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Abstract— In this paper, a Boosted-PCA algorithm is proposed 

for efficient classification of two class data. Conventionally, in 

classification problems, the roles of feature extraction and 

classification have been distinct, i.e., a feature extraction method 

and a classifier are applied sequentially to classify input variable 

into several categories. In this paper, these two steps are 

combined into one resulting in a good classification performance. 

More specifically, each principal component is treated as a weak 

classifier in Adaboost algorithm to constitute a strong classifier 

for binary classification problems. The proposed algorithm is 

applied to UCI data set and showed better recognition rates than 

sequential application of feature extraction and classification 

methods such as PCA+1NN and PCA+SVM. 

 

I. INTRODUCTION 

In pattern recognition and machine learning society, 
classification has been a classical problem and the most 
widely used classifiers include support vector machines (SVM) 
[1], k-nearest neighbors (k-NN) [2] and neural networks [3]. 
Nowadays, combinations of multiple classifiers are gaining 
attention [4], among which methods based on boosting 
techniques are very popular [5].  

Adaptive boosting a.k.a. Adaboost has been successfully 
applied to binary classification problems [6]. It is a kind of 
boosting algorithm capable of constructing a strong classifier 
through a weighted combination of weak classifiers [4] [5] [6]. 
From many weak classifiers, the one with smallest weighted 
error on the training data is selected. Once a weak classifier is 
selected, each training sample gets a new weight value and the 
procedure of selecting a weak classifier is repeated T times. 
Finally, the selected weak classifiers are combined to make a 
strong classifier. In doing so, Adaboost increases the weight of 
erroneous samples while decreasing the weight of correctly 
classified samples at each stage and selects the weak classifier 
with the lowest weighted error. The Viola-Jones algorithm is a 
successful example of applying Adaboost in object detection 
problems where Haar-like features are used as weak classifiers 
[7].  

In this paper, to construct a weak classifier of the 
Adaboost algorithm, principal component analysis (PCA) is 

applied. PCA [8] [9] is one of the most popular linear feature 
extraction methods used mainly for dimensionality reduction. 
It is a powerful tool for reducing the number of observed 
variables into a smaller number of artificial variables that 
account for most of the variance in the data set. In PCA, the 
eigenvectors corresponding to the largest eigenvalues of 
sample covariance matrix is searched for, which corresponds 
to the direction of principal components of sample data. The 
principal components may then be used as predictor or 
criterion variables in subsequent analyses. For example, in 
classification problems, these principal components may be 
used as inputs to a classifier. Like this scenario, 
conventionally, the roles of feature extraction and 
classification have been distinct, i.e., a feature extraction 
method and a classifier are applied sequentially to classify 
input variable into several categories. Others propose a PCA 
features representation for later stages [12], however there 
used PCA features in the late stages of boosting. In this paper, 
by using PCA in constructing weak classifiers of Adaboost, 
the two steps of feature extraction and classification are 
combined into one resulting in a better classification 
performance. The proposed method is named as Boosted-PCA. 

The paper is organized as follows. Adaboost algorithm and 
PCA are briefly reviewed in section II and section III 
respectively. In section IV, Boosted-PCA is proposed. The 
experimental results on UCI dataset are shown in section V. 
Finally, conclusions and future works follow in Section VI. 

 

II. ADABOOST ALGORITHM 

The Adaboost algorithm introduced in 1995 by Freund and 
Schapire [5] uses a series of weak classifiers to constitute a 
strong classifier. Consider the training samples  (     )       
where x is a data vector, y is a binary class label and N is the 
number of training samples. We assume         . In 
addition, consider a set of candidate weak classifier or weak 
learner which is denoted as           where k is the total 

number candidate weak classifiers. Among the candidate weak 
classifiers, a set of weak classifiers           is selected based 
on the weighted error on the training samples. Here, T is the 
number of weak classifiers or round of iterations in Adaboost. 



The final strong classifier is denoted as H. Given an input 
vector x, the role of any cl assifier (candidate weak, weak, and 
strong) is to classify x into one of the classes (0 or 1).  

The Adaboost algorithm is outlined in Fig. 1. Given 
training samples, in step 1, each training sample is allocated 
with a corresponding weight value. Here, the sum of weights 
belonging to each class is set to be equal to one half.  

