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In this paper, the linear discriminant analysis (LDA) is generalized by using an Lp-norm optimization tech-
nique. Although conventional LDA based on the L2-norm has been successful for many classification prob-
lems, performances can degrade with the presence of outliers. The effect of outliers which is exacerbated
by the use of the L2-norm can cause this phenomenon. To cope with this problem, we propose an LDA
based on the Lp-norm optimization technique (LDA-Lp), which is robust to outliers. Arbitrary values
of p can be used in this scheme. The experimental results show that the proposed method achieves high
recognition rate for many datasets. The reason for the performance improvements is also analyzed.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

During the last few decades, numerous feature extraction meth-
ods have been proposed for data analysis and object classification
in the computer vision and pattern recognition communities. Prin-
cipal component analysis (PCA) (Fukunaga, 1990; Turk et al., 1991),
independent component analysis (ICA) (Bell and Sejnowski, 1995;
Kwak and Choi, 2003) and linear discriminant analysis (LDA) (Bel-
humeur et al., 1997; Martinez and Kak, 2001) are successful repre-
sentatives of linear subspace-based feature extraction methods,
and many further improvements continue to be researched. Unlike
PCA and ICA, LDA is designed for supervised learning and has been
widely used for classification problems. The goal of LDA is to find a
series of projections that maximize the ratio of between class and
within class variance, both of which are based on the L2 norm. It is
known that conventional L2-norm based LDA is optimal if each
class has the same Gaussian distribution. Although conventional
LDA, based on the L2-norm, has been successful for many problems,
there are numerous problems whose class-specific distributions
are far from Gaussian. For these problems, the performances of
LDA could degrade with the presence of outliers because L2-
norm-based methods are dominated by samples with large norms.

As a generalized version of LDA, Yang et al. (2011) introduced a
new concept of designing a discriminant analysis method and Yang
and Yang (2003) suggested a complete PCA plus LDA algorithm.
A new kernel Fisher discriminant analysis framework was also
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proposed to implement the KPCA plus LDA strategy (Yang et al.,
2005). An extension of LDA to regression problems and its kernel
version were also proposed in (Kwak and Lee, 2010; Kwak,
2012), respectively.

There are many studies aimed at enhancing the performance of
the conventional L2-norm-based feature extraction methods. In
particular, many studies have focused on PCA algorithms based
on the L1-norm instead of the L2-norm. L1-norm-based PCA (L1-
PCA) Ke and Kanade (2005) finds the optimal projection vectors
that minimize the L1-norm-based reconstruction error in the input
space through linear or quadratic programming which is computa-
tionally expensive. Another drawback of L1-PCA is that it is not
rotational invariant. Ding et al. (2006) proposed R1-PCA, which
combines the merits of L2-PCA and those of L1-PCA. Unlike L1-
PCA, it is rotation-invariant while it successfully suppresses the ef-
fect of outliers, as L1-PCA does. On the other hand, PCA-L1 (Kwak,
2008) maximizes L1-norm-based dispersion in the feature space,
instead of maximizing L2-norm-based variance, to achieve robust
and rotation-invariant PCA. Several extensions of PCA-L1 have
been introduced recently. 2DPCA-L1 (Li et al., 2009) is an L1-norm
version of 2DPCA that is robust to outliers with very simple itera-
tion process. In addition, Kwak and Oh (2009) proposed SL1-BDA,
an L1-norm version of biased discriminant analysis that was origi-
nally developed for one-class classification problems. It tries to re-
duce the negative effect of extracting features due to negative
samples that are very far from the center of positive samples and
utilizes the L1-norm instead of the L2-norm.

