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Abstract. In manipulating data such as in supervised learning, we often
extract new features from the original features for the purpose of reducing
the dimensions of feature space and achieving better performance. In
this paper, we show how standard algorithms for independent component
analysis (ICA) can be applied to extract features for regression problems.
The advantage is that general ICA algorithms become available to a
task of feature extraction for regression problems by maximizing the
joint mutual information between target variable and new features. Using
the new features, we can greatly reduce the dimension of feature space
without degrading the regression performance.

1 Introduction

In regression problems, one is given an array of attributes to predict the target
value. These attributes are called features, and there may exist irrelevant or re-
dundant features to complicate the learning process, thus leading to incorrect
prediction. Even when the features presented contain enough information about
the target variable, they may not predict the target correctly because the dimen-
sion of feature space may be so large that it may require numerous instances to
determine the relationship. This problem can be avoided by selecting only the
relevant features or extracting new features containing the maximal informa-
tion about the target variable from the original ones. The former methodology
is called feature selection or subset selection, while the latter is named feature
extraction which includes all the methods that compute any functions, logical
or numerical, from the original.

This paper considers the feature extraction problem since it often results in
improved performance by extracting new features from the original, especially
when small dimension is required. Among the various approach, we focus on find-
ing an appropriate subspace spanned by a set of new features that are arbitrary
linear combinations of original. PCA (principle component analysis) [1], ICA
(independent component analysis) [2] [3], and LDA (linear discriminant analy-
sis) [4] are the most popular subspace methods. However, most of these methods



cannot be used for regression problems since some of them such as PCA and
ICA focus on finding features by unsupervised manner and others such as LDA
have been mainly developed for classification problems.

In our previous work, we have developed ICA-FX (feature extraction based
on independent component analysis) [5], a supervised feature extraction method
for classification problems, by modifying the learning rule of original ICA. Like
ICA, it utilizes higher order statistics, while unlike ICA, it was developed as
a supervised method in that it includes the output class information to find
an appropriate feature subspace. This method is well-suited for classification
problems in the aspect of constructing new features that are strongly related to
output class.

In this paper, the ICA-FX for classification problems is extended to regression
problems. Because the output class label was coded as a numerical value in the
ICA-FX algorithm, the method can be easily applied to regression problems
without changing much from original ICA-FX for classification problems.

This paper is organized as follows. In Section 2, we briefly review the ICA
algorithm. In Section 3, we develop ICA-FX for regression problems. This follows
almost the same steps as we did for classification problems. Experimental results
showing the advantages of the proposed algorithm are presented in Section 4 and
conclusions are provided in Section 5.

2 Review of ICA

The problem setting of ICA is as follows. Assume that there is an L-dimensional
zero-mean non-Gaussian source vector sss(n) = [s1(n), · · · , sL(n)]T , such that
the components si(n)’s are mutually independent, and an observed data vector
xxx(n) = [x1(n), · · · , xN (n)]T is composed of linear combinations of sources si(n)
at each time point n, such that

xxx(n) = Asss(n) (1)

where A is a full rank N × L matrix with L ≤ N . The goal of ICA is to find
a linear mapping W such that each component of an estimate uuu of the source
vector

uuu(n) = Wxxx(n) = WAsss(n) (2)

is as independent as possible. The original sources sss(n) are exactly recovered
when W is the pseudo-inverse of A up to some scale changes and permutations.
For a derivation of an ICA algorithm, one usually assumes that L = N , because
we have no idea about the number of sources. In addition, sources are assumed to
be independent of time n and are drawn from independent identical distribution
pi(si).

To find W in (2), Bell and Sejnowski [2] have developed the Infomax algo-
rithm, one of the popular algorithms for ICA, in which they used a feed-forward
neural processor. This neural processor takes xxx as an input vector. The weight
W is multiplied to the input xxx to give uuu and each component ui goes through a



bounded invertible monotonic nonlinear function gi(·) to match the cumulative
distribution of the sources.

From the view of information theory, maximizing the statistical independence
among variables ui’s is equivalent to minimizing mutual information among ui’s.
This can be achieved by minimizing mutual information between yi = gi(ui), i =
1 · · ·L, since the nonlinear transfer function gi(·) does not introduce any depen-
dencies.

