal values that minimizes the weighted training
error of the classifier, i.e.,

() ()
∑ | () |

 (4)

After the construction of candidate classifiers ,

the t
th
 weak classifier is selected and then the remaining

weight update procedures are identical to those of
conventional Adaboost in Fig. 1.

The Boosted-PCA algorithm is summarized in Fig. 3. At
each repeat of weak classifier selection, different PCAs are
performed to minimize corresponding weighted reconstruction
error. The projection vector vj, threshold , weighted mean

and polarity pj of each stage is saved to make a strong
classifier H. Once, a new test data is presented, it is subtracted
by the mean vector and then projected using the projection
vector. Finally, the strong classifier uses the saved thresholds
and polarities as well as to classify the projected test data
into one of the two classes.

V. EXPERIMENTAL RESULTS

In this section, the performance of the Boosted-PCA is
compared with those of conventional sequential application of
PCA and a classifier such as PCA+kNN and PCA+SVM.
Matlab was used to implement all the algorithms. For SVM,
linear SVM in MATLAB was used.

The UCI machine learning repository which contains
many real-world data sets that have been used by numerous
researchers [10] [11] is used in this experiment. The binary
classification problems in UCI data set were selected for
performance evaluation, which include Sonar, Pima, Heart
disease, Liver, Breast cancer and Australian.

Figure 3. Boosted-PCA algorithm

() ()

 ∑ (

)() ∑

∑

0. Input: training samples

1. Weight initialization: for each sample i=1…N,

initialize each weight as follows:

 {

.

Here m and n are numbers of samples belonging to class 0

and class 1 respectively.

2. Repeat for

1) Weighted PCA: Let

Then, apply eigenvalue decomposition to S to obtain a

set of eigenvectors .

2) Construction of candidate weak classifiers

 () {

.

3) Computation of error: for each candidate classifier

 , compute the weighted error as follows:

 ∑ | () |

 .

4) Selection of weak classifier: choose the candidate

classifier with the lowest error and set it as ht,

i.e.,

5) Weight update: update the weights as follows:

 | () |,

where (

).

6) Weight normalization: Normalize each weight as

follows:

4. Output: the final strong classifier is:

 () { ∑ ()

.

Table 1 shows the brief information of the data sets used in
this paper. The Adaboost was trained for 30 iterations. For all
the experiment, 10-fold cross validation was used, i.e., 90% of
the data set was used as training samples while the remaining
10% was used as test samples and then this was repeated 10
times. The recognition rates of Table 2 are the average
recognition rate of 10 experiments on the test data. In the table,
for all the dataset, Boosted-PCA outperforms the other method
such as PCA+1NN and PCA+SVM. Especially, for Breast
Cancer data, around 20% improvement of recognition rates is
seen by the proposed method.

TABLE I. SUMMARY OF UCI DATA SETS

 # of variables # of classes # of instances

Sonar 60 2 208

Pima 8 2 768

Heart disease 13 2 297

Liver 6 2 345

Breast cancer 9 2 683

Australian 14 2 690

TABLE II. RECOGNITION RATES (%) OF EACH ALGORITHM

 PCA+1NN PCA+SVM Boosted-PCA

Sonar 59.52 52.38 72.38

Pima 64.93 64.93 69.22

Heart disease 53.33 73.66 74.33

Liver 58.23 58.82 61.76

Breast cancer 76.17 77.64 97.35

Australian 52.60 66.08 69.56

VI. CONCLUSIONS

In this paper, we proposed a new method ‘Boosted-PCA’
for binary classification problems. In this method, PCA is
incorporated in the structure of Adaboost. More specifically,
at each stage of Adaboost, different PCAs are performed and
the resultant principal components were used as candidate
weak classifiers to constitute a strong classifier. The
performance of the proposed algorithm on UCI dataset was
better than the conventional sequential application of PCA and
a classifier such as PCA+1NN and PCA+SVM.

As a future work, firstly, the algorithm can be extended to
multi class problems. This can be done by substituting the
Adaboost with multi-class Adaboost. Secondly, not only PCA
but also other feature extraction methods such as LDA and
ICA can be incorporated in the structure of Adaboost to
achieve better classification performances.

ACKNOWLEDGEMENT

This work was supported by Korea Research Foundation Grant
funded by Korean Government (KRF-2011-0005324).

REFERENCES

[1] Christopher J. C. Burges, “A Tutorial on Support Vector Machines for
Pattern Recognition”, Data Mining and Knowledge Discovery, vol.2,
pp.121-167, 1998.

[2] Cover T. M. and Hart P. E, “Nearest Neighbor Pattern Classification”,
IEEE Transactions on Information Theory, vol. IT-13(1), pp.21-27,
1967.

[3] Simon Haykin, “Neural networks”, 2nd Edition, Prentice Hall, 1999.

[4] Robert. E. Schapire and Yoram Singer, “Improved boosting algorithms
using confidence-rated predictions,” Machine Learning, 37(3):297-336,
1999.

[5] Yoav Freund , Robert E. Schapire, “A Decision-Theoretic
Generalization of on-Line Learning and an Application to Boosting,” In
European Conference on Computational Learning Theory, pp. 23-37,
1995.

[6] Y. Freund, R. E. Schapire, “A Short Introduction to Boosting”, Journal
of Japanese Society for Artificial Intelligence, 14(5), pp.771-780, 1999.

[7] P. viola and M. J. Jones, “Robust Real-time Face Detection”,
International Journal of Computer Vision, Vol.57, No.2, pp. 137-154,
2004.

[8] Matthew Turk and Alex Pentland, “Eigenface for Recognition,”
Journal of Cognitive Neuroscience 3(1), pp.70-86, 1991.

[9] I.T.Joliffe, “Principal Component Analysis, ” Springer-Verlag, 1986.

[10] UCI Data Sets, Availabe: http://archive.ics.uci.edu/ml/datasets.html.

[11] P. M. Murphy and D. W. Aha, “UCI repository of machine learning
databases," 1994, For more information contact
ml-repository@ics.uci.edu or http://www.cs.toronto.edu/_delve/.

[12] Dong Zhang, S. Z. Li, D. Gatica-Perez, “Real-time face detection using
boosting in hierarchical feature spaces”, ICPR 2004. Proceedings of the
17th International Conference on, Vol. 2, pp. 411-414, 2004.