There are also studies that try to extend LDA using other norms
than the L2-norm. The novel rotation-invariant L1-norm (R1-norm)-
based discriminant criterion called DCL1, which better character-
izes intra-class compactness and inter-class separability by using
the rotation-invariant L1-norm, was proposed in (Li et al., 2010).
In addition, robust L1-norm based tensor analysis (TPCA-L1)
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formulates the reconstruction error with the L1-norm (Pang et al.,
2010). The use of the L1 norm makes tensor analysis robust to out-
liers. Moreover, the algorithm converges well in several iterations.
Fast Haar transform (FHT) based PCA and FHT-based spectral
regression discriminant analysis have also been proposed to solve
the problem of the computationally expensive processing time of
the projection process (Pang et al., 2009). Recently, we studied
the generalization of the L1 norm to an Lp norm with an arbitrary
p value for PCA (Kwak, 2013). This algorithm uses a new Lp-norm
optimization technique using the gradient search method.

In this paper, a method is proposed for classification, which is
based on the Lp-norm optimization technique as a generalized
version of LDA. We address a novel method of LDA that uses the
Lp-norm instead of the L2-norm to obtain a robust and rotation-
invariant version of LDA. The objective function is formulated
using the general Lp-norm in both the numerator and denominator
and the optimal solution is found using the steepest-gradient
method. The effect of outliers for each method is analyzed, and it
is shown that the proposed LDA based on the Lp-norm is more
robust to outliers. In doing so, a novel methodology for measuring
the effect of outliers is also presented.

This paper is organized as follows. In Section 2, conventional
LDA is overviewed, and the new algorithm LDA-Lp which uses
the Lp-norm instead of the L2-norm is presented. Section 3 shows
the experimental results with an analysis on the effect of outliers.
Finally, conclusions are presented in Section 4.
2. Methods

2.1. LDA (based on the L2-norm)

LDA is one of the well-known methods of supervised dimen-
sionality reduction for classification problems. It tries to find trans-
formations that maximize the ratio of the between-class and the
within-class scatter matrices. Consider a dataset fðxi; ciÞgN

i¼1, where
xi 2 Rd and ci 2 f1; . . . ;Cg are an input and the corresponding class,
respectively. The between-class scatter matrix SB and the within-
class scatter matrix SW are defined, respectively, as:

SB ¼
XC

c¼1

Ncðmc �mÞðmc �mÞT ;

SW ¼
XN

i¼1

ðxi �mci
Þðxi �mci

ÞT ;
ð1Þ

where Nc is the number of samples belonging to class c, and
m , 1

N

PN
i¼1xi and mc ,

1
Nc

P
i2fjjcj¼cgxi are the total mean and the class

mean of the input data.
The LDA is formulated to find M projection vectors fwigM

i¼1 that
maximize Fisher’s criterion, as follows:

WLDA ¼ argmax
W

jWT SBWj
jWT SW Wj

: ð2Þ

Here, the ith column of W corresponds to wi. Maximizing the
above Fisher’s criterion is equivalent to solving the following
eigenvalue decomposition problem:

SBwi ¼ kiSW wi k1 P k2 P � � �P km: ð3Þ

Then, the linear projections fwigM
i¼1 can be obtained. However,

conventional LDA is very sensitive to the presence of outliers, be-
cause both SB and SW in (1) are dominated by a set of outliers with
large norms. To alleviate this problem, we propose a novel method
that utilize the Lp-norm instead of the L2-norm in the subsequent
subsection.
2.2. Algorithm: LDA-Lp

It is well known that an algorithm based on the Lp-norm is less
sensitive to the samples with large norms compared to the corre-
sponding algorithm based on the L2-norm.

Therefore, we define a new maximization problem for the de-
sign of an Lp-norm-based LDA. Consider the following Lp-norm
maximization problem with the constraint jjwjj2 ¼ 1.