In [2], it has been shown that by maximizing the joint entropy H(yyy) of the
output yyy = [y1, · · · , yN ]T of a processor, we can approximately minimize the
mutual information among the output components yi’s

I(yyy) =

∫

p(yyy) log
p(yyy)

∏N
i=1 pi(yi)

dyyy. (3)

Here, p(yyy) is the joint probability density function (pdf) of a vector yyy, and pi(yi)
is the marginal pdf of the variable yi.

The joint entropy of the outputs of this processor is

H(yyy) = −

∫

p(yyy) log p(yyy)dyyy = −

∫

p(xxx)
p(xxx)

log |det J(xxx)|
dxxx (4)

where J(xxx) is the Jacobian matrix whose (i, j)th element is partial derivative
∂yj/∂xi. Note that J(xxx) = W . Differentiating H(yyy) with respect to W and
applying natural gradient by multiplying WT W on the right, we get the learning
rule for ICA:

∆W ∝ [I −ϕϕϕ(uuu)uT ]W (5)

where

ϕϕϕ(uuu) =

[

−

∂p1(u1)
∂u1

p1(u1)
, · · · ,−

∂pN (uN )
∂uN

pN (uN )

]T

. (6)

In this paper, we adopt the extended Infomax algorithm [3] because it is easy
to implement with less strict assumptions on source distribution.

3 ICA-FX for Regression

ICA outputs a set of maximally independent vectors that are linear combinations
of the observed data. Although these vectors might have some applications in
such areas as blind source separation and data visualization, it is not suitable
for feature extraction for supervised learning, because it does not make use of
the output target information. The effort to incorporate the standard ICA with
supervised learning has been made in our previous work [5], where a new feature
extraction algorithm, ICA-FX for classification problems was proposed. In this
paper, the original ICA-FX algorithm for classification problems is extended for
regression problems.



Before we present our algorithm, we formalize the purpose of feature extrac-
tion for regression problems.

The success of a feature extraction algorithm depends critically on how much
information about the output class is contained in the newly generated features.
This can be formalized as follows.

(Problem statement) Assume that there are a normalized input feature
vector, xxx = [x1, · · · , xN ]T , and target variables, ttt = [t1, · · · , tNt

]T . The purpose
of feature extraction for regression problems is to extract M(≤ N) new features
fafafa = [f1, · · · , fM ]T from xxx, containing the maximum information on the output
target variables ttt. Here Nt is the number of target variables.

In information theory, the information between random variables is measured
by mutual information and this problem statement can be formalized using this
information theoretical term as follows:

(Problem statement - information theoretic view) The purpose of a
feature extraction for regression problem is to extract M(≤ N) features fffa from
xxx, such that I(fffa; ttt), the mutual information between newly extracted features
fffa and target output variables ttt becomes maximum.

The main idea of the the proposed method is simple. It tries to apply the
standard ICA algorithms to feature extraction for regression problems by making
use of the target variables to produce two sets of new features; features that carry
as much information on the target variables (these features will be useful for
regression) as possible and the others that do not (these will be discarded). The
advantage is that the general ICA algorithms can be used for feature extraction
by maximizing the joint mutual information between the target variables and
new features.

Now consider the structure shown in Fig. 1. Here, the original feature vector
xxx is fully connected to uuu = [u1, · · · , uN ], the target vector ttt is connected only
to uuua = [u1, · · · , uM ], and uN+l = tl, l = 1, · · · , Nt. In the figure, the weight
matrix WWW ∈ <(N+Nt)×(N+Nt) becomes

WWW =

(

W V
000Nt,N INt

)

=






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...
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
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







. (7)

where W ∈ <N×N and V = [V T
a ,000T

N−M,Nt
]T ∈ <N×Nt . Here the first nonzero

M rows of V is denoted as Va ∈ <M×Nt .
As stated before, in information theoretic view, the aim of feature extraction

is to extract M new features fffa from the original N features, xxx, such that
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Fig. 1. Feature extraction algorithm based on ICA (ICA-FX)

I(fffa; t), the mutual information between newly extracted features fffa and the
target variables ttt is maximized.

Because of the data processing inequality it is maximized when I(fffa; ttt) be-
comes equal to I(xxx; ttt), the mutual information between the original features xxx
and the target variables ttt.