Step 2 is the main step of Adaboost. In this step, firstly, for 
each candidate weak classifier, the weighted error is computed 
and the one with the smallest weighted error is selected as the 
t
th

 weak classifier ht. Determination of each weak classifier 
involves evaluation of each candidate on all the training 
samples in other to find the best performing candidate. The 
best performing candidate is chosen based on the weighted 
error it produces. This weighted error is a function of the 
weights belonging to the training examples. 

Once the weak classifier is selected, weight of each sample 
is updated in substeps 3) and 4). In this step, weights of 
correctly classified samples are decreased while those of 
erroneous samples are increased. This makes the next weak 
classifier to have a good chance of correctly classifying the 
incorrectly classified samples by the current weak classifier. In 
the weight update step, the parameter    plays an important 

role. Note that      if        (which we can assume 
without loss of generality), and     increases if    decreases. 
For large   , the weights of the incorrectly classified samples 
increase more rapidly than the case of small   .  

After selecting T consecutive weak classifiers, finally, in 
Step 4, the strong classifier is achieved. Note that the output of 
strong classifier H is the weighted sum of those of the weak 
classifiers. In this step also,    is important. Intuitively,    can 
be interpreted as measuring the importance that is assigned to 
ht. The weak classifier with the smallest weighted error 
contributes the most to the combined strong classifier.  

 

III. PCA : PRINCIPAL COMPONENT ANALYSIS 

In data analysis problems with a large number of input 
variables, dimensionality reduction methods are typically used 
to reduce the number of input variables to simplify the 
problems without degrading performances. Among them, the 
principal component analysis [9] is one of the most popular 
methods. PCA seeks to find the vectors that best describe the 
data in terms of reproducibility. Also it is proven that the 
vectors with best reproducibility correspond to the ones that 
maximize the variance of given data. These projections 
constitute a low-dimensional linear subspace by which the 
data structure in the original input space can effectively be 
captured. 

In Fig.2, the PCA algorithm is briefly overviewed. 
Consider n samples in a d-dimensional space. The objective of 
PCA is to find a   -dimensional subspace that best describes 
the data. Here, it is assumed that     . In the first step of 
PCA, the sample data are centered by subtracting the mean 
vector    from each sample vector. Then, the scatter matrix S 
is constructed as shown in the figure. Finally, eigenvalues and 
eigenvectors of S are obtained by taking eigenvalue 
decomposition of S. Once eigenvectors are found from the 
scatter matrix, the next step is to order them by eigenvalue, 
highest to lowest. This gives the components in order of 
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Here m and n are numbers of samples belonging to class 0 

and class 1 respectively.  

 

2. Repeat for         
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2) Selection of weak classifier: choose the candidate 

classifier    with the lowest error    and set it as ht, i.e., 
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minimized. 
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2. Eigenvalue decomposion: 

                              

V = [                   
 

 

3. Output: a projection matrix V. 

 

4. Projection: When a new data      is presented, 

becomes the principal component of x. 

Figure 2. PCA algorithm 

Figure 1. Adaboost algorithm 



significance. Now, you can decide to ignore the components 
of lesser significance by selecting only the    important 
components. Finally, the projection matrix V = [             
is the result of PCA where    is the eigenvector of S 
corresponding to the i

th
 largest eigenvalue. When a new data 

     is presented,     (   )  becomes the principal 
component of x. 

 

IV. PROPOSED ALGORITHM: BOOSTED-PCA 

In this section, a candidate weak classifier based on PCA 
is used in the Adaboost algorithm. To adapt PCA in Adaboost 
algorithm, the conventional PCA should be modified to 
incorporate the concept of sample weight.  

Consider the i
th
 training sample has a weight      in the t

th
 

stage of Adaboost. Then the first step of modified PCA is to 
calculate the weighted sample mean as follows: 

   ∑       
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Then the weighted scatter matrix is obtained based on this 
weighted mean as follows: 
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Once the weighted scatter matrix    is obtained, by 
eigenvalue decomposition, we can obtain k eigenvectors 
         , where k is the rank of S.  

For each principal component   , one can easily construct 

a candidate weak classifier that classifies a vector x into one of 
two classes as follows: 
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Here,           and      are the polarity and 

threshold of j
th
 candidate classifier respectively which are set 

to be the optimal values that minimizes the weighted training 
error of the classifier, i.e.,  
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After the construction of candidate classifiers          , 

the t
th
 weak classifier is selected and then the remaining 

weight update procedures are identical to those of 
conventional Adaboost in Fig. 1.  