FpðwÞ ¼
PC

c¼1NcjwTðmc �mÞjpPN
i¼1jwTðxi �mci

Þjp
: ð4Þ

This can be solved by taking the gradient of FpðwÞ with respect
to w. An important point to note here is that because of the abso-
lute value operator in (4), the gradient of FpðwÞ is not well defined
on some singular points. To avoid this technical difficulty, a sign
function below is introduced.

sgnðaÞ ¼
1 if a > 0;
0 if a ¼ 0;
�1 if a < 0:

8><
>:

ð5Þ

With the help of this sign function, (4) can be rewritten as
follows:

FpðwÞ ¼
PC

c¼1Nc½sgnðwTðmc �mÞÞwTðmc �mÞ�pPN
i¼1½sgnðwTðxi �mci

ÞÞwTðxi �mci
Þ�p

: ð6Þ

Now, in order to get an optimal w which maximizes (6), we can
take a gradient of FpðwÞ in (6) with respect to w as follows:

rw ¼
dFpðwÞ

dw
¼ A� B

E
� C � D

E
;

where A ¼ p
XC

c¼1

NcsgnðwTðmc �mÞÞjwTðmc �mÞjp�1ðmc �mÞ;

B ¼
XN

i¼1

½sgnðwTðxi �mci
ÞÞwTðxi �mci

Þ�p;

C ¼
XC

c¼1

Nc½sgnðwTðmc �mÞÞwTðmc �mÞ�p;

D ¼ p
XN

i¼1

sgnðwTðxi �mci
ÞÞjwTðxi �mci

Þjp�1ðxi �mci
Þ;

E ¼ ð
XN

i¼1

½sgnðwTðxi �mci
ÞÞwTðxi �mci

Þ�pÞ2:

ð7Þ

The above gradient is well defined when wTðmc �mÞ – 0 and
wTðxi �mci

Þ – 0 for all xi. Furthermore, it is also well defined if
p > 1 on singular points where wTðmc �mÞ ¼ 0 or
wTðxi �mci

Þ ¼ 0 for some xi’s. On the other hand, if p ¼ 1 the term
A or D in (7) is not well defined on the singular points because 00 is
hard to define, and if p < 1; A or D diverges at the singular points.
To avoid this problem, we add a singularity check step before
computing the gradient.

The optimal solution to this problem can be obtained using the
steepest-gradient method as follows:

i. Initialization

� t  0. Set wð0Þ such that jjwð0Þjj2 ¼ 1.
ii. Singularity check (applies only when p 6 1)

� If wðtÞTðmc �mÞ ¼ 0 or wðtÞTðxi �mci

Þ ¼ 0;wðtÞ  ðwðtÞþdÞ
jjwðtÞþdjj2

where d is a small random vector.

iii. Computation of rw in (7)
iv. Gradient search

� wðt þ 1Þ  wðtÞ þ arw where a is a learning rate.
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Fig. 1. FpðwÞ obtained by Eq. 4.
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v. Normalization

� wðtÞ  wðtÞ

jjwðtÞjj2

vi. Convergence check

� If jjwðtÞ �wðt � 1ÞjjP �, goto Step ii.
� Else, w�  wðtÞ. Stop iteration.
First, we initialize the projection vector wð0Þ such that
jjwð0Þjj2 ¼ 1. Then, if p 6 1, we check whether w is a singular point
or not. After the singularity check, we compute the gradient rw

using (7). Then, the steepest-gradient method is applied:
wðt þ 1Þ  wðtÞ þ arw where a is a learning rate. We normalize
the obtained projection vector to make it a unit vector. Finally,
the convergence check is performed on the obtained projection
vector wðtÞ. In all the experiments in the next section, we set �
to 0.01, which, in this study, is a very small value.

In the above Lp-norm maximization problem, only one projec-
tion vector w can be obtained. When more than one vectors
fwigm

i¼1 are needed, the proposed method can be easily extended
to extract arbitrary number of features by applying the same pro-
cedure greedily to the remainder of the projected samples as
follows:

� w0 ¼ 0; fx0
i ¼ xigN

i¼1.
� For j ¼ 1 to m,
– For all i 2 f1; . . . ;Ng; xj
i ¼ xj�1

i �wj�1ðwT
j�1xj�1

i Þ.
– In order to find wj, apply the above LDA-Lp procedure to
fðxj

i; ciÞgN
i¼1.