This can be satisfied if we can separate the input feature space xxx into two
linear subspaces: one that is spanned by fffa = [f1, · · · , fM ]T , which contains
the maximum information on the target variables ttt, and the other spanned by
fff b = [fM+1, · · · , fN ]T , which is independent of ttt as much as possible.

The condition for this separation can be derived as follows. If it is assumed
that WWW is nonsingular, then xxx and fff = [f1, · · · , fN ]T span the same linear space,
which can be represented with the direct sum of fffa and fff b, and then by the
data processing inequality,

I(xxx; ttt) = I(Wxxx; ttt) = I(fff ; ttt) = I(fffa, fff b; ttt) ≥ I(fffa; ttt). (8)

The first equality holds because W is nonsingular. The second and the third
equalities are from the definitions of fff , fffa and fff b. In the inequality on the last
line, the equality holds if I(fff b; ttt) = I(uM+1, · · · , uN ; t) = 0.

If this is possible, the dimension of the input feature space can be reduced
from N to M(< N) by using only fffa instead of xxx, without losing any information
on the target variables.

To solve this problem, the feature extraction problem is interpreted in the
structure of the blind source separation (BSS) problem as shown in Fig. 2. The
detailed description of each step is as follows:

(Mixing) Assume that there are N independent sources sss = [s1, · · · , sN ]T

which are also independent of the target variables t. Assume also that the ob-
served feature vector xxx is a linear combination of the sources sss and ttt with the



Independent 
sources

�

�

�

�

�

�

� �

�

�
� �

������ ��������

Fig. 2. Interpretation of Feature Extraction in the BSS structure

mixing matrix A ∈ <N×N and B ∈ <N×Nt ; i.e.,

xxx = Asss + Bttt. (9)

(Unmixing) The unmixing stage is slightly different from the BSS problem
as shown in Fig. 1. In the figure, the unmixing equation becomes

uuu = Wxxx + V ttt. (10)

Suppose uuu is somehow made equal to eee, the scaled and permuted version of the
source sss; i.e.,

eee , ΛΠsss (11)

where Λ is a diagonal matrix corresponding to an appropriate scale and Π is
a permutation matrix. The ui’s (i = 1, · · · , N) are then independent of the
target variables ttt by the assumption. Among the elements of fff = Wxxx(= uuu −
V ttt), fff b = [fM+1, · · · , fN ]T will be independent of t because the ith row of V ,
Vi = [wi,N+1, · · · , wi,N+Nt

] = 000 and fi = ui for i = M + 1, · · · , N . Therefore,
the M(< N) dimensional new feature vector fffa can be extracted by a linear
transformation of xxx containing the most information on the class if the relation
uuu = eee holds.

The learning rule for the ICA-FX for regression is obtained by the same
way as that of ICA-FX for classification problem using the MLE (maximum
likelihood estimation) approach as follows.

If it is assumed that uuu = [u1, · · · , uN ]T is a linear combination of the source
sss; i.e., it is made equal to eee, a scaled and permutated version of the source, sss,
as in (11), and that each element of uuu is independent of the other elements of uuu,
which is also independent of the target vector ttt, the log likelihood of the data
for a given WWW becomes the following:

L(uuu, ttt|WWW ) = log |detWWW | +

N
∑

i=1

log pi(ui) + log p(ttt) (12)

because

p(xxx, ttt|WWW ) = |detWWW | p(uuu, ttt) = |detWWW |

N
∏

i=1

pi(ui) p(ttt). (13)



Now, L can be maximized, and this can be achieved by the steepest ascent
method. Because the last term in (12) is a constant, differentiating (12) with
respect to WWW leads to

∂L

∂wi,j

=
adj(wj,i)

|detWWW |
− ϕi(ui)xj 1 ≤ i, j ≤ N

∂L

∂wi,N+j

= −ϕi(ui)tj 1 ≤ i ≤ M, 1 ≤ j ≤ Nt

(14)

where adj(·) is adjoint and ϕi(ui) = −dpi(ui)
dui

/pi(ui) .