The Boosted-PCA algorithm is summarized in Fig. 3. At 
each repeat of weak classifier selection, different PCAs are 
performed to minimize corresponding weighted reconstruction 
error. The projection vector vj, threshold   , weighted mean    

and polarity pj of each stage is saved to make a strong 
classifier H. Once, a new test data is presented, it is subtracted 
by the mean vector and then projected using the projection 
vector. Finally, the strong classifier uses the saved thresholds 
and polarities as well as    to classify the projected test data 
into one of the two classes. 

 

 

V. EXPERIMENTAL RESULTS 

In this section, the performance of the Boosted-PCA is 
compared with those of conventional sequential application of 
PCA and a classifier such as PCA+kNN and PCA+SVM. 
Matlab was used to implement all the algorithms. For SVM, 
linear SVM in MATLAB was used.  

The UCI machine learning repository which contains 
many real-world data sets that have been used by numerous 
researchers [10] [11] is used in this experiment. The binary 
classification problems in UCI data set were selected for 
performance evaluation, which include Sonar, Pima, Heart 
disease, Liver, Breast cancer and Australian.  

 

Figure 3. Boosted-PCA algorithm 
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0. Input: training samples 

 

1. Weight initialization: for each sample i=1…N, 

initialize each weight as follows: 
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Here m and n are numbers of samples belonging to class 0 

and class 1 respectively.  

 

2. Repeat for         

1) Weighted PCA: Let 

Then, apply eigenvalue decomposition to S to obtain a 

set of eigenvectors           . 

2) Construction of candidate weak classifiers 
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3) Computation of error: for each candidate classifier  

         , compute the weighted error as follows:  
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   . 

4) Selection of weak classifier: choose the candidate  

classifier    with the lowest error    and set it as ht, 

i.e., 

5) Weight update: update the weights as follows:  

                |  (  )   |, 

where       (
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6) Weight normalization: Normalize each weight as 

follows: 

 

4. Output: the final strong classifier is: 
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Table 1 shows the brief information of the data sets used in 
this paper. The Adaboost was trained for 30 iterations. For all 
the experiment, 10-fold cross validation was used, i.e., 90% of 
the data set was used as training samples while the remaining 
10% was used as test samples and then this was repeated 10 
times. The recognition rates of Table 2 are the average 
recognition rate of 10 experiments on the test data. In the table, 
for all the dataset, Boosted-PCA outperforms the other method 
such as PCA+1NN and PCA+SVM. Especially, for Breast 
Cancer data, around 20% improvement of recognition rates is 
seen by the proposed method.  

TABLE I.  SUMMARY OF UCI DATA SETS 

 # of variables # of classes # of instances 

Sonar 60 2 208 

Pima 8 2 768 

Heart disease 13 2 297 

Liver 6 2 345 

Breast cancer 9 2 683 

Australian 14 2 690 

 

TABLE II.  RECOGNITION RATES (%) OF EACH ALGORITHM 

 PCA+1NN PCA+SVM Boosted-PCA 

Sonar 59.52 52.38 72.38 

Pima 64.93 64.93 69.22 

Heart disease 53.33 73.66 74.33 

Liver 58.23 58.82 61.76 

Breast cancer 76.17 77.64 97.35 

Australian 52.60 66.08 69.56 

 
 

 

 

 

 

 

 

 

 

 

 

 

VI. CONCLUSIONS 

In this paper, we proposed a new method ‘Boosted-PCA’ 
for binary classification problems. In this method, PCA is 
incorporated in the structure of Adaboost. More specifically, 
at each stage of Adaboost, different PCAs are performed and 
the resultant principal components were used as candidate 
weak classifiers to constitute a strong classifier. The 
performance of the proposed algorithm on UCI dataset was 
better than the conventional sequential application of PCA and 
a classifier such as PCA+1NN and PCA+SVM.  

As a future work, firstly, the algorithm can be extended to 
multi class problems. This can be done by substituting the 
Adaboost with multi-class Adaboost. Secondly, not only PCA 
but also other feature extraction methods such as LDA and 
ICA can be incorporated in the structure of Adaboost to 
achieve better classification performances. 
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