� end

3. Experimental results and analysis

3.1. Experimental results

3.1.1. A toy problem
Consider the simple binary classification problem in a two-

dimensional input space. Twenty data points of the first class are
randomly generated from a Gaussian distribution with mean
(�5,�5) and standard deviation (1,1). Another 20 data points of
the second class are generated in the same way with mean (5,5)
and standard deviation (1,1). Finally, an outlier of the second class
is positioned at (5,15).

Fig. 1 shows the values of objective function FpðwÞ for various
values of p while varying the direction of w from 0� to 180�. We
can estimate that the optimal direction of w is around 45� for
above randomly generated dataset if the proposed method is ro-
bust to the presence of outliers. The maximum FpðwÞ were ob-
tained in 51�, 39�, 23�, and 17� for L0:5-norm, L1-norm, L1:5-norm
and L2-norm, respectively. As shown in Fig. 1, the FpðwÞ is locally



Fig. 2. Final FpðwÞ and final direction using steepest gradient method.
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Table 1
Properties of UCI dataset.

Dataset No. of variables No. of classes No. of instances

Australian 14 2 690
Breast cancer 9 2 683
Heart disease 13 2 297
Bupa 6 2 345
Pima 8 2 768
Sonar 60 2 208
Balance 4 3 625
Waveform 21 3 4999
Iris 4 3 150
Yeast 8 10 1484
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concave function for L1-norm, L1:5-norm and L2-norm. Otherwise,
the FpðwÞ is non-concave function for L0:5-norm which contains
many sharp peak. The final solution has much chance to stick to lo-
cal maximum when we use steepest gradient method for L0:5-
norm. To avoid this problem, we used the projection obtained by
the conventional LDA for the initial projection of LDA-Lp in the fol-
lowing experiments for UCI datasets and vehicle dataset. The final
direction of w was more close to the optimal 45� when L0:5- or L1:0-
norm was used instead of L2-norm.

Fig. 2 shows the final FpðwÞ while varying initial projection vec-
tor wð0Þwhich is used in intialization step. The final direction indi-
cates the angle of final projection of vector w of LDA-Lp. We select a
to obtain a stable FpðwÞ, while varying the initial direction in
initialization step. We select a as 0.01 and the average of final
directions is 46.5�, 30.9�, 13.3�, and 10:9�, respectively. LDA-L1

and LDA-L1:5 converge to a certain direction, as shown in Fig. 2.
However, LDA-L0:5 finds it difficult to converge because LDA-L0:5

could converge to the local maximum, as shown in Fig. 1(a).
Fig. 3. Vehicle and non-vehicle samples for tenfold cross-validation.
3.1.2. UCI datasets
We applied LDA-Lp to several datasets in the UCI machine learn-

ing repositories, and compared their performance with the conven-
tional LDA. Table 1 shows the number of variables, classes, and
instances of each dataset. In Table 2, the classification rates using
Table 2
Classification rates, average time, and average number of iterations for UCI dataset.

Classification rates (%)

LDA LDA-L1:5 LDA-L1 LDA-L0

Australian 76.6667 81.8841 81.8840 81.014
(3.5136) (4.1134) (5.4224) (5.1783

Breast cancer 96.0507 96.0465 97.2251 96.489
(2.9230) (2.1941) (2.5263) (2.3001

Heart disease 75.7586 80.1264 80.8506 79.471
(6.2433) (6.7818) (6.7557) (9.4803

Bupa 54.2185 63.1765 65.8655 65.294
(7.7966) (5.3936) (8.3002) (9.1411

Pima 65.8749 70.1487 71.0919 72.394
(5.6777) (7.7649) (4.9059) (6.6174

Sonar 65.3810 76.9286 76.8333 76.476
(9.1894) (9.4524) (7.1040) (9.5560

Balance 88.9683 89.2806 90.0794 86.574
(5.2415) (11.9901) (7.0860) (7.9325

Waveform 52.9111 55.0308 56.0905 56.271
(2.3254) (1.7044) (2.1430) (1.5705

Iris 96.6667 97.3333 96.6667 97.333
(4.7140) (4.6614) (4.7140) (4.6614

Yeast feature: 1 32.3535 34.3683 35.7722 39.761
(3.6347) (2.5082) (1.6705) (2.2452