It can be seen that |detWWW | = |det W | and
adj(wj,i)
| detWWW | = W−T

i,j . Thus the learn-

ing rule becomes

∆W ∝ W−T −ϕϕϕ(uuu)xxxT

∆Va ∝ −ϕϕϕ(uuua)tttT .
(15)

Here ϕϕϕ(uuu) , [ϕ1(u1), · · · , ϕN (uN )]T and ϕϕϕ(uuua) , [ϕ1(u1), · · · , ϕM (uM )]T .
Applying a natural gradient on updating W , by multiplying WT W on the

right side of the first equation of (15), the following is obtained.

W (n+1) =W (n) + µ1[IN −ϕϕϕ(uuu)fffT ]W (n)

V (n+1)
a =V (n)

a − µ2ϕϕϕ(uuua)tttT .
(16)

Here µ1 and µ2 are the learning rates that can be set differently. By this weight
update rule, the resulting ui’s will have a good chance of fulfilling the assumption
that ui’s are not only independent of one another but also independent of the
target variables ttt.

Note that the learning rule for W is the same as the original ICA learning rule
[2], and also note that fffa corresponds to the first M elements of Wxxx. Therefore,
the optimal features fffa can be extracted by the proposed algorithm when it
finds the optimal solution for W by (16).

4 Experiment Results

In this section, we have applied ICA-FX to several regression problems and show
the performance of the method. For all the problems below, we have compared
the performance of ICA-FX with those of PCA and original features.

As a regression tool, standard multi-layer perceptron (MLP) with one hidden
layer was used. The numbers of nodes in input, hidden, and output layers were
set to the number of extracted features, six, and one respectively. As a transfer
functions of hidden and output layers, tansig (tangent sigmoid) and purelin (pure
linear) were used respectively. As a training rule of the MLP, trainlm (Levenberg-
Marquardt) was used. The weight update rule of the method is

Wmlp(k + 1) = Wmlp(k) − (JT J + µI)−1JTeeemlp.



Here, J is the Jacobian matrix that contains first derivatives of the network
errors with respect to the weights, and eeemlp is a vector of network errors. For
adaptive value µ, default settings of the Matlab were used.

4.1 Artificial Problems

Linear Case Consider the simple problem of the following:
Suppose we have five independent input features x1 ∼ x5 which have normal

distribution with zero mean and variance of 1. Also suppose that the target output
variable t has the following relationship with the input xxx: t = 2x1 + 3x3.

For this problem, 1000 samples were generated which were divided into 500
training data and 500 test data. On the training data, ICA-FX was applied where
the number of extracted feature M was set to 1. The first row of weight matrix
WWW in (7) after ICA-FX was [7.0904, 0.0004, 10.9933, 0.0002, 0.0003, -13.1630].
Thus the newly extracted feature is f = 7.0904x1 + 0.0004x2 + 10.9933x3 +
0.0002x4 + 0.0003x5. Note that the coefficients for x2, x4 and x5 are very small
compared to those of x1 and x3. In addition, note that the ratio of coefficient
of x1 and that of x3 is approximately 2:3. The extracted weights show that the
ICA-FX performs quite well for linear regression problems.

For this problem, we have also performed PCA and compared the perfor-
mance of the ICA-FX, PCA, and the original 5 features in Table 1. In this
experiment, the number of extracted features for ICA-FX was varied from 1
to 5. The performance is the root mean square (rms) error of the test data.
Averages of 10 experiments with standard deviations are reported here.

Table 1. Performance for the simple linear dataset (rms error). Averages of 10 exper-
iments. Numbers in the parentheses are the standard deviations.

no. of features rms error

Original 5 0.00 (0.00)

1 2.85 (0.64)
PCA 3 2.17 (0.68)

5 0.00 (0.00)

1 0.01 (0.02)
ICA-FX 3 0.00 (0.00)

5 0.00 (0.00)

The table also shows that the ICA-FX performs well with a small number of
features.

Nonlinear Case Consider the following problems:
As the problem above, suppose we have five independent input features x1

∼ x5 which have normal distribution with zero mean and variance of 1. Now,



suppose that the target output variable t has the following nonlinear relationship
with the input xxx: t = sin(x2 + 2x4).