Yeast feature: 3 44.7469 47.5789 49.4631 51.818
(3.6180) (2.9475) (3.0155) (2.4699

Yeast feature: 5 49.2667 50.2054 55.2603 55.331
(6.3659) (2.6493) (2.2815) (3.0648

The best classification rate is denoted in bold face.
tenfold cross-validation are shown with their standard deviations
in parentheses. We extracted one feature for LDA and LDA-Lp to
compare performance except for ‘‘Yeast’’ dataset. For ‘‘Yeast’’ data-
set, one, three, and five features were extracted to compare the
performances of LDA-Lp with various values of p. One-nearest
neighbor classifier was used throughout this study. The initial pro-
jection of LDA-Lp was set to the projection obtained by LDA. We
also set the maximum number of iterations to 100. The perfor-
mances shown in Table 2 are the best classification performance
among the results obtained by varying the learning rate a. We
can see that LDA-L1:5, LDA-L1, and LDA-L0:5 outperformed LDA by
more than 3.6037%, 4.8515%, and 4.9472% on average. We obtained
better classification performance using LDA-L1:5 compared to LDA,
but the performance of LDA-L1 and LDA-L0:5 was slightly better
than LDA-L1:5. Above all, the performance for the ‘‘Bupa’’ and
‘‘Sonar’’ dataset is improved by more than 10% in LDA-L1 and
LDA-L0:5. For the same number of features, LDA-L1 outperformed
LDA-L0:5 and LDA-L1:5 for the datasets ‘‘Breast cancer’’, ‘‘Heart dis-
ease’’, ‘‘Bupa’’, ‘‘Sonar’’, and ‘‘Balance’’. LDA-L0:5 outperformed the
other methods for the ‘‘Pima’’, ‘‘Waveform’’, ‘‘Iris’’ and ‘‘Yeast’’
datasets. This shows that the effect of outliers can be reduced
and the classification performance can be enhanced by using Lp

norm instead of L2 norm.
Average time (s) and average number of iterations

:5 LDA LDA-L1:5 LDA-L1 LDA-L0:5

5 0.5507 0.2625 1.6717 1.7036
) – 12.0 100.0 100.0

8 0.5425 0.2063 1.6492 1.1893
) – 9.1 100.0 70.4

3 0.1240 0.0779 0.1268 0.2243
) – 7.8 15.2 28.8

1 0.1575 0.3537 0.4132 0.8444
) – 38.9 47.9 100.0

1 0.6621 0.3705 1.1014 1.8621
) – 16.5 58.8 100.0

2 0.0783 0.2707 0.5850 0.5948
) – 35.4 100.0 100.0

5 0.4493 0.0863 1.0717 1.5084
) – 3.0 71.1 99.0

7 26.5034 4.3742 4.3259 15.0706
) – 11.4 11.3 100.0

3 0.0527 0.0206 0.0156 0.0163
) – 2.0 2.0 2.0

0 3.4150 3.7925 3.7118 3.8615
) – 15.3 29.3 29.3

9 2.0129 10.7295 10.6311 10.9018
) – 21.8 25.4 29.3

0 1.9804 17.0258 16.9107 17.6461
) – 21.2 27.8 29.3



Table 3
Classification rates, average time, and average number of iterations for vehicle data.

Classification rates (%) Average time (s) and average number of iterations

LDA LDA-L1:5 LDA-L1 LDA-L0:5 LDA LDA-L1:5 LDA-L1 LDA-L0:5

85.7000 86.4750 85.9000 86.0250 18.0792 2.2662 2.3312 10.7075
(1.5581) (1.4599) (1.4916) (0.7945) – 9.7 10.8 100.0

The best classification rate is denoted in bold face.
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The right side of Table 2 shows the average time for each UCI
dataset on a 2.66 GHz CPU with 2 GB RAM. For LDA-Lp, the average
numbers of iterations for steepest-gradient method are also
shown. For example, LDA-L1:5 took 0.2625 (s) with 12 iterations
for the ‘‘Australian’’ dataset. Note that the average time increases
as the number of samples increases. For LDA-Lp, the average time
is also in proportional to the number of iterations.
3.1.3. Vehicle dataset
The samples of data that were used for classifying vehicles and

non-vehicles are shown in Fig. 3. In total, 4000 images were col-
lected for tenfold cross-validation, which consisted of 2000 vehicle
images and 2000 non-vehicle images. Each sample was scaled and
aligned to a base resolution of 24� 24 pixels. The experimental re-
sults for vehicle data are summarized in Table 3. We also extracted
one feature and a one-nearest neighbor classifier was used. For this
Table 4
Effect of outliers for UCI datasets using LDA and LDA-Lp .

Dataset Percentage of data

1% 2% 3%

Australian LDA 0.1111 0.1619 0.2026
LDA-L1:5 0.0313 0.0521 0.0709
LDA-L1 0.0260 0.0468 0.0653
LDA-L0:5 0.0202 0.0367 0.0531

Breast cancer LDA 0.0851 0.1467 0.2017
LDA-L1:5 0.0415 0.0780 0.1108
LDA-L1 0.0271 0.0519 0.0747
LDA-L0:5 0.0178 0.0347 0.0510

Heart disease LDA 0.0512 0.0891 0.1211
LDA-L1:5 0.0392 0.0709 0.1011
LDA-L1 0.0250 0.0475 0.0695
LDA-L0:5 0.0168 0.0328 0.0486

Bupa LDA 0.2623 0.3301 0.3967
LDA-L1:5 0.1766 0.2314 0.2877
LDA-L1 0.0912 0.1279 0.1725
LDA-L0:5 0.0375 0.0586 0.0838

Pima LDA 0.1060 0.1697 0.2249
LDA-L1:5 0.0637 0.1105 0.1513
LDA-L1 0.0409 0.0737 0.1036
LDA-L0:5 0.0226 0.0429 0.0623

Sonar LDA 0.1342 0.1908 0.2422
LDA-L1:5 0.0825 0.1273 0.1644
LDA-L1 0.0455 0.0745 0.1014
LDA-L0:5 0.0282 0.0461 0.0637

Balance LDA 0.0717 0.1201 0.1642
LDA-L1:5 0.0508 0.0865 0.1196
LDA-L1 0.0345 0.0605 0.0850
LDA-L0:5 0.0212 0.0382 0.0547

Waveform LDA 0.0496 0.0908 0.1276
LDA-L1:5 0.0357 0.0670 0.0961
LDA-L1 0.0253 0.0484 0.0704
LDA-L0:5 0.0168 0.0328 0.0484

Iris LDA 0.0383 0.0571 0.0920
LDA-L1:5 0.0330 0.0490 0.0790
LDA-L1 0.0271 0.0399 0.0642
LDA-L0:5 0.0210 0.0311 0.0506

Yeast LDA 0.0906 0.1497 0.1988
LDA-L1:5 0.0504 0.0899 0.1239
LDA-L1 0.0317 0.0571 0.0808
LDA-L0:5 0.0186 0.0354 0.0516
dataset, LDA-Lp is slightly better than LDA. Among LDA-Lp, the clas-
sification rates of LDA-L1:5 was 86.4760%, which is better than
those of the others. We also set the maximum number of iterations
to 100 for vehicle data. The average time for LDA-L0:5 was longer
than that for LDA-L1:5 and LDA-L1 because of the large number of
iterations. However, it took less time than LDA. The LDA-Lp method
did not include the eigenvalue decomposition process, which takes
up a large portion of the processing time. This is the main reason
that LDA-Lp took less time than LDA.
3.2. Analysis