For this problem, 1000 samples were generated which were divided into 500
training data and 500 test data. On the training data, ICA-FX was applied where
the number of extracted feature M was set to 1. The first row of weight matrix
WWW in (7) after ICA-FX was [-0.0176, -0.5146, -0.0982, -0.9607, 0.0046, 0.4886].
Thus the newly extracted feature is f = −0.0176x1 − 0.5146x2 − 0.0982x3 −
0.9607x4 + 0.0046x5. Note that the coefficients for x1, x3 and x5 are very small
compared to those of x2 and x4. This indicates that the resultant weights after
ICA-FX can be used to select appropriate features. In addition, note that the
ratio of coefficient of x2 and that of x4 is approximately 1:2 which is the ratio of
the corresponding coefficients inside sin term. The extracted weights show that
the ICA-FX performs well for this nonlinear regression problem too.

As in the linear case, we have performed PCA for this dataset and compared
the rms error of the ICA-FX with those of PCA and the original 5 features in
Table 2 The number of extracted features for ICA-FX was varied from 1 to 5.

Table 2. Performance for the simple nonlinear dataset (rms error). Averages of 10
experiments. Numbers in the parentheses are the standard deviations.

no. of features rms error

Original 5 0.14 (0.17)

1 0.73 (0.02)
PCA 3 0.57 (0.20)

5 0.08 (0.05)

1 0.15 (0.03)
ICA-FX 3 0.19 (0.27)

5 0.08 (0.06)

The table shows that the ICA-FX performs better than PCA and the original
data for this dataset.

4.2 UCI dataset - Housing (Boston)

In this section, we have applied ICA-FX to Housing (Boston) dataset in UCI
Machine Learning Repository [6].

The dataset contains 13 input features, 12 continuous and 1 binary, and one
continuous target variable. There are total 506 instances. We have randomly
divided this dataset into 90% training and 10% test sets 10 times and reported
the average rms error on the test data in Table 3. In applying ICA-FX, we have
normalised each input feature to have zero mean and unit variance and varied
the number of extracted features M from 1 to 13.

Note that ICA-FX performs better than PCA generally and the performance
was robust irrespective of the number of extracted features. Note also that the
ICA-FX performs better than using 13 original features.



Table 3. Performance for the Housing dataset (rms error). Numbers in the parentheses
are the standard deviations.

no. of features original PCA ICA-FX

1 – 7.36 (0.68) 3.59 (0.60)
3 – 4.70 (1.17) 3.60 (0.54)
5 – 4.16 (1.72) 3.60 (0.65)
7 – 3.49 (0.51) 3.50 (0.45)
9 – 4.00 (0.91) 3.80 (1.01)
11 – 3.67 (0.71) 3.42 (0.63)
13 4.20 (0.99) 4.41 (1.73) 3.37 (0.63)

5 Conclusions

In this paper, we have extended the feature extraction algorithm ICA-FX to
regression problems. The proposed algorithm is based on the standard ICA and
can generate very useful features for regression problems.

Although ICA can be directly used for feature extraction, it does not generate
useful information because of its unsupervised learning nature. In the proposed
algorithm, we added output target information in training ICA. With the ad-
ditional target information we can extract new features containing maximal in-
formation about the target. The number of extracted features can be arbitrarily
chosen.

Since it uses the standard feed-forward structure and learning algorithm of
ICA, it is easy to implement and train. Experimental results for several data sets
show that the proposed algorithm generates good features that outperform the
original features and other features extracted from other methods. Because the
original ICA is ideally suited for processing large datasets such as biomedical
ones, the proposed algorithm is also expected to perform well for large-scale
regression problems.

References

1. I.T. Joliffe, Principal Component Analysis, Springer-Verlag, 1986.
2. A.J. Bell and T.J. Sejnowski, “An information-maximization approach to blind

separation and blind deconvolution,” Neural Computation, vol. 7, no. 6, June 1995.
3. T-W. Lee, M. Girolami, and T.J. Sejnowski, “Independent component analysis using

an extended infomax algorithm for mixed sub-gaussian and super-gaussian sources,”
Neural Computation, vol. 11, no. 2, Feb. 1999.

4. K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press,
second edition, 1990.

5. N. Kwak and C.-H. Choi, “Feature extraction based on ICA for binary classification
problems,” IEEE Trans. on Knowledge and Data Engineering, vol. 15, no. 6, pp.
1374–1388, Nov. 2003.

6. http://www.ics.uci.edu/∼mlearn/MLSummary.html