In this part, the effect of outliers for UCI datasets and vehicle
data is analyzed to show the reason for improvement in classifica-
tion performance. A novel method for measuring the effect of out-
liers is proposed. To evaluate the effect of outliers in LDA-Lp, the
following factor is defined.

Effect on scatter matrixxi
¼ ðjxi �mjÞp þ ðjxi �mjjÞp; ð8Þ
Outlier effectk
xi
¼
Pceilð k

100nÞ
i¼1 Effect on scatter matrixxiPn

i¼1Effect on scatter matrixxi

: ð9Þ

The first and second terms of (8) denote the effect of each da-
tum xi on the between- and within-class scatter matrices, respec-
tively, as shown in (1). The data that have a large
Effect on scatter matrixxi

value can be regarded as outliers. We cal-
culated (8) for each datum in several UCI datasets and reordered
them in decreasing order. Then, we chose 1%, 2%, and 3% of the data
that had a significant Effect on scatter matrixk

xi
value, as shown in

(9). Here, ceil is the ceiling function. For example, k ¼ 1 corre-
sponds to the effect of 1% outlier.

We compared the effect of outliers in LDA and LDA-Lp in Table 4
using the Outlier effectxi

value. The Outlier effectxi
is small when we

apply LDA-Lp. This means that the outlier effect of LDA-Lp is re-
duced compared to that of LDA. The outlier effects for the ‘‘Bupa’’
and ‘‘Sonar’’ datasets in LDA are 0.2623 and 0.1342, respectively,
which are larger than for the other datasets. This means that we
can reduce the outlier effect more effectively for these datasets if
we use LDA-Lp instead of LDA. This is the reason for improved per-
formance for the ‘‘Bupa’’ and ‘‘Sonar’’ datasets as compared to
other datasets, as shown in Table 2. Further, we also focus on the
outlier effect for ‘‘Iris’’ using LDA. The value is 0.0383, which is
the smallest Outlier effectxi

value among the ten datasets. Thus,
we can conclude that the ‘‘Iris’’ dataset does not contain many out-
liers. This is why the performance difference between LDA and
LDA-Lp is smaller for ‘‘Iris’’ than for the other datasets.

Among LDA-Lp, we can reduce the outlier effect when we use
smaller norm as shown in Table 4. Although the outlier effect is de-
creased consistently when we use small norm, the classification
performance is slightly different for each LDA-Lp, as shown in Ta-
ble 2. This depends on how well the data distribution is assumed
by each norm. For example, we assume that the data distribution
is Laplacian when we use LDA-L1. If the data distribution is similar
to a Laplacian distribution, the performance of LDA-L1 is better
than that of the other methods. Otherwise, if the data distribution
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is more similar to that of the L0:5-norm, the performance of LDA-L0:5

is better than that of other methods. We conclude that the perfor-
mance of LDA-Lp is better than conventional LDA, and that the data
distribution also affects the classification performance with vary-
ing norms.

4. Conclusions

This paper described a method for an LDA based on the Lp-norm
optimization technique. Although conventional LDA based on the
L2-norm has been successfully solved many problems, the perfor-
mance can be degraded with the presence of outliers. The reason
for this phenomenon could be the effect of outliers, which is exac-
erbated by the use of a large norm. LDA-Lp is more robust to the
presence of outliers than conventional LDA. By introducing a new
method of measuring the effect of outliers, we analyzed the effect
of outliers being reduced when we used LDA-Lp compared to LDA.
The experimental results show that the proposed method achieves
a high recognition rate for UCI datasets and vehicle data.
